List of Journals    /    Call For Papers    /    Subscriptions    /    Login
By Author By Title
 About CSC Journals
 CSC Journals Objectives
 List of Journals
 Call For Papers CFP
 Special Issue CFP
 Submission Guidelines
 Peer Review Process
 Helpful Hints For Getting Published
 Plagiarism Policies
 Abstracting & Indexing
 Open Access Policy
 Submit Manuscript
 Reviewer Guidelines
 Editor Guidelines
 Join Us As Editor
 Launch Special Issue
 Suggest New Journal
 Browse CSC Library
 Open Access Policy
 Conference Partnership Program (CPP)
 Abstracting & Indexing
 Discounted Packages
 Archival Subscriptions
 How to Subscribe
 Subscriptions Agents
 Order Form
Gene Expression Based Acute Leukemia Cancer Classification: A Neuro-Fuzzy Approach
Full text
International Journal of Biometrics and Bioinformatics (IJBB)
Table of Contents
Download Complete Issue    PDF(2.44MB)
Volume:  4    Issue:  4
Pages:  136-160
Publication Date:   September 2010
ISSN (Online): 1985-2347
136 - 146
Published Date   
CSC Journals, Kuala Lumpur, Malaysia
Keywords   Abstract   References   Cited by   Related Articles   Collaborative Colleague
KEYWORDS:   gene expression data, cancer classification, membership function, AAL/AML 
This Manuscript is indexed in the following databases/websites:-
1. Docstoc
2. Scribd
3. Directory of Open Access Journals (DOAJ)
5. Google Scholar
6. refSeek
7. Academic Index
8. iSEEK
9. Socol@r
10. ResearchGATE
11. Bielefeld Academic Search Engine (BASE)
12. Academic Journals Database
13. Libsearch
14. WorldCat
In this paper, we proposed the Modified Fuzzy Hypersphere Neural Network (MFHSNN) for the discrimination of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in leukemia dataset. Dimensionality reduction methods, such as Spearman Correlation Coefficient and Wilcoxon Rank Sum Test are used for gene selection. The performance of the MFHSNN system is encouraging when benchmarked against those of Support vector machine (SVM) and the K-nearest neighbor (K-NN) classifiers. A classification accuracy of 100% has been achieved using the MFHSNN classifier using only two genes. Furthermore, MFHSNN is found to be much faster with respect to training and testing time. 
1 M. Schena, D. Shalon, R. W. Davis and P. O. Brown. “Quantitative monitoring of gene expression patterns with a complementary DNA microarray”, Science 267 (1995):pp. 467–470.
2 T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander. “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring”, Science, vol. 286, pp. 531–537, 1999.
3 R. Baumgartner, C. Windischberger, and E. Moser. “Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis”. Magn Reson Imaging, vol. 16, no. 2, pp. 115–125, 1998.
4 T. Kohonen, Ed. “Self-organizing maps”. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997.
5 T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. “Support vector machine classification and validation of cancer tissue samples using microarray expression data”, Bioinformatics, vol. 16, pp. 906–914, 2000.
6 J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer. “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks”, Nature Medicine, vol. 7, pp. 673–679, 2001.
7 C. Shi and L. Chen. “Feature dimension reduction for microarray data analysis using locally linear embedding”, APBC, 2005, pp. 211–217.
8 L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen. “Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method”, Bioinformatics, vol. 17, pp. 1131–1142, 2001.
9 T. Jirapech-Umpai and S. Aitken. “Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes”, Bioinformatics, vol. 6, pp. 168–174, 2005.
10 Min Su, M. Basu and A. Toure. “Multi-Domain Gating Network for Classification of Cancer Cells Using Gene Expression Data”, In Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 286–289, 2002.
11 R Xu. G. Anagnostopoulos and D. Wunsch. ”Tissue Classification Through Analysis of Gene Expression Data Using A New Family of ART Architectures”, In Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 300–304, 2002.
12 Saeys Y, Inza I, Larranaga P. “A review of feature selection techniques in bioinformatics”, Bioinformatics 2007, 23(19): 2507-2517.
13 Wang X, Gotoh O. “Microarray-Based Cancer Prediction Using Soft Computing Approach”, Cancer Informatics, 2009, 123–39.
14 U V Kulkarni, T R Sontakke. “Fuzzy Hypersphere Neural Network Classifier”, 10th IEEE int. conference on fuzzy systems, Dec 2001, 1559-1562.
15 S.-B. Cho, J. Ryu. “Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features”, Proc. IEEE 90 (11) (2002):1744–1753.
16 E.L. Lehmann. “Non-parametrics: Statistical Methods Based on Ranks”. Holden-Day, San Francisco, 1975.
17 Deng Lin1, MAJinwen1 & PEI Jian2. “Rank sum method for related gene selection and its application to tumor diagnosis”, Chinese Science Bulletin 2004. Vol. 49, No. 15, 1652-1657.
18 Devore, J. L. “Probability and Statistics for Engineering and the Sciences”. 4th edition. California, Duxbury Press (1995).
1 S. S. Chowhan, U. V. Kulkarni and G. N. Shinde (2011), “Iris Recognition Using Modified Fuzzy HypersphereNeural Network with Different Distance Measures”, International Journal of Advanced Computer Science and Applications, 2(6), pp. 130-134, 2011.
2 Alejandro Rosales-Pérez, Carlos A. Reyes-García, Pilar Gómez-Gil, Jesus A. Gonzalez , Leopoldo Altamirano (2011), “Genetic Selection of Fuzzy Model for Acute Leukemia Classification ”, Advances in Artificial Intelligence Lecture Notes in Computer Science, Vol. 7094/2011, pp. 537-548, 2011.
1 Shri Guru Gobind Singhji Institute of Engineering and Technology
B.B.M.Krishna Kanth : Colleagues
U.V.kulkarni : Colleagues
B.G.V.Giridhar : Colleagues  
  Untitled Document
Copyrights (c) 2012 Computer Science Journals. All rights reserved.
Best viewed at 1152 x 864 resolution. Microsoft Internet Explorer.
Copyrights & Usage: Articles published by CSC Journals are Open Access. Permission to copy and distribute any other content, images, animation and other parts of this website is prohibited. CSC Journals has the rights to take action against individual/group if they are found victim of copying these parts of the website.