EDITORIAL PREFACE

The International Journal of Artificial Intelligence and Expert Systems (IJAE) is an effective medium for interchange of high quality theoretical and applied research in Artificial Intelligence and Expert Systems domain from theoretical research to application development. This is the Fifth Issue of Volume Two of IJAE. The Journal is published bi-monthly, with papers being peer reviewed to high international standards. IJAE emphasizes on efficient and effective Artificial Intelligence, and provides a central for a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the emerging components of Expert Systems. IJAE comprehensively cover the system, processing and application aspects of Artificial Intelligence. Some of the important topics are AI for Service Engineering and Automated Reasoning, Evolutionary and Swarm Algorithms and Expert System Development Stages, Fuzzy Sets and logic and Knowledge-Based Systems, Problem solving Methods Self-Healing and Autonomous Systems etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Starting with Volume 3, 2012, IJAE will be appearing with more focused issues related to artificial intelligence and expert system research. Besides normal publications, IJAE intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) – either member of the editorial board or another recognized specialist in the respective field.

IJAE give an opportunity to scientists, researchers, and vendors from different disciplines of Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share common interests, explore new approaches, and initiate possible collaborative research and system development. This journal is helpful for the researchers and R&D engineers, scientists all those persons who are involve in Artificial Intelligence and Expert Systems in any shape.

Highly professional scholars give their efforts, valuable time, expertise and motivation to IJAE as Editorial board members. All submissions are evaluated by the International Editorial Board. The International Editorial Board ensures that significant developments in image processing from around the world are reflected in the IJAE publications.

IJAE editors understand that how much it is important for authors and researchers to have their work published with a minimum delay after submission of their papers. They also strongly believe that the direct communication between the editors and authors are important for the welfare, quality and wellbeing of the Journal and its readers. Therefore, all activities from paper submission to paper publication are controlled through electronic systems that include electronic submission, editorial panel and review system that ensures rapid decision with least delays in the publication processes.

To build its international reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJAE. We would like to remind you that the success of our journal depends directly on the number of quality articles submitted for review. Accordingly, we would like to request your participation by submitting quality manuscripts for review and encouraging your colleagues to submit quality manuscripts for review. One of the great benefits we can provide to our prospective authors is the mentoring nature of our review process. IJAE provides authors with high quality, helpful reviews that are shaped to assist authors in improving their manuscripts.

Editorial Board Members
International Journal of Artificial Intelligence and Expert Systems (IJAE)
EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)
Dr. Bekir Karlik
Mevlana University (Turkey)

ASSOCIATE EDITORS (AEiCs)

Assistant Professor. Tossapon Boongoen
Royal Thai Air Force Academy
Thailand

Assistant Professor. Ihsan Omur Bucak
Mevlana University
Turkey

Professor Ahmed Bouridane
Northumbria University
United Kingdom

Associate Professor, Ashraf Anwar
University of Atlanta
United States of America

Professor Chengwu Chen
National Kaohsiung Marine University
Taiwan

EDITORIAL BOARD MEMBERS (EBMs)

Professor Yevgeniy Bodyanskiy
Kharkiv National University of Radio Electronics
Ukraine

Assistant Professor. Bilal Alatas
Firat University
Turkey

Associate Professor Abdullah Hamed Al-Badi
Sultan Qaboos University
Oman

Dr. Salman A. Khan
King Fahd University of Petroleum & Minerals
Saudi Arabia
Assistant Professor Israel Gonzalez-Carrasco
Universidad Carlos III de Madrid
Spain

Dr. Alex James
Indian Institute of Information Technology and Management- Kerala
India

Assistant Professor Dr Zubair Baig
King Fahd University
Saudi Arabia

Associate Professor Syed Saad Azhar Ali
Iqra University
Pakistan

Assistant Professor Israel Gonzalez-Carrasco
Universidad Carlos III de Madrid
Spain

Professor Sadiq M. Sait
King Fahd University
Saudi Arabia

Professor Hisham Al-Rawi
University of Bahrain
Bahrain

Dr. Syed Zafar Shazli
Northeastern University
United States of America

Associate Professor Kamran Arshad
University of Greenwich
United Kingdom

Associate Professor, Mashtalir Sergii
Kharkiv National University of Radio Electronics
Ukraine

S.Bhuvaneswari
Pondicherry University
India

Dr Alejandro Rodriguez Gonzalez
Polytechnic University of Madrid
Spain

Assistant Professor, Jose Luis Lopez-Cuadrado
Universidad Carlos III de Madrid
Spain

Assistant Professor, Ilhan AYDIN
Firat University
Turkey
Associate Professor, Afaq Ahmed
Sultan Qaboos University
Oman

Dr. Muhammad Ali Imran
University of Surrey
United Kingdom
TABLE OF CONTENTS

Volume 2, Issue 5, November / December 2011

Pages

195 - 207 Efficient Mining of Association Rules in Oscillatory-based Data
Mohammad Saniee Abadeh, Mojtaba Ala

208 - 228 Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode
Fuzzy PD Fuzzy Sliding Mode Control
Farzin Piltan, N. Sulaiman, Sadeq Allahdadi, Mohammadali Dialame, Abbas Zare
Efficient Mining of Association Rules in Oscillatory-based Data

Mohammad Saniee Abadeh
Assistant professor, Faculty of Electrical and Computer Engineering
Tarbiat Modares University
Tehran, 14115-143, Iran

Mojtaba Ala
Computer Engineering Department
Payame Noor University
Tehran, Iran

Abstract

Association rules are one of the most researched areas of data mining. Finding frequent patterns is an important step in association rules mining which is very time consuming and costly. In this paper, an effective method for mining association rules in the data with the oscillatory value (up, down) is presented, such as the stock price variation in stock exchange, which, just a few numbers of the counts of itemsets are searched from the database, and the counts of the rest of itemsets are computed using the relationships that exist between these types of data. Also, the strategy of pruning is used to decrease the searching space and increase the rate of the mining process. Thus, there is no need to investigate the entire frequent patterns from the database. This takes less time to find frequent patterns. By executing the MR-Miner (an acronym for “Math Rules-Miner”) algorithm, its performance on the real stock data is analyzed and shown. Our experiments show that the MR-Miner algorithm can find association rules very efficiently in the data based on Oscillatory value type.

Keywords: Data Mining, Association Rules, Frequent Patterns, Stock.

1. INTRODUCTION

Association rules mining is an important problem in the data mining filed which deals with exploring the association and hidden relationships between itemsets within a transaction [2]. For example, an association rule may be like this: “If the stock prices of Transfo and Parsian go down, at 80% of probability, the price of Iran Khodro goes down”. This rule is seen in 40% of the transactions. In this example, the probability posed is called “confidence” and the percentage of the transactions cover this rule is called “support”.

Several algorithms have been proposed for mining association rules. Among these, the best approaches are including: Apriori approach [1], [2], which was first introduced by Agrawal in 1993. This approach operates on the basis of the candidate generation; and, searching (there) is done through the method of breadth-first so that the network of itemsets is searched from one level to another one. Eclat’s approach was presented by Zaki et al. in 1997 [5]. FP-growth approach was presented by Han et al. four years later [4]. In this approach (FP-growth), discovering frequent patterns is done without candidate generation through using FP-tree where searching is done by depth-first. Recently, several algorithms have also been introduced for this purpose such as [3], [12] which were presented by Borgelt et al.

Mining association rules is very useful in the financial issues and the capital market such as the stock market [7], [8], [9], [10], [11]. Data such as stock data include the oscillatory value type. In this paper, an effective method about the data with the oscillatory value type is presented in which, unlike the available algorithms that all frequent itemsets are mined from the database, just a few numbers of the counts of itemsets are searched from the database, and the counts of the
rest of itemsets are computed using the relationships that exist between these types of data. The method consists of two important stages. In the first stage, the frequencies of some patterns is searched via a database; and, in the second stage, the other frequent patterns are computed by the frequencies of the patterns which was obtained in the first stage.

The remainder of the paper is organized as follows: In section 2, issues related to mining association rules are described in the data with the oscillatory value type. In Section 3, the MR-Miner algorithm is introduced; the experiments results are presented in Section 4; and, Section 5 includes the conclusion of this paper.

2. DEFINITIONS
In this section, some concepts associated with mining association rules in the data with the oscillatory value type are described. Before doing so, we will first give some definitions.

Definition 1 Let \(u(t) \) and \(v(t) \) be two “items”, in this case \(u(t) = v(t) \), where \(t = j \) and \(u = v \).

Definition 2 Let \(\alpha = \{ u_1(t_1), u_2(t_2), ..., u_k(t_k) \} \) and \(\beta = \{ v_1(t_1), v_2(t_2), ..., v_k(t_k) \} \) be two “patterns” for \(k \geq 1 \). \(\alpha = \beta \), where \(u_{m}(t) = v_{m}(t) \) for \(0 \leq m \leq k \).

