List of Journals    /    Call For Papers    /    Subscriptions    /    Login
 
 
 
 
 SEARCH
By Author By Title
 
 
ABOUT CSC
 About CSC Journals
 CSC Journals Objectives
 List of Journals
 CALL FOR PAPERS
 Call For Papers CFP
 Special Issue CFP
AUTHOR GUIDELINES
 Submission Guidelines
 Peer Review Process
 Helpful Hints For Getting Published
 Plagiarism Policies
 Abstracting & Indexing
 Open Access Policy
 Submit Manuscript
 FOR REVIEWERS
 Reviewer Guidelines
 FOR EDITORIAL
 Editor Guidelines
 Join Us As Editor
 Launch Special Issue
 Suggest New Journal
 CSC LIBRARY
 Browse CSC Library
 Open Access Policy
  SERVICES
 Conference Partnership Program (CPP)
 Abstracting & Indexing
 SUBSCRIPTIONS
 Subscriptions
 Discounted Packages
 Archival Subscriptions
 How to Subscribe
 Librarians
 Subscriptions Agents
 Order Form
 DOWNLOADS
 
 
 
 
System Level Power Management for Embedded Rtos: An Object Oriented Approach
Full text
 PDF(174KB)
Source 
International Journal of Engineering (IJE)
Table of Contents
Download Complete Issue    PDF(2.82MB)
Volume:  3    Issue:  5
Pages:  413-520
Publication Date:   November 2009
ISSN (Online): 1985-2312
Pages 
488 - 500
Author(s)  
Ankur Agarwal - United States of Ame
E. B. Fernandez - United States of Ame
 
Published Date   
30-11-2009 
Publisher 
CSC Journals, Kuala Lumpur, Malaysia
ADDITIONAL INFORMATION
Keywords   Abstract   References   Cited by   Related Articles   Collaborative Colleague
 
KEYWORDS:   Tolerance allocation, Optimization techniques, Alternative process selection, Lagrange’s multiplier method, Bottom curve follower approach 
 
 
This Manuscript is indexed in the following databases/websites:-
1. Directory of Open Access Journals (DOAJ)
2. Academic Journals Database
3. ScientificCommons
4. Docstoc
5. Scribd
6. PDFCAST
7. CiteSeerX
8. Google Scholar
9. WorldCat
10. Academic Index
11. refSeek
12. ResearchGATE
13. Bielefeld Academic Search Engine (BASE)
14. iSEEK
15. Libsearch
16. slideshare
17. Chinese Directory Of Open Access
 
 
Power management systems for embedded devices can be developed in real-time operating system (RTOS) or in applications. If power management policies are applied in operating system (OS), then designers and developers will not have to worry about complex power management algorithms and techniques. They can rather concentrate on application development. The OS contains specific and accurate information about the various tasks being executed. An RTOS further has a comprehensive set of power management application programming interfaces (APIs) for both device drivers and applications within a power management component. Therefore, it is logical to place policies and algorithms in the OS that can place components not being used into lower power states. This can significantly reduce the system energy consumption. We present here an abstract model of a system power manager (PM), device power managers, and application power managers. We present relationship and interactions of these managers with each other using Unified Modeling Language (UML) class diagrams, sequence diagrams and state charts. We recommend that the PM must be implemented at the OS level in any embedded device. We also recommend the interfaces for interactions between PM and the devices power manager, as well as PM and application power manager. Device driver and application developers can easily use this object oriented approach to make the embedded system more power efficient, easy to maintain, and faster to develop. 
 
