INTERNATIONAL JOURNAL OF APPLIED SCIENCES (IJAS)

VOLUME 5, ISSUE 1, 2014

EDITED BY
DR. NABEEL TAHIR

ISSN (Online): 2180-1258

International Journal of Applied Sciences is published both in traditional paper form and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by Computer Science Journals (CSC Journals), Malaysia.

IJAS Journal is a part of CSC Publishers
Computer Science Journals
http://www.cscjournals.org
EDITORIAL PREFACE

This is First Issue of Volume Five of the International Journal of Applied Sciences (IJAS). IJAS is an International refereed journal for publication of current research in applied sciences. IJAS publishes research papers dealing primarily with the research aspects of Applied Sciences in general. Publications of IJAS are beneficial for researchers, academics, scholars, advanced students, practitioners, and those seeking an update on current experience, state of the art research theories and future prospects in relation to applied science. Some important topics covers by IJAS are agriculture, architectural, audio, automotive, military ammunition, military technology, military etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Started with Volume 5, 2014, IJAS appears with more focused issues. Besides normal publications, IJAS intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) – either member of the editorial board or another recognized specialist in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that not only includes researchers, industrialists and scientist but also advanced students and practitioners. IJAS seeks to promote and disseminate knowledge in the applied sciences, natural and social sciences industrial research materials science and technology, energy technology and society including impacts on the environment, climate, security, and economy, environmental sciences, physics of the games, creativity and new product development, professional ethics, hydrology and water resources, wind energy.

IJAS editors understand that how much it is important for authors and researchers to have their work published with a minimum delay after submission of their papers. They also strongly believe that the direct communication between the editors and authors are important for the welfare, quality and wellbeing of the Journal and its readers. Therefore, all activities from paper submission to paper publication are controlled through electronic systems that include electronic submission, editorial panel and review system that ensures rapid decision with least delays in the publication processes.

To build its international reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc, Scribd, CiteSeerX and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJAS. We would like to remind you that the success of our journal depends directly on the number of quality articles submitted for review. Accordingly, we would like to request your participation by submitting quality manuscripts for review and encouraging your colleagues to submit quality manuscripts for review. One of the great benefits we can provide to our prospective authors is the mentoring nature of our review process. IJAS provides authors with high quality, helpful reviews that are shaped to assist authors in improving their manuscripts.

Editorial Board Members

International Journal of Applied Sciences (IJAS)
EDITORIAL BOARD

EDITOR-in-CHIEF (EiC)
Professor. Rajab Challoo
Texas A&M University
United States of America

ASSOCIATE EDITORS (AEiCs)

Dr. Nikolaos Kourkoumelis
University of Ioannina
Greece

Professor seifedine kadry
American University of the Middle East
Kuwait

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Sullip Kumar Majhi
Indian Council of Agricultural Research
India

Dr. Srung Smanmoo
National Center for Genetic Engineering and Biotechnology
Thailand

Professor Naji Qatanani
An-Najah National University
Palestine

Dr. Shuhui Li
The University of Alabama
United States of America

Professor Vidosav D. Majstorovich
University of Belgrade
Serbia

Dr Raphael Muzondiwa Jingura
Chinhoyi University of Technology
Zimbabwe

Professor Jian John Lu
University of South Florida
USA

Dr Tadjine Hadj Hamma
IAV GmbH, Technical University Clausthal
Germany

Dr Raphael Muzondiwa Jingura
Chinhoyi University of Technology - Zimbabwe
Zimbabwe

Assistant Professor Chibli Joumaa
American University of the Middle East
Kuwait

Assistant Professor Dr. Adel Eldenglawey
South Valley University
Egypt

Assistant Professor M. Shahria Alam
The University of British Columbia
Canada
TABLE OF CONTENTS

Volume 5, Issue 1, May / June 2014

Pages

1 - 8 Correlation of Shallow Groundwater Levels with The Liquefaction Occurrence Cause By May 2006 Earthquake In The South Volcanic-clastic Sediments Yogyakarta, Indonesia

Eddy Hartantyo, Kirbani Sri Brotopuspito, Sismanto, Waluyo
Correlation of Shallow Groundwater Levels with The Liquefaction Occurrence Cause By May 2006 Earthquake In The South Volcanic-clastic Sediments Yogyakarta, Indonesia

Abstract

When a large earthquake hit Yogyakarta in 26 May 2006, several liquefaction events occurred in some places in Yogyakarta and surrounding areas. Liquefaction event is strongly influenced by the depth of the ground water in the area, as well as several other parameters. This paper will conduct a qualitative correlation between the observational data liquefaction after the earthquake and the measured groundwater depth.

A total of 493 water-table depths were directly measured in the southern part area of volcanic-clastic sediment by using a measuring-tape meter. Fairly high correlation is shown between areas with shallow water depth and the position of occurred liquefactions. The average water depth for liquefied soil is 2.05 m. Almost 90% of the study area showed a high potential for liquefaction to occur.

Keywords: Earthquake, Liquefaction, Ground-water, Yogyakarta.

1. INTRODUCTION

Liquefaction is an event that occurs normally in sandy soil (non-cohesive sand), located in a water-saturated conditions, and the medium is subjected to ground vibration (cyclic stress movements) due to earthquake [1]. The sand skeletons will lose their effective stress and change into liquid / viscous [4],[5].

When the large earthquake hit Jogjakarta in the morning (local time) of 27 May 2006, several liquefaction events occurred in some places in Yogyakarta and surrounding areas [6],[7],[8]. The liquefactions phenomena were noted as ground surface cracks, especially new cracks that occur after the occurrence of the earthquake, the presence of sand-boil (slow sand-blast in some places...
that usually forming successive lines), and the presence of water level changes in wells which bring silt deposition, sometimes reaching up to the surface of the well.

The observation points of these phenomena due to the earthquake in May 2006 [7] can be seen in Figure 1. The epicenter of Yogyakarta earthquake was located on the west Parangtritis beach (retrieved from BMKG -Seismological agency- as a red star). The distribution of occurred liquefactions (blue dots) and surface cracks (blue stars) are in line with surface faults. The most of liquefaction and crack lied to the west of main fault (located SW-NE east Bantul).

FIGURE 1: Map of observation points due to the occurrence of the 2006 Yogyakarta earthquake [modified from 6,7,8]. Blue dots and stars are liquefaction occurrences and cracks position respectively. Red star is the epicenter of the earthquake.
Several observations [6],[7],[8] reported liquefaction occurrences phenomenon from surface which has the fine-grained sand layer, especially in Quaternary alluvial deposits. The structure type during observation reflects vein fractures or fissures whose size are varying between a few centimeters to a few meters and forms sand sediment exposure in the area.

The sand-water spout forming in adjacent area with diameters approximately 