Definition 3 In a transaction database \(D \), the number of transactions is shown by \(|D| \). Let \(\alpha \) be a pattern, the frequency of \(\alpha \) is shown by \(\text{occ}(\alpha) \) and the support of \(\alpha \) is shown by \(\text{sup}(\alpha) \).

\[
\text{sup}(\alpha) = \frac{\text{occ}(\alpha)}{|D|}
\]

Definition 4 The number of items in a pattern is called the length of the pattern. A pattern with the length of \(k \) is called “k-pattern” (or k-itemset).

Example The length of \(\{ a(1), b(2), c(2), d(2) \} \) is equal to 4.

Definition 5 The number of items in a transaction is called the length of the transactions. The length of transactions is shown by \(L \).

Definition 6 An association rule is like \(\alpha \rightarrow \beta \), where: (1) Both \(\alpha \) and \(\beta \) are frequent patterns; (2) \(\alpha \cup \beta \) is not less than the user-specified minimum confidence. The confidence of a rule is defined as

\[
\text{conf}(\alpha \rightarrow \beta) = \frac{\text{sup}(\alpha \cup \beta)}{\text{sup}(\alpha)}
\]

Oscillatory value: the value of an attribute in a transaction represents an increase or decrease in it. In the analysis of association on this type of data, only increase or decrease, are important in the numerical values showing the oscillation. Therefore, the numerical values turn into the "Up" or "Down".

<table>
<thead>
<tr>
<th>TID/date</th>
<th>Attribute/stock symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALBZ</td>
</tr>
<tr>
<td>20100903</td>
<td>Up</td>
</tr>
<tr>
<td>20100904</td>
<td>Up</td>
</tr>
<tr>
<td>20100905</td>
<td>Down</td>
</tr>
<tr>
<td>20100906</td>
<td>Up</td>
</tr>
</tbody>
</table>

TABLE 1: Stock market data

Taking stock market database as an example, association rule mining can be used to analyze the share price movement. The stock prices variation in the stock market database is the oscillatory value type. As it is shown in Table 1, several trades are considered in the stock market database.
of a transaction every day and the date of that day is used as its transaction ID (TID). Each attribute is the changes in stock price of a company accepted in a stock market which has two values: “Up” or “Down”. “Up” indicates the increase of price in one stock, and “Down” indicates the decrease of price in one stock, which are shown briefly with the numbers of 1 and 2, respectively.

3. THE MR-MINER ALGORITHM

In this section, the MR-Miner algorithm is presented and the details of the method are shown step by step. The MR-Miner algorithm is made of the combination of four major functions of the Candidate, SeekDB, Prune2 and Compute. The Algorithm and its functions are shown in Figures 1, 3, 4, 6.

3.1. The MR-Miner Algorithm

To discover frequent itemsets, the main idea in this method is in such a way that: first, \(2^n - 1\) of the candidate itemsets are generated; then, the other 3 itemsets are generated by each of these k-itemsets for \(k \geq 2\). There is a relationship between the counts of all obtained 4 itemsets so that by finding the frequency of 1 itemset from the database, the counts of the other 3 itemsets can be computed by Equation 6, with no need to the database. Of course, some of these candidate itemsets are pruned by the Prune2 function according to Figure 4.

<table>
<thead>
<tr>
<th>Algorithm: MR-Miner(transaction database D, minsup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F = Candidate(D);</td>
</tr>
<tr>
<td>F_1 = SeekDB(F_1, D);</td>
</tr>
<tr>
<td>F_1 = Compute(F_1,</td>
</tr>
<tr>
<td>For(k = 2; F_k ≠ ∅; k++)</td>
</tr>
<tr>
<td>if(k>3)</td>
</tr>
<tr>
<td>Purn2(F_k, F_k-1);</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>F_k = SeekDB(F_k, D);</td>
</tr>
<tr>
<td>F_k = Compute(F_k, F_k-1);</td>
</tr>
<tr>
<td>for (each itemset i in F_k-1)</td>
</tr>
<tr>
<td>if (i.Count < minsup)</td>
</tr>
<tr>
<td>Delete i from F_k-1;</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>F = F_k;</td>
</tr>
<tr>
<td>end for</td>
</tr>
</tbody>
</table>

Output All Frequent Patterns F;

FIGURE 1: The MR-Miner algorithm

In general, the MR-Miner algorithm consists of the following four phases.

PHASE I: Determination of candidate itemsets
PHASE II: Pruning based on the candidate frequent itemsets
PHASE III: Counting some itemsets via the database
PHASE IV: Computing the rest of itemsets, with no need to the database

The following presents the detailed method phase by phase.

3.2. PHASE I: Determination of Candidate Itemsets

First, the candidate patterns are generated in two stages: In the first stage, all itemsets \(\mathcal{I} = \{i_1, i_2, ..., i_n\}\) are generated for \(i = 1\). To do this, 1-itemsets are generated by the available attributes in the transaction database corresponding to Figure 1; then, 2-itemsets are generated by joining 1-itemsets; similarly, the k-itemsets are generated by joining (k-1)-itemsets. All the generated itemsets include items with value of 1 (up). In the second stage, using each generated k-itemsets \((k \geq 2), 2^{k-2} - 1\) of the other itemsets are generated.
itemsets, the value of 2 is used in k-2 of their first items. The generated itemsets, in these two stages, are called candidate itemsets.

To generate candidate 1-itemsets \(\{u(1)\} \), we need to have the attributes \(u \) from the database which are considered as the input of the Candidate function, and the Join function which is similar to the function of candidate generation in Apriori approach, has generated k-itemsets for \(k \geq 2 \) by joining (k-1)-itemsets. Finally, for each generated itemset, \(2^{k-2} - 1 \) other itemsets are generated by \(k - 2 \) of the first items. Figure 3 shows the Candidate function.

FIGURE 2: Generation of the candidate itemsets.

FIGURE 3: The candidate itemset generation function

3.3. PHASE II: Pruning Based on the Candidate Frequent Itemsets

In the MR-Miner algorithm, the strategy of pruning is used to decrease the searching space and increase the rate of the mining process. Considering that all subsets of frequent k-itemsets are frequent, if the (k-2)-subset from any candidate frequent k-itemsets is not frequent, this candidate itemset and \(2^{k-2} - 1 \) other itemsets which should be made by that, will also not be frequent and will be deleted in this stage.

The code that is shown in Figure 4, with a survey of itemsets in the level of k-1 and k-2 delete a number of infrequent k-patterns and in this way the searching space will decrease.

```plaintext
Function: Candidate(transaction database D)

C_k = ∅;
for (each attribute a of D )
    Generate 1-Itemset c by a(1);
    C_k = {c};
end for
for (k = 2; \( T_{k-2} \neq ∅ \); k++)
    C_k = Join(C_{k-1});
end for
if (k>2)
    for (each Itemset c in \( L_k \))
        Generate all c’ by c: c’ = \{u(1) \mid \forall i \in s \in k-2 \}
        then j is optional element from \{1,2\} and
        \( \forall \&-\text{lss } j \}
        c’ = {c’};
    end for
end if
return Candidate Patterns C;
```

FIGURE 4: The code that is shown in Figure 4, with a survey of
Function: Prune2(k-Itemsets \(F_k \), (k-1)-Itemsets \(F_{k-1} \), minsup)

for (each itemset i in \(F_k \))
 find (k-2)-subset s of i in \(F_{k-2} \)
 if (s \(\not\in F_{k-1} \) or s.Count <= minsup)
 Delete i in \(F_k \)
 else
 find (k-1)-subset s of i in \(F_{k-1} \)
 if (s \(\not\in F_{k-2} \) or s.Count <= minsup)
 Delete i in \(F_k \)
 end if
end for

Return Patterns \(F_k \)

FIGURE 4: The Prune2 function

3.4. PHASE III: Counting Some Itemsets Via the Database
In this phase, some itemsets are counted via the database and their frequent patterns available are determined. This section of the algorithm, the database \(T \) and the candidate itemsets \(F_k \) with the length of \(k \) are received as input and the counts of patterns return as output. This is done by the SeekDB function. Similar to Apriori algorithm, this stage has searched the database once at any level.

3.5. PHASE IV: Computing the Rest of Itemsets, With no Need to the Database
The itemset \(\{u(2)\} \) is generated for each candidate itemset \(\{u(1)\} \) with the length of 1. To simplify, it can be assumed \(x_1 = \{u(1)\}, x_2 = \{u(2)\} \).

Considering that each attribute \(u \) is one of the two values of increase or decrease, and the number of whole values of one attribute is equal to the number of the whole transactions, we have for each attribute \(u \):

\[
\text{count} (x_1) + \text{count} (x_2) = |T| \tag{1}
\]

So, we have for each 1-itemset \(x_2 \):

\[
\text{count} (x_2) = |T| - \text{count} (x_1) \tag{2}
\]

So, to calculate the counts of the itemsets with the length of 1, all \(x_1 \) are searched from the database and all \(x_2 \) can be computed by Equation 2.

Also, for each candidate itemset with the length of higher than 1, there is \(2^2 - 1 \) other itemsets which should be generated, and their frequency should be computed.

For \(k = 2 \), \(2^2 - 1 \) other itemsets are generated by each of candidate 2-itemsets according to the Figure 5. There is a shared 1-itemset for all two 2-itemsets shown in Figure 5.
Considering the available relationships in Figure 5, we have:

\[
\begin{align*}
\{a(1), b(1)\} \cap \{a(1), b(2)\} &= \{a(1)\} \\
\{a(2), b(1)\} \cap \{a(2), b(1)\} &= \{b(2)\} \\
\{a(1), b(2)\} \cap \{a(2), b(2)\} &= \{b(2)\}
\end{align*}
\]
(3)

We can extend Equation 3 for itemsets with the length more than 2. Let \(x_i\) be the itemset generated by a candidate itemset \(x_1\) with the length of \(k\) such that \(i = 2, 3, 4\) and let \(y_j\) be the itemset with the length of \(k - 1\) such that \(j = 1, 2, 4\). Regarding Equation 3, we have:

\[
\begin{align*}
x_1 \cap x_2 &= y_1 \\
x_1 \cap x_2 &= y_2 \\
x_2 \cap x_0 &= y_1
\end{align*}
\]
(4)

So, for their counts, we have:

\[
\begin{align*}
count(x_2) + count(x_3) &= count(y_1) \\
count(x_3) + count(x_2) &= count(y_2) \\
count(x_2) + count(x_0) &= count(y_1)
\end{align*}
\]
(5)

Finally, to compute the counts of \(k\)-itemsets \(x_2, x_3, x_4\), we have:

\[
\begin{align*}
count(x_2) &= count(x_3) - count(x_1) \\
count(x_3) &= count(x_2) - count(x_1) \\
count(x_4) &= count(x_1) - count(x_2)
\end{align*}
\]
(6)

Thus, by any candidate \(k\)-itemsets \(x_1 \in \mathcal{X}_k \geq 2\), \(3\) \(k\)-itemsets \(x_i \in \mathcal{X}_k \{i = 2, 3, 4\}\) are generated which, at every level, by searching the frequency of the itemset \(x_1\) from the database, the counts of the itemsets \(x_2, x_3, x_4\) via Equation 6, are computed. Figure 6 shows the Compute function.
Function: Compute(P_k, P_{k-1}, |D|)

for (each k-itemset i in P_k)
 N_k = i;
 if ($k = 1$)
 N_k.Count = |D| - N_k.Count;
 P_k = N_k;
 else
 Find y_1, y_2, y_3 in P_{k-1}
 Generate N_k, N_1, N_2, N_3 by N_k
 N_k.Count = y_1.Count - N_1.Count;
 N_1.Count = y_2.Count - N_2.Count;
 P_k = N_k, N_1, N_2, N_3;
 end if
end for

Return P_k

FIGURE 6: The Compute function

4. PERFORMANCE STUDY

We evaluated the performance of the MR-Miner algorithm on two synthetic datasets and three real datasets with various parameters. The data of Tehran Stock Exchange were collected from Tehran Securities Exchange Technology Management Company (TSETMC). We compared proposed algorithm with the Apriori algorithm. Apriori algorithm is a very useful and well-known algorithm and has been used in many articles related to mining association in exchange data in the recent years [8], [9], [10]. All experiments were running on a computer with a Pentium 3.06GHz processing, 1GB of main memory, 500GB of hard disk capacity and the operating system of Microsoft Windows XP. Both algorithms have been implemented using C# in the environment of Microsoft Visual Studio 2008.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real-life datasets</th>
<th>Synthetic datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dataset 1</td>
<td>Dataset 2</td>
</tr>
<tr>
<td>Number of transaction</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Length of transaction</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE 2: Sets of the parameters for 5 datasets

We generated two synthetic datasets, dataset 4 and dataset 5, using the parameters shown in Table 2, and, the first three are real stock data.

4.1. Experiment on Synthetic Data

In this section, we compare the MR-Miner algorithm with the Apriori Algorithm by varying one parameter, which maintaining the other parameter at the default values shown in Table 2.
Figures 7, 8 and 9 have shown the minimum support versus the run time. In Figure 8, the minimum support was investigated versus the run time with the lower minimum support for dataset 5. In this case, more itemsets were mined. By decreasing the amount of minimum support, the proposed algorithm had much less linear increase compared to the Apriori algorithm. Also, by increasing the minimum support, the run time on the dataset 4 is shown in Figures 7 and 9.
FIGURE 9: Minimum support versus run time, Dataset 4

Figure 10 shows the effect of increasing the number of transactions versus the run time on the dataset 2, 4 and 5. 2000, 5000 and 10000 were considered as the numbers of transactions. The minimum support of 20% was used for all datasets. The run time of both algorithms will increase versus increasing the number of transactions, so that the proposed algorithm will need 3 times less run time than the Apriori algorithm.

FIGURE 10: Number of transactions versus run time, with minsup = 20%

We also investigated the effect of the length of a transaction on both algorithms. The results are shown in Figure 11. In both algorithms, the run time had increased by increasing the length of transaction. Therefore, under the same support, more itemsets would be generated if the length of transactions increased. So, more candidate itemsets should be generated. In the proposed algorithm, since computing the entire frequent itemsets from database is not needed, by increasing the length of transactions, 3 times less time is needed than the Apriori algorithm.
4.2. Experiments on Real Data
We now compare the MR-Miner algorithm and Apriori algorithm by mining three datasets 1, 2, 3. The datasets are included the stock price changes of eight companies: Iran Khodro, Jaber Ebne Hayyan Pharmacy, Tehran Cement, Mines & Metals Development, Isfahan Petrochemicals, Iran Transfo, Kashan Amirkabir Steel and Parsian Bank. The data were related to the trading days from March 2001 to June 2011.

Figures 12 to 14, illustrate the run time versus the minimum support for Dataset 2 and Dataset 3. The MR-Miner algorithm runs 3-4 times faster than the Apriori algorithm for real data.
In summary, the proposed algorithm was implemented faster than the Apriori algorithm on all datasets. The results had shown that the MR-Miner algorithm had operated better than the Apriori algorithm in all cases. Considering that the presented algorithm is an absolute algorithm and does not use the sampling methods, the accuracy of this algorithm likes that of the Apriori algorithm is 100%.

When mining the Tehran stock exchange data, some interesting rules were found. For Dataset 3, a sample rule found was “BTRNS(2), BPAR(2) → STEH(2)”. That is, if Transfo and Parsian fall, then Tehran Cement will fall with support =22% and confidence=75%. Also a sample rule found was “IKCO(1), BTRNS(2) → STEH(2)”. That is, if Iran Khodro rise, and Transfo falls, then Tehran Cement will fall with support=19% and confidence 67%. It should be noted that the association rules have a lower support on this type of attributes.
Table 3 shows more association in decreasing the stock prices of the analyzed companies on the Tehran exchange data, such as rules 2, 3, 4, 6, 8 and 9 in Table 3 which can be seen with a more powerful support whereas the associations of stock price increase can be seen with a less support, such as rules 5, 10, 11, 12, 13 and 14.

5. CONCLUSION AND FUTURE WORK

In this paper, using the available relationship between the counts of itemsets inside the data with the oscillating value type, a new algorithm was implemented on the basis of generation of the candidate patterns. In the MR-Miner algorithm, based on relationship between the counts of itemsets in this type of data, many counts of itemsets were computed via the counts of other itemsets and with no need to searching the database. On the other hand, pruning strategy was used to reduce the searching space effectively. Thus, much less time was spent to find frequent patterns. By conducting experiments on the real data and synthetic data, it was shown that the presented algorithm had operated much faster than the basic Apriori algorithm.

Although we have shown that the proposed algorithm can efficiently mine association rules on the data with the oscillating value type, there are still some issues that should be addressed in future researches, as we may extend the proposed algorithm from the frequent patterns to the closed frequent patterns. In order to have more decrease on the search space, a more effective function of prune can be implemented.

ACKNOWLEDGMENTS

We are grateful to Roholla Yosefian for his fruitful contributions on the mathematics issues and we are also grateful to our best friends Hamid Mohammadi and Fareed Mohammadi whose their help was encouraging.

REFERENCES

[4] J. Han, H. Pei and Y. Yin, “Mining Frequent Patterns without Candidate Generation”. In Proc. the Management of Data (SIGMOD’00, Dallas, TX), New York, NY, USA, ACM Press, pp. 1-12, 2000.

Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control

Farzin Piltan
Department of Electrical and Electronic Engineering,
Faculty of Engineering, Universiti Putra Malaysia 43400
Serdang, Selangor, Malaysia
SSP.ROBOTIC@yahoo.com

N. Sulaiman
Department of Electrical and Electronic Engineering,
Faculty of Engineering, Universiti Putra Malaysia 43400
Serdang, Selangor, Malaysia
nasri@eng.upm.edu.my

Sadeq Allahdadi
Industrial Electrical and Electronic Engineering
SanatkadeheSabze Pasargad. CO (S.S.P. Co), NO:16,
PO.Code 71347-66773, Fourth floor Dena Apr, Seven Tir Ave, Shiraz, Iran
SSP.ROBOTIC@yahoo.com

Mohammadali Dialame
Industrial Electrical and Electronic Engineering
SanatkadeheSabze Pasargad. CO (S.S.P. Co), NO:16,
PO.Code 71347-66773, Fourth floor Dena Apr, Seven Tir Ave, Shiraz, Iran
SSP.ROBOTIC@yahoo.com

Abbas Zare
Industrial Electrical and Electronic Engineering
SanatkadeheSabze Pasargad. CO (S.S.P. Co), NO:16,
PO.Code 71347-66773, Fourth floor Dena Apr, Seven Tir Ave, Shiraz, Iran
SSP.ROBOTIC@yahoo.com

Abstract

This research focuses on design Single Input Single Output (SISO) adaptive sliding mode fuzzy PD fuzzy sliding mode algorithm with estimates the equivalent part derived in the Lyapunov sense. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. Proposed method introduces a SISO fuzzy system to compensate for the model uncertainties of the system and eliminate the chattering by linear boundary layer method. This algorithm is used a SISO fuzzy system to alleviate chattering and to estimate the control gain in the control law and presented a scheme to online tune of sliding function. To attenuate the chattering phenomenon this method developed a linear boundary layer and the parameter of the sliding function is online tuned by adaptation laws. This algorithm will be analyzed and evaluated on robotic manipulators and design adaption laws of adaptive algorithms after that writing Lyapunov function candidates and prove the asymptotic convergence of the closed-loop system using Lyapunov stability theorem mathematically. Compare and evaluate proposed method and sliding mode algorithms under disturbance. In regards to the former, we will be looking at the availability of online tuning methodology and the number of fuzzy if-then rules inherent to the fuzzy system being used and the corresponding computational load. Our analysis of the results will be limited to tracking accuracy and chattering.

Keywords: Sliding Mode Algorithm, Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Algorithm, Estimator, Lyapunov Method, Model Uncertainties, Linear boundary Layer Method, Chattering Phenomenon.
1. INTRODUCTION
Dynamic of robotic manipulators have strong nonlinear and time variant characteristic [1, 6]. Conventional linear control technologies are not quite gratifying to control robotic manipulators [1-6]. Nonlinear control technologies can arrangement with highly nonlinear equations in dynamic parameters. Conventional nonlinear control strategies cannot provide good robustness for controlling robotic manipulators. The control system designer is often unsure of the exact value of the manipulator parameters that describe the dynamic behavior of the manipulator. Sliding mode control methods can manage uncertainties in the dynamic parameters of the robotic manipulator. Sliding mode controllers are robust controllers for controlling uncertain plant. Classical sliding mode control is robust to control model uncertainties and external disturbances. A sliding mode method with a switching control low guarantees the stability of the certain and/or uncertain system, but the addition of the switching control low introduces chattering into the system. One way to reduce or eliminate chattering is to insert a boundary layer method [1-15] inside of a boundary layer around the sliding surface. Chattering phenomenon can causes some problems such as saturation and heats the mechanical parts of robot manipulators or drivers. To reduce or eliminate the chattering, various papers have been reported by many researchers which classified into two most important methods: boundary layer saturation method and estimated uncertainties method [9-20]. In boundary layer saturation method, the basic idea is the discontinuous method replacement by saturation (linear) method with small neighborhood of the switching surface. This replacement caused to increase the error performance against with the considerable chattering reduction. Slotine and Sastry have introduced boundary layer method instead of discontinuous method to reduce the chattering[21]. Slotine has presented sliding mode with boundary layer to improve the industry application [22]. R. Palm has presented a fuzzy method to nonlinear approximation instead of linear approximation inside the boundary layer to improve the chattering and control the result performance[23]. Moreover, C. C. Weng and W. S. Yu improved the previous method by using a new method in fuzzy nonlinear approximation inside the boundary layer and adaptive method[24]. As mentioned [24]sliding mode fuzzy controller (SMFC) is fuzzy controller based on sliding mode technique to simple implement, most exceptional stability and robustness. Conversely above method has the following advantages; reducing the number of fuzzy rule base and increasing robustness and stability, the main disadvantage of SMFC is need to define the sliding surface slope coefficient very carefully. To eliminate the above problems control researchers have applied artificial intelligence method (e.g., fuzzy logic) in nonlinear robust controller (e.g., sliding mode controller) besides this technique is very useful in order to implement easily. Estimated uncertainty method used in term of uncertainty estimator to compensation of the system uncertainties. It has been used to solve the chattering phenomenon and also nonlinear equivalent dynamic part which it is in classical sliding mode controller. If estimator has an acceptable performance to compensate the uncertainties, the chattering is reduced. Research on estimated uncertainty to reduce the chattering is significantly growing as their applications such as industrial automation and robot manipulator. For instance, the applications of artificial intelligence, neural networks and fuzzy logic on estimated uncertainty method have been reported in [25-28]. Wu et al. [30] have proposed a simple fuzzy estimator controller beside the discontinuous and equivalent control terms to reduce the chattering. Their design had three main parts i.e. equivalent, discontinuous and fuzzy estimator tuning part which has reduced the chattering very well. Elmali et al. [27]and Li and Xu [29]have addressed sliding mode control with perturbation estimation method (SMCP) to reduce the classical sliding mode chattering. This method was tested for the tracking control of the first two links of a SCARA type HITACHI robot. In this technique, digital controller is used to increase the system’s response quality. Conversely this method has the following advantages; increasing the controller’s response speed and reducing dependence on dynamic system model by on-line control, the main disadvantage are chattering phenomenon and need to improve the performance.

Classical sliding mode control method has difficulty in handling unstructured model uncertainties. One can overcome this problem by combining a sliding mode controller and artificial intelligence (e.g. fuzzy logic). Zadeh [31] introduced fuzzy sets in 1965. After 40 years, fuzzy systems have been widely used in different fields, especially on control problems. Fuzzy systems transfer expert knowledge to mathematical models. Fuzzy systems used fuzzy logic to estimate dynamics of proposed systems. Fuzzy controllers including fuzzy if-then rules are used to control proposed systems. Conventional control methods use mathematical
Fuzzy control methods replace the mathematical models with fuzzy if then-rules and fuzzy membership function to controls systems. Both fuzzy and conventional control methods are designed to meet system requirements of stability and convergence. When mathematical models are unknown or partially unknown, fuzzy control models can used fuzzy systems to estimate the unknown models. This is called the model-free approach [31-40]. Conventional control methods can use adaptive control methods to achieve the model-free approach. When system dynamics become more complex, nonlinear systems are difficult to handle by conventional control methods. From the universal approximation theorem, fuzzy systems can approximate arbitrary nonlinear systems. In practical problems, systems can be controlled perfectly by expert. Experts provide linguistic description about systems. Conventional control methods cannot design controllers combined with linguistic information. When linguistic information is important for designing controllers, we need to design fuzzy controllers for our systems. Fuzzy control methods are easy to understand for designers. The design process of fuzzy controllers can be simplified with simple mathematical models. Research on applied fuzzy logic methodology in sliding mode controller (FSMC) to reduce or eliminate the high frequency oscillation (chattering), to compensate the unknown system dynamics and also to adjust the linear sliding surface slope in pure sliding mode controller considerably improves the robot manipulator control process [41-47]. H.Temeltas [46] has proposed fuzzy adaption techniques for SMC to achieve robust tracking of nonlinear systems and solves the chattering problem. Conversely system's performance is better than sliding mode controller; it is depended on nonlinear dynamic equation. C. L. Hwang et al. [47] have proposed a Tagaki-Sugeno (TS) fuzzy model based sliding mode control based on N fuzzy based linear state-space to estimate the uncertainties. A multi-input multi-output FSMC reduces the chattering phenomenon and reconstructs the approximate the unknown system has been presented for a robot manipulator [42].

Adaptive control uses a learning method to self-learn the parameters of systems. For system whose dynamics are varying, adaptive control can learn the parameters of system dynamics. In traditional adaptive control, we need some information about our system such as the structure of system or the order of the system. In adaptive fuzzy control we can deal with uncertain systems. Due to the linguistic characteristic, adaptive fuzzy controllers behave like operators: adaptively controlling the system under various conditions. Adaptive fuzzy control provides a good tool for making use of expert knowledge to adjust systems. This is important for a complex unknown system with changing dynamics. Investigation on applied sliding mode methodology in fuzzy logic controller (SMFC) to reduce the fuzzy rules and refine the stability of close loop system in fuzzy logic controller has grown specially in recent years as the robot manipulator control [23, 48-50]. Lhee et al. [48] have presented a fuzzy logic controller based on sliding mode controller to more formalize and boundary layer thickness. Emami et al. [51] have proposed a fuzzy logic approximate inside the boundary layer. H.K. Lee et al. [52] have presented self tuning SMFC to reduce the fuzzy rules, increase the stability and to adjust control parameters control automatically. We divide adaptive fuzzy control into two categories: direct adaptive fuzzy control and indirect adaptive fuzzy control. A direct adaptive fuzzy controller adjusts the parameters of the control input. An indirect adaptive fuzzy controller adjusts the parameters of the control system based on the estimated dynamics of the plant. This research is used fuzzy indirect method to estimate the nonlinear equivalent part in order to used sliding mode fuzzy algorithm to tune and adjust the sliding function (direct adaptive).

In this research we will highlight the SISO adaptive sliding mode fuzzy PD fuzzy sliding mode algorithm with estimates the equivalent part derived in the Lyapunov sense. This algorithm will be analyzed and evaluated on robotic manipulators. Section 2, serves as an introduction to the classical sliding mode control algorithm and its application to a two degree of-freedom robot manipulator, describe the objectives and problem statements. Part 3, introduces and describes the methodology algorithms and proves Lyapunov stability. Section 4 presents the simulation results of this algorithm applied to a 2 degree-of-freedom robot manipulator and the final section is describe the conclusion.

2. OBJECTIVES, PROBLEM STATEMENTS AND SLIDING MODE ALGORITHM
When system works with various parameters and hard nonlinearities design linear controller technique is very useful in order to be implemented easily but it has some limitations such as working near the system operating point[2-20]. Sliding mode controller is used in wide range areas such as in robotics, in control process, in aerospace applications and in power converters because it has an acceptable control performance and solve some main challenging topics in control such as resistivity to the external
disturbance. Even though, this controller is used in wide range areas but, pure sliding mode controller has the following disadvantages: chattering problem; which caused the high frequency oscillation in the controllers output and equivalent dynamic formulation; calculate the equivalent control formulation is difficult because it depends on the dynamic equation [20]. Conversely pure FLC works in many areas, it cannot guarantee the basic requirement of stability and acceptable performance[30-40]. Although both SMC and FLC have been applied successfully in many applications but they also have some limitations. The linear boundary layer method is used to reduce or eliminate the chattering and fuzzy estimator is used instead of dynamic equivalent equation to implement easily and avoid mathematical model base controller.

To reduce the effect of uncertainty in proposed method, self tuning sliding mode fuzzy method is applied in fuzzy sliding mode controller in robot manipulator in order to solve above limitation.

The dynamic equation of an n-link robot manipulator is define as [53-62]

\[\dot{q} = A(q, \dot{q}) + B(q) \dot{q} + G(q) \]

Where \(q \in \mathbb{R}^n \) is the vector of joint position, \(M(q) \in \mathbb{R}^{n \times n} \) is the inertial matrix, \(C(q, \dot{q}) \in \mathbb{R}^{n \times n} \) is the matrix of Coriolis and centrifugal forces, \(G(q) \in \mathbb{R}^n \) is the gravity vector and \(\tau \in \mathbb{R}^n \) is the vector of joint torques. This work focuses on two-degree-of-freedom robot manipulator (Figure 1)

![Figure 1: Two-link robotic manipulator](image)

The dynamics of this robotic manipulator is given by [1, 6, 9-14]

\[\tau = M(q) \dot{q} + C(q, \dot{q}) \dot{q} + G(q) \]

Where

\[M(q) = \begin{bmatrix} m_1 l^2 + 2m_2 l^2 & m_2 l^2 & m_2 l^2 \\ m_2 l^2 & m_2 l^2 & m_2 l^2 \\ m_2 l^2 & m_2 l^2 & m_2 l^2 \end{bmatrix} \]

\[C(q, \dot{q}) = \begin{bmatrix} -2m_2 l^2 q_1 q_2 \sin q_2 - m_2 l^2 \dot{q}_2^2 \sin q_2 \\ m_2 l^2 \dot{q}_2 \sin q_2 \\ m_2 l^2 \dot{q}_2 \sin q_2 \end{bmatrix} \]

Our target is to track the desired trajectories \(\dot{q}_d \) of the robotic manipulators (2) by using a sliding mode controller. We extract \(\dot{q} \) from \(C(q, \dot{q}) \) in (2) and rewrite (2) as

\[\dot{q} = M(q) \ddot{q} + C(q, \dot{q}) \dot{q} \]

Where

\[C(q, \dot{q}) = \begin{bmatrix} -m_2 l^2 \dot{q}_2 \sin q_2 - 2m_2 l^2 \dot{q}_2 \sin q_2 - m_2 l^2 \dot{q}_2 \sin q_2 \\ m_2 l^2 \dot{q}_2 \sin q_2 \\ m_2 l^2 \dot{q}_2 \sin q_2 \end{bmatrix} \]
We define the tracking error as
\[e = q - q_d \] (7)
Where \(q = [q_2, q_4] \) and \(q_d = [q_{d2}, q_{d4}] \). The sliding surface is expressed as
\[s = b + \lambda e \] (8)

Where \(\lambda = \text{diag} \{ \lambda_2, \lambda_4 \} \). \(\lambda_2 \) and \(\lambda_4 \) are chosen as the bandwidth of the robot controller.

We need to choose \(\tau \) to satisfy the sufficient condition (9). We define the reference state as
\[\dot{q}_u = q - s = \dot{q}_u - \lambda e \] (10)

Now we pick the control input \(\tau \) as
\[\tau = M^d \dot{q}_u + C_4 \dot{q}_u - A\dot{s} - K \text{sgn}(s) \] (11)

Where \(M^d \) and \(C_4 \) are the estimations of \(M(q) \) and \(C(q, \dot{q}) \). \(A = \text{diag} \{ a_2, a_4 \} \) and \(K = \text{diag} \{ k_2, k_4 \} \) are diagonal positive definite matrices. From (7) and (11), we can get
\[M\dot{s} + (C_4 + A)s = \Delta f - K \text{sgn}(s) \] (12)

Where \(\Delta f = \Delta M \dot{q}_u + \Delta C_4 \dot{q}_u \), \(\Delta M = M^d - M \) and \(\Delta C_4 = C^d_4 - C_4 \). We assume that the bound \(\Delta f \) is known. We choose \(K \) as
\[K_{i} \geq \Delta f_{i} \text{std} \] (13)

We pick the Lyapunov function candidate to be
\[V = \frac{1}{2} s^T M s \] (14)

Since \(M \) is positive symmetric definite, \(V > 0 \) for \(s \neq 0 \). Take the derivative of \(M \) with respect to time in (6) and we get
\[\dot{M} = \begin{bmatrix} -2m_2t^2q_2 \sin q_2 - m_2t^2q_2 \sin q_2 & m_2t^2q_2 \sin q_2 \\ -m_2t^2q_2 \sin q_2 & 0 \end{bmatrix} \] (15)

From (11) and (15) we get
\[\dot{M} - 2C_4 = \begin{bmatrix} 0 & 2m_2t^2q_1 \sin q_2 + m_2t^2q_2 \sin q_2 \\ -2m_2t^2q_1 \sin q_2 - m_2t^2q_2 \sin q_2 & 0 \end{bmatrix} \] (16)

Which is a skew-symmetric matrix satisfying
\[s^T (\dot{M} - 2C_4) s = 0 \] (17)

Then \(V \) becomes
\[V = s^T M s + \frac{1}{2} s^T \dot{M} s \]
\[= s^T (M s + C_4 \dot{s}) \]
\[= s^T [A s + \Delta f - K \text{sgn}(s)] \]
\[= \sum_{i=1}^{2} (s_i [\Delta f_i - K_i \text{sgn}(s_i)]) - s^T A s \] (18)

For \(K_{i} \geq \Delta f_{i} \text{std} \), we always get \(s_i [\Delta f_i - K_i \text{sgn}(s_i)] \leq 0 \). We can describe \(V \) as
\[V = \sum_{i=1}^{2} (s_i [\Delta f_i - K_i \text{sgn}(s_i)]) - s^T A s \leq -s^T A s < 0 \quad (s \neq 0) \] (19)
To attenuate chattering problem, we introduce a saturation function in the control law instead of the sign function in (9). The control law becomes

\[r = M^T \dot{q_r} + C_2 \dot{q_r} - A_s - K_{sat}(s/\Phi) \]

(20)

In this classical sliding mode control method, the model of the robotic manipulator is partly unknown. To attenuate chattering, we use the saturation function described in (20). Our control law changes to

\[r = M^T \dot{q_r} + C_2 \dot{q_r} - A_s - K_{sat}(s) \]

(21)

The main goal is to design a position controller for robot manipulator with acceptable performances (e.g., trajectory performance, torque performance, disturbance rejection, steady state error and RMS error). Robot manipulator has nonlinear dynamic and uncertain parameters consequently; following objectives have been pursuit in the mentioned study.