 
 
1 A. Agarwal, S. Rajput, A. S. Pandya, “Power management System for Embedded RTOS: An Object Oriented Approach”, IEEE Canadian Conference on Electrical and Computer Engineering, May 2006, pp. 2305-2309
2 Y. H. Lu, L. Benini, G. D. Micheli, “Power aware operating systems for interactive systems”, IEEE Transactions on Very Large Scale Integration Systems, Volume 10, Issue 2, April 2002, pp. 119-134
3 S. Vaddagiri, A.K. Santhanam, V. Sukthankar, and M. Iyer, “Power management in linux-based systems,” Linux Journal, March 2004, http://www.linuxjournal.com/article.php?sid=6699.
4 S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke, “Reducing disk power consumption in servers with drpm” IEEE Computer, Volume 36, Issue 12, December 2003, pp. 59-66
5 “Adaptive Power Management for Mobile Hard Drives”, IBM, April 1999, http://www.almaden.ibm.com/almaden/pbwhitepaper.pdf
6 H.S. Choi, D. Y. Huh, “Power Electronics Specialists Conference 2005”, 36th IEEE Power Electronics Specialists Conference, 2005, pp. 2817-2822
7 L. Benini, R. Hodgson., P. Siegel, “System-level power estimation and optimization”, International Symposium on Low Power Electronics and Design, IEEE Conference, pp. 173-178, August 1998.
8 L.S. Brakmo, D.A. Wallach, M.A. Viredaz, “uSleep: A technique for reducing energy consumption in handheld device”, 2nd IEEE International Conference Proceeding on Mobile Systems Applications, and Services, June 2004.
9 Y.-H. Lu, G. D. Micheli, “Comparing system-level power management policies”, IEEE Design & Test of Computers special issue on Dynamic Power Management of Electronic Systems, pages 10–19, March/April 2001.
10 Sinha A., Chandrakasan A. P., “Energy efficient real-time scheduling [Microprocessors]”, IEEE International Conference of Computer Aided Design, pp. 458-463, November 2001.
11 Y.-H. Lu, E.-Y. Chung, T. ?Simuni´c, L. Benini, G. D. Micheli, “Quantitative comparison of power management algorithms”, IEEE Conference on Design Automation and Test in Europe, March 2000, pp. 20-26
12 Q. Qiu, Q. Wu, M. Pedram, “Dynamic power management in mobile multimedia system with guaranteed quality-of-service”, IEEE Design Automation Conference, Vol. 49, pp 834-849. June 2001.
13 Udani, S., Smith, J., “Power management in mobile computing”, Department of Computer Information Sciences, Technical Report, University of Pennsylvania, February 1998.
14 Yung-Hsiang Lu and Giovanni De Micheli, “Adaptive hard disk power management on personal computers”, Great Lakes Symposium on VLSI, 1999, pp. 50–53.
15 “Embedded Processor Performance Parameter Data-Sheet”www.intel.com
16 Burd T. D., Brodersen R. W., “Energy efficient CMOS microprocessor design” In Proceedings of the 28th Annual Hawaii International Conference on System Sciences. Volume 1: Architecture, IEEE Computer Society Press, 1995, pp. 288-297
17 Zimmermann, R., and Fichtner, W., “Low power logic styles: CMOS versus pass-transistor logic”, IEEE Journal of Solid State Circuits, Vol. 32, pp. 1079-1089.
18 A. Weissel, F. Bellosa, “Process cruise control: event-driven clock scaling for dynamic power management”, IEEE Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, October 2002.
19 D. Grunwald, P. Levis, C. Morrey III, M. Neufeld, K. Farkas, “Policies for dynamic clock scheduling”, Symposium on Operating Systems Design and Implementation, October 2000, pp 78-86
20 K. Lahiri, A. Raghunathan, “Power analysis of system-level on-chip communication architectures”, IEEE International Conference on Hardware/Software Codesign and System Synthesis (CODES + ISSS), 2004, pp. 236-241.
21 Y. J. Lu, A. C. W. Wai, L. L. Wei Fan, B. K. Lok, P. Hyunjeong, K. Joungho, “Hybrid analytical modeling method for split power bus in multilayer package”, IEEE Transactions on Electromagnetic Compatibility, Volume 48, Issue 1, February 2006, pp. 82-94.