- To develop a chattering in a position pure sliding mode controller against uncertainties.
- To design and implement a position fuzzy estimator sliding mode controller in order to solve the equivalent problems in the pure sliding mode control.
- To develop a position sliding mode fuzzy adaptive fuzzy sliding mode controller in order to solve the disturbance rejection.

Figure 2 is shown the classical sliding mode methodology with linear saturation function to eliminate the chattering.

FIGURE 2: Classical sliding mode controller: applied to two-link robotic manipulator

3. **METHODOLOGY: DESIGN A NOVEL SISO ADAPTIVE SLIDING MODE FUZZY PD FUZZY ESTIMATE SLIDING MODE CONTROL**

First part is focuses on design chattering free sliding mode methodology using linear saturation algorithm. A time-varying sliding surface \(s(x, \dot{x}) \) is given by the following equation:

\[s(x, \dot{x}) = (\dot{x} + [A])^{-1} \dot{s} = 0 \]

(22)

where \(\lambda \) is the constant and it is positive. The derivation of \(S \), namely, \(\dot{S} \) can be calculated as the following formulation [5-16, 41-62]:

\[\dot{S} = (\dot{s} - \dot{s}_d) + \lambda(\dot{s} - \dot{s}_d) \]

(23)

The control law for a multi degrees of freedom robot manipulator is written as:
\[U = U_{eq} + U_r \]

Where, the model-based component \(U_{eq} \) is the nominal dynamics of systems and it can be calculate as follows:

\[U_{eq} = [M^{-1}(B + C + G) + S]M \]

Where \(M(q) \) is an inertia matrix which it is symmetric and positive, \(V(q, \dot{q}) = B + C \) is the vector of nonlinearity term and \(G(q) \) is the vector of gravity force and \(U_r \) with minimum chattering based on [9-16] is computed as;

\[U_r = K \cdot \text{sgn}(S) \]

Where \(\text{saturation} = \text{mu} + b = \text{saturation} \) function and, \(u \) and \(b \) are unlimited coefficient, by replace the formulation (5) in (3) the control output can be written as;

\[U = U_{eq} + K \cdot \text{sgn}(S) \]

Where the function of \(\text{sgn}(S) \) defined as;

\[\text{sgn}(s) = \begin{cases} 1 & s > 0 \\ -1 & s < 0 \\ 0 & s = 0 \end{cases} \]

Second part is focuses on design fuzzy estimator to estimate nonlinear equivalent part. However the application area for fuzzy control is really wide, the basic form for all command types of controllers consists of;

- Input fuzzification (binary-to-fuzzy(B/F)conversion)
- Fuzzy rule base (knowledge base)
- Inference engine
- Output defuzzification (fuzzy-to-binary(F/B)conversion) [30-40].

The basic structure of a fuzzy controller is shown in Figure 3.

![Block diagram of a fuzzy controller with details.](image)

The fuzzy system can be defined as below [38-40]

\[f(x) = U_{\text{fuzzy}} = \sum_{i=1}^{n} \theta^T \xi_i(x) = \psi(S) \]

where \(\theta = (\theta^1, \theta^2, \theta^3, ... , \theta^M)^T, \xi_i(x) = (\xi_1^1(x), \xi_1^2(x), \xi_2^2(x), ... , \xi_M^2(x))^T \)

\[\xi_i(x) = \frac{\sum_{j=1}^{M} p_i(x_j)}{\sum_{j=1}^{M} p_i(x_j)} \]
where $\theta = (\theta^1, \theta^2, \theta^3, \ldots, \theta^n)$ is adjustable parameter in (8) and $\mu_{\theta(j)}$ is membership function. The error base fuzzy controller can be defined as

$$U_{\text{fuzzy}} = \psi(s)$$ \hspace{1cm} (31)

In this work the fuzzy controller has one input which names; sliding function. Fuzzy controller with one input is difficult to implementation, because it needs large number of rules, to cover equivalent part estimation [16-25]. Proposed method is used to a SISO fuzzy system which can approximate the residual coupling effect and alleviate the chattering. The robotic manipulator used in this algorithm is defined as below: the tracking error and the sliding surface are defined as:

$$e = y - y_d$$ \hspace{1cm} (32)
$$s = \dot{y} + \lambda e$$ \hspace{1cm} (33)

We introduce the reference state as

$$\dot{q}_r = \dot{q} - s = \dot{q}_d - \lambda e$$ \hspace{1cm} (34)
$$\ddot{q}_r = \ddot{q} - k = \ddot{q}_d - \lambda k$$ \hspace{1cm} (35)

The control input is given by

$$\tau = M\ddot{q}_r + C_1\dot{q}_r - A\dot{s} - K\ddot{s}$$ \hspace{1cm} (36)

Where $A = [a_1, a_2, \ldots, a_m]$ and a_i, $i = 1, \ldots, m$ are positive constants; $K = [K_1, \ldots, K_m]^T$ and K_j is defined as the fuzzy gain estimated by fuzzy systems. The fuzzy if-then rules for the jth joint of the robotic manipulator are defined as

$$R^{(j)}: \text{if } s_j \text{ is } A_j \text{ then } y \text{ is } B_j$$ \hspace{1cm} (37)

Where $j = 1, \ldots, m$ and $i = 1, \ldots, M$.

We define K_j by

$$K_j = \frac{\sum_{l=1}^{m} \mu_{A_j}(s_j)}{\sum_{l=1}^{m} \mu_{A_j}(s_j)} = \beta_j^T \varepsilon_j(s_j)$$ \hspace{1cm} (38)

Where

$$\varepsilon_j(s_j) = \left[\varepsilon_1(s_j), \varepsilon_2(s_j), \ldots, \varepsilon_m(s_j)\right]^T$$ \hspace{1cm} (39)
$$\varepsilon_j(s_j) = \frac{\sum_{l=1}^{m} \mu_{A_j}(s_j)}{\sum_{l=1}^{m} \mu_{A_j}(s_j)}$$ \hspace{1cm} (40)

The membership function $\mu_{A_j}(s_j)$ is a Gaussian membership function defined in bellows:

$$\mu_{A_j}(s_j) = \exp \left[-\frac{(s_j - \alpha_j^2)^2}{\sigma_j^2} \right] (j = 1, \ldots, m).$$ \hspace{1cm} (41)

The Lyapunov function candidate is given by

$$V = \frac{1}{2} s^T Ms + \frac{1}{2} \sum_{j=1}^{m} \frac{1}{\gamma_j} \dot{s}_j \dot{\theta}_j$$ \hspace{1cm} (42)

Where $\dot{s}_j = \dot{\theta}_j$. The derivative of V is

$$\dot{V} = s^T Ms + \frac{1}{2} s^T s \dot{s} + \sum_{j=1}^{m} \frac{1}{\gamma_j} \dot{s}_j \dot{\theta}_j$$ \hspace{1cm} (43)
Since \(\dot{M} - 2C_i \) is a skew-symmetric matrix, we can get
\[s^T (Ms + 0.5 \dot{M}s) = s^T (Ms + C_i s). \]
From (2) and (36), we get
\[r = M(q) \dot{q} + c(q, \dot{q}) \dot{q} + G(q) = M \dot{q} + C_i \dot{q} + G^0 - As - K \]
(44)
Since \(\dot{q}_r = q - s \) and \(\ddot{q}_r = \ddot{q} - \ddot{s} \) in (43) and (42), we get
\[Ms + (C_i + A)s = \Delta F - K \]
(45)
Where \(\Delta F = \Delta M \dot{q}_r + \Delta C_i \dot{q}_r + \Delta G, \Delta M = M - M, \Delta C_i = C_i - C_i \) and \(G = G^0 - G \), then \(\mathbf{V} \) becomes
\[\mathbf{V} = s^T (Ms + C_i s) + \sum_{j=1}^n \frac{1}{\tau_j} \phi_j \]
\[= -s^T (-As + \Delta F - K) + \sum_{j=1}^n \frac{1}{\tau_j} \phi_j \]
\[= \sum_{j=1}^n \left[\phi_j [\Delta f_j - \phi_j^T (\theta_j)] \right] - s^T As + \sum_{j=1}^n \frac{1}{\tau_j} \phi_j \]
\[= \sum_{j=1}^n \left[\phi_j [\Delta f_j - \phi_j^T (\theta_j)] - s^T As + \sum_{j=1}^n \frac{1}{\tau_j} \phi_j \right] \]
\[= \sum_{j=1}^n \left[\phi_j [\Delta f_j - \phi_j^T (\theta_j)] - s^T As + \sum_{j=1}^n \frac{1}{\tau_j} \phi_j \right] \]
(46)
We choose the adaptation law \(\phi_j = \gamma_j \phi_j \phi_j (\theta_j) \). Since \(\phi_j = -\hat{\phi}_j = -\gamma_j \phi_j \phi_j (\theta_j) \), \(\mathbf{V} \) becomes
\[\mathbf{V} = \sum_{j=1}^n \left[\phi_j [\Delta f_j - (\theta_j)^T \phi_j (\theta_j)] \right] - s^T As \]
(47)
We define the minimum approximation error as
\[\omega_j = \Delta f_j - (\theta_j)^T \phi_j (\theta_j) \]
Then \(\mathbf{V} \) change to
\[\mathbf{V} = \sum_{j=1}^n \left[\phi_j \omega_j - s^T As \right] \]
\[\leq \sum_{j=1}^n \left[\phi_j \omega_j - s^T As \right] \]
\[= \sum_{j=1}^n \left[\phi_j \omega_j - s^T As \right] \]
\[= \sum_{j=1}^n \left(\phi_j \omega_j - s^T As \right) \]
(48)
According to Universal Approximation theorem in sliding mode algorithm, the minimum approximation error \(\omega_j \) is as small as possible. We can simply pick \(\alpha_j \) to make \(\alpha_j \| \omega_j \| > \| \omega_j \| (s_j = 0) \). Then we get \(\mathbf{V} < 0 \) for \(s \neq 0 \).
The fuzzy division can be reached the best state when \(s_s < 0 \) and the error is minimum by the following formulation
\[\theta = \arg \min \left[s \right] s^T \xi (\omega) - U_{eq} \]
(49)
Where \(\theta \) is the minimum error, \(s \) is the minimum approximation error.

suppose \(K_j \) is defined as follows
\[K_j = \frac{\sum_{i=1}^n \phi_i I (\theta_i)}{\sum_{i=1}^n I (\theta_i)} - \phi_j \phi_j (\theta_j) \]
(50)
Where \(\xi_j (s_j) = [\xi_j (s_j), \xi_j (s_j), \xi_j (s_j), \ldots, \xi_j (s_j)]^T \)

International Journal of Artificial Intelligence and Expert System (UAE), Volume (2) : Issue (5) : 2011 216
\[\xi_j^*(s_j) = \frac{\mu_{(s_j)}}{\sum_{j=1}^{n} \mu_{(s_j)}} \]

where the \(\mu_{(s_j)} \) is the positive constant.

According to the nonlinear dynamic equivalent formulation of robot manipulator the nonlinear equivalent part is estimated by (8)

\[[M^{-1}(B + C + G) + S]M = \sum_{i=1}^{N} \theta^T \psi(x) - \lambda S - K \]

Based on (3) the formulation of proposed fuzzy sliding mode controller can be written as:

\[U = U_{v_{fuzzy}} + U_r \]

Where \(U_{v_{fuzzy}} = [M^{-1}(B + C + G) + S]M + \sum_{i=1}^{N} \theta^T \psi(x) + K \)

Figure 4 is shown the proposed fuzzy sliding mode controller.

FIGURE 4: Proposed fuzzy estimator sliding mode algorithm: applied to robot manipulator

Third part is focuses on design sliding mode fuzzy adaptive algorithm for fuzzy estimator to estimate nonlinear equivalent part. Adaptive control uses a learning method to self-learn the parameters of systems. For system whose dynamics are varying, adaptive control can learn the parameters of system dynamics. In traditional adaptive control, we need some information about our system such as the structure of system or the order of the system. In adaptive fuzzy control we can deal with uncertain systems. Due to the linguistic characteristic, adaptive fuzzy controllers behave like operators: adaptively controlling the system under various conditions. Adaptive fuzzy control provides a good tool for making use of expert knowledge
to adjust systems. This is important for a complex unknown system with changing dynamics. The adaptive fuzzy systems is defined by

\[f(x) = \sum_{i=1}^{N} a_i^T \xi(x) = a^T \xi(x) \]

(54)

Where \(\theta = (a_1, \ldots, a_N)^T \), \(\xi(x) = (\xi^1(x), \ldots, \xi^N(x))^T \), and \(a_i \) define in the previous part. \(a_i \) are adjustable parameters in (50). \(\mu_{i1}(x_1), \ldots, \mu_{iN}(x_N) \) are given membership functions whose parameters will not change over time.

The second type of fuzzy systems is given by

\[f(x) = \frac{\sum_{i=1}^{N} a_i^T \left[\prod_{i=1}^{N} \exp \left(-\left(\frac{x_i - a_i}{\delta_i} \right)^2 \right) \right]}{\sum_{i=1}^{N} \left[\prod_{i=1}^{N} \exp \left(-\left(\frac{x_i - a_i}{\delta_i} \right)^2 \right) \right]} \]

(55)

Where \(a_i, a_i^0 \) and \(\delta_i \) are all adjustable parameters.

From the universal approximation theorem, we know that we can find a fuzzy system to estimate any continuous function. For the first type of fuzzy systems, we can only adjust \(a_i \) in (50). We define \(f^*(x|\theta) \) as the approximator of the real function \(f(x) \).

\[f^*(x|\theta) = \theta^T \xi(x) \]

(56)

We define \(\theta^* \) as the values for the minimum error:

\[\theta^* = \arg \min_{\theta \in \Omega} \left\{ \sup_{x \in X} |f^*(x|\theta) - f(x)| \right\} \]

(57)

Where \(\Omega \) is a constraint set for \(\theta \). For specific \(\theta \), \(\sup_{x \in X} |f^*(x|\theta) - f(x)| \) is the minimum approximation error we can get.

The fuzzy system can be defined as below

\[f(x) = \sum_{i=1}^{N} \theta_i \xi(x) = \psi(x, \theta) \]

(58)

where \(\theta = (\theta^1, \theta^2, \ldots, \theta^N)^T \), \(\xi(x) = (\xi^1(x), \ldots, \xi^N(x))^T \), and \(\mu_{i0} \) is membership function.

\[\xi^i(x) = \sum_{j=1}^{N} \mu_{i0}(x_j) \]

(59)

where \(\theta = (\theta^1, \theta^2, \ldots, \theta^N)^T \) is adjustable parameter in (58) and \(\mu_{i0} \) is membership function.

error base fuzzy controller can be defined as

\[\psi_{fuzzy} = \psi(x, \theta) \]

(60)

According to the formulation sliding function

\[\text{if } S = 0 \text{ then } \dot{\epsilon} = \lambda \epsilon \]

(61)

the fuzzy division can be reached the best state when \(\dot{s} < 0 \) and the error is minimum by the following formulation

\[\theta^* = \arg \min_{\theta \in \mathbb{R}^n} \left\{ \sup_{x \in X} \left[\sum_{i=1}^{N} \theta_i \xi^i(x) - \tau_{eqv} \right] \right\} \]

(62)

Where \(\theta^* \) is the minimum error, \(\sup_{x \in X} \left[\sum_{i=1}^{N} \theta_i \xi^i(x) - \tau_{eqv} \right] \) is the minimum approximation error. The adaptive controller is used to find the minimum errors of \(\theta - \theta^* \).

suppose \(K_j \) is defined as follows
\[K_j = \sum_{i=1}^{n} \theta_i [n_i(S_j)] \theta_j \]
where \(\xi_j(S_j) = [\xi_j^1(S_j), \xi_j^2(S_j), ..., \xi_j^n(S_j)]^T \)

\[\xi_j^1(S_j) = \frac{n_j(S_j)}{\sum_{i=1}^{m} n_i(S_j)} \]

the adaption law is defined as

\[b_j = \gamma_j S_j \xi_j(S_j) \]

where the \(\gamma_j \) is the positive constant.