22 C. Le, P. Nathaniel, L. H. Yung, “Joint power management of memory and disk under performance constraints”, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, Volume 25, issue 12, December 2006, pp. 2697-2711.
23 M. Fukashi, H. Isamu, G. Takayuki, N. Hideyuki, I. Takashi, S. Hiroki, D. Katsumi, A. Kazutami, “A configurable enhanced TTRAM macro for system-level power management unified memory”, IEEE Journal of Solid-State Circuits, Volume 42, Issue 4, April 2007, pp. 852-861.
24 Q. Zhu, Y. Zhou, “Power aware storage cache management”, IEEE Transactions on Computers, Volume 54, issue 5, May 2005, pp. 587-602.
25 A. Sagahyroon, M. Karunaratne, “Impact of cache optimization techniques on energy management”, IEEE Canadian Conference on Electrical and Computer Engineering, Volume 4, May 2004, pp. 1831-1833
26 L. Benini, S. K. Shuklam, R. K. Gupta, “Tutorial: architectural system level and protocol level techniques for power optimization for networked embedded systems”, 18th International Conference on VLSI Design, January 2005, pp. 18
27 C. Grelu, N. Baboux, .A. Bianchi, C. Plossu, “Low switching losses devices architectures for power management applications integrated in a low cost 0.13/spl mu/m CMOS technology”, 35th IEEE Proceedings of Solid-State Device research Conference, September 2005, pp 477-480
28 J. Byoun, P. L. Chapman, “Central power management unit as portable power management architecture based on true digital control”, IEEE Workshop on Computers in Power Electronics, August 2004, pp. 69-73
29 L. Benini, A. Bogliolo, G. D. Micheli, “A survey of design techniques for system-level dynamic power management”, IEEE Transactions on very large Scale Integration Systems, Volume 8, Issue 3, June 2000, pp. 299-316
30 T. Simunic, S. P. Boyd, P. Glynn, “Managing power consumption in network on chips”, IEEE Transactions on Very large Scale Systems, Volume 12, Issue 1, January 2004, pp. 96-107
31 D. Monticelli, “System approaches to power management”, 17th Annual IEEE Conference and Exposition on Applied Power Electronics, Volume 1, March 2002, pp. 3-7
32 Y. H. Lu, T. Simuni´c, G. D. Micheli, “Software controlled power management”, IEEE International Workshop on Hardware/Software Codesign, 1999, pp. 157–161.
33 R. M. Passos, C. J. N. Coelho, A. A. F. Loureiro, R. A. F Minim, “Dynamic power management in wireless sensor networks: an application-driven approach”, 2nd Annual IEEE Conference on Wireless on-demand Network Systems and Services, January 2005, pp. 109-118
34 “Roadmap Architects – The Technology Working Groups” http://public.itrs.net
35 Martin Timmerman, “RTOS Evaluations”, 2000, http://www.dedicated-systems.com
36 Jenson Douglas E., “Real-time design pattern robust scalable architecture for real time systems”, Boston, Addition-Wesley, 2002.
37 Bittl JA, Ryan TJ, Keaney JF. “Coronary artery perforation during excimer laser coronary angioplasty”. J Am Coll Cardiol. 1993;2 1: 1158-1165.
 
 
 
 
 
 
1 TechRepublic
 
2 docin
 
3 FAU College of Engineering and Computer Science
 
4 ZDNet
 
5 PDF-TXT.COM
 
6 silicon.com
 
 
 
Ankur Agarwal : Colleagues
E. B. Fernandez : Colleagues  
 
 
 
  Untitled Document
 
Copyrights (c) 2012 Computer Science Journals. All rights reserved.
Best viewed at 1152 x 864 resolution. Microsoft Internet Explorer.
 
  
 
Copyrights & Usage: Articles published by CSC Journals are Open Access. Permission to copy and distribute any other content, images, animation and other parts of this website is prohibited. CSC Journals has the rights to take action against individual/group if they are found victim of copying these parts of the website.