According to the formulation (63) and (64) in addition from (60) and (58)

\[M(q) \ddot{q} + V(q, \dot{q}) \dot{q} + G(q) = \sum_{i=1}^{m} \theta_i^T \xi_i(x) - 2S - K \]

The dynamic equation of robot manipulator can be written based on the sliding surface as;

\[M \ddot{S} = -VS + MS + VS + G - \tau \]

It is supposed that

\[S^T (M - 2V) S = 0 \]

it can be shown that

\[M \ddot{S} + (V + \dot{S}) S = \Delta f - K \]

where \(\Delta f = [M(q) \ddot{q} + V(q, \dot{q}) \dot{q} + G(q)] - \sum_{i=1}^{m} \theta_i^T \xi_i(x) \)

as a result \(\dot{V} \) is became

\[\dot{V} = \frac{1}{2} S^T MS - S^T VS + \sum_{j=1}^{m} \frac{1}{\gamma_j} \theta_j^T b_j \]

\[\dot{V} = S^T (-2S + \Delta f - K) + \sum_{j=1}^{m} \frac{1}{\gamma_j} \theta_j^T b_j \]

\[\dot{V} = \sum_{j=1}^{m} [S_j (\Delta f_j - K_j)] - S^T 2S + \sum_{j=1}^{m} \frac{1}{\gamma_j} \theta_j^T b_j \]

\[\dot{V} = \sum_{j=1}^{m} [S_j (\Delta f_j - \theta_j^T \xi_j(S_j))] - S^T 2S + \sum_{j=1}^{m} \frac{1}{\gamma_j} \theta_j^T b_j \]

\[\dot{V} = \sum_{j=1}^{m} [S_j (\Delta f_j - (\theta_j^T \xi_j(S_j)) - S^T 2S)] + \sum_{j=1}^{m} \frac{1}{\gamma_j} \theta_j^T \xi_j(S_j) S_j + \dot{\phi}_j \]

where \(\phi_j = \gamma_j S_j \xi_j(S_j) \) is adaption law, \(\phi_j = -\theta_j = -\gamma_j S_j \xi_j(S_j) \),

consequently \(\dot{V} \) can be considered by

\[\dot{V} = \sum_{j=1}^{m} [S_j (\Delta f_j - (\theta_j^T \xi_j(S_j))] - S^T 2S \]

the minimum error can be defined by

\[e_{me} = \Delta f_j - (\theta_j^T \xi_j(S_j)) \]

\(\dot{V} \) is intended as follows
\[V = \sum_{j=1}^{m} \left[S_j e_{my} \right] - S^T AS \]
\[\leq \sum_{j=1}^{m} \left[S_j \| e_{my} \| - S_j^T AS \right] \]
\[= \sum_{j=1}^{m} \left[S_j \| e_{my} \| - \lambda_j S_j^2 \right] \]
\[= \sum_{j=1}^{m} \left[S_j \| e_{my} \| - \lambda_j S_j^2 \right] \]

For continuous function \(g(x) \), and suppose \(s > 0 \) it is defined the fuzzy logic system in form of (56) such that
\[s_{max} \leq \| g(x) - g(\bar{x}) \| < s \]
the minimum approximation error \(e_{min} \) is very small.

\[\text{if } \lambda_j = \alpha \text{ that } \alpha \| S_j \| > e_{my} (S_j \neq 0) \text{ then } V < 0 \text{ for } (S_j \neq 0) \]

FIGURE 5: Sliding mode fuzzy adaptive proposed fuzzy estimator sliding mode algorithm: applied to robot manipulator

4. **SIMULATION RESULTS**

PD sliding mode controller (PD-SMC) and SISO proposed adaptive sliding mode fuzzy algorithm Fuzzy Estimate Sliding Mode Controller (AFESMC) were tested to sinus response trajectory. This simulation applied to two degrees of freedom robot arm therefore the first and second joints are moved from home to final position without and with external disturbance. The simulation was implemented in Matlab/Simulink environment. Trajectory performance, torque performance, disturbance rejection, steady state error and
RMS error are compared in these controllers. It is noted that, these systems are tested by band limited white noise with a predefined 40% of relative to the input signal amplitude which the sample time is equal to 0.1. This type of noise is used to external disturbance in continuous and hybrid systems.

Tracking performances

Figure 6 is shown tracking performance for first and second link in SMC, and AFESMC without disturbance for sinus trajectories. By comparing sinus response trajectory without disturbance in SMC and AFESMC it is found that the SMC’s overshoot (8%) is higher than AFESMC (0%), although all of them have about the same rise time.

Disturbance Rejection

Figure 7 has shown the power disturbance elimination in SMC and AFESMC. The main target in these controllers is disturbance rejection as well as reduces the chattering. A band limited white noise with predefined of 40% the power of input signal is applied to above controllers. It found fairly fluctuations in SMC trajectory responses.
Among above graph relating to trajectory following with external disturbance, SMC has fairly fluctuations. By comparing some control parameters such as overshoot and rise time it found that the SMC’s overshoot (10%) is higher than AFESMC (0%).

Torque Performance

Figure 8 has shown the torque performance in presence of unstructured uncertainties in SMC and AFESMC. The main target in these controllers is chattering free in proposed method in presence of external disturbance.
FIGURE 8: AFESMC and SMC torque performance with external disturbance: applied to robot manipulator

Error Calculation: Figure 9 and Table 1 are shown error performance in SMC and AFESMC in presence of external disturbance. SMC has oscillation in tracking which causes chattering phenomenon. As it is obvious in Table 2 FSMC is a SMC which estimate the equivalent part so FSMC have acceptable performance with regard to SMC in presence of certain and uncertainty and AFESMC also is fuzzy estimate sliding mode controller which online tuning by sliding mode fuzzy algorithm. Figure 9 is shown steady state and RMS error in SMC and AFESMC in presence of external disturbance.

TABLE 1: RMS Error Rate of Presented controllers

<table>
<thead>
<tr>
<th>RMS Error Rate</th>
<th>SMC</th>
<th>FSMC</th>
<th>AFESMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Noise</td>
<td>1e-3</td>
<td>0.9e-3</td>
<td>0.6e-6</td>
</tr>
<tr>
<td>With Noise</td>
<td>0.012</td>
<td>0.0012</td>
<td>0.65e-6</td>
</tr>
</tbody>
</table>
FIGURE 9: AFESMC and SMC error performance with external disturbance: applied to robot manipulator

In these methods if integration absolute error (IAE) is defined by (75), table 2 is shown comparison between these two methods.

\[
IAE = \int_0^\infty |e(t)| \, dt
\] \hspace{1cm} (75)

<table>
<thead>
<tr>
<th>TABLE 2: Calculate IAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>IAE</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS
In this work, a SISO sliding mode fuzzy adaptive fuzzy estimate sliding mode controller is design, analysis and applied to robot manipulator. This method focuses on design AFSCM algorithm with the adaptation laws derived in the Lyapunov sense. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. The first objective in proposed method is remove the chattering which linear boundary layer method is used to solve this challenge. The second target in this work is compensate the model uncertainty by SISO fuzzy inference system, in the case of the m-link robotic manipulator, if we define \(k_1 \) membership functions for each input variable, the number of fuzzy rules applied for each joint is \(K_1 \) which will result in a low computational load. In finally part sliding mode fuzzy algorithm with minimum rule base is used to online tuning and adjusted the sliding function and eliminate the chattering with minimum computational load. In this case the performance is improved by using the advantages of sliding mode algorithm, artificial intelligence compensate method and adaptive algorithm while the disadvantages removed by added each method to previous method. Fuzzy logic method by adding to the sliding mode controller has covered negative points in fuzzy and sliding algorithms.
REFERENCES

INSTRUCTIONS TO CONTRIBUTORS

The main aim of International Journal of Artificial Intelligence and Expert Systems (IJAE) is to provide a platform to AI & Expert Systems (ES) scientists and professionals to share their research and report new advances in the field of AI and ES. IJAE is a refereed journal producing well-written original research articles and studies, high quality papers as well as state-of-the-art surveys related to AI and ES. By establishing an effective channel of communication between theoretical researchers and practitioners, IJAE provides necessary support to practitioners in the design and development of intelligent and expert systems, and the difficulties faced by the practitioners in using the theoretical results provide feedback to the theoreticians to revalidate their models. IJAE thus meets the demand of both theoretical and applied researchers in artificial intelligence, soft computing and expert systems.

IJAE is a broad journal covering all branches of Artificial Intelligence and Expert Systems and its application in the topics including but not limited to technology & computing, fuzzy logic, expert systems, neural networks, reasoning and evolution, automatic control, mechatronics, robotics, web intelligence applications, heuristic and AI planning strategies and tools, computational theories of learning, intelligent system architectures.

To build its International reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJAE.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Starting with Volume 3, 2012, IJAE will be appearing with more focused issues related to artificial intelligence and expert systems studies. Besides normal publications, IJAE intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) – either member of the editorial board or another recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We understand that it is through the effort of volunteers that CSC Journals continues to grow and flourish.

LIST OF TOPICS
The realm of International Journal of Artificial Intelligence and Expert Systems (IJAE) extends, but not limited, to the following:

- AI for Web Intelligence Applications
- AI Parallel Processing Tools
- AI Tools for Computer Vision and Speech Understand
- Application in VLSI Algorithms and Mobile Communication
- Case-based reasoning
- Derivative-free Optimization Algorithms
- Evolutionary and Swarm Algorithms
- Expert Systems Components
- Fuzzy Sets and logic
- Hybridization of Intelligent Models/algorithms
- AI in Bioinformatics
- AI Tools for CAD and VLSI Analysis/Design/Testing
- AI Tools for Multimedia
- Automated Reasoning
- Data and Web Mining
- Emotional Intelligence
- Expert System Development Stages
- Expert-System Development Lifecycle
- Heuristic and AI Planning Strategies and Tools
- Image Understanding
- Understanding
CALL FOR PAPERS

Volume: 3 - Issue: 1

i. Submission Deadline: December 31, 2011

ii. Author Notification: January 31, 2012

iii. Issue Publication: February 2012
CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627
Fax: 006 03 6204 5628
Email: cscpress@cscjournals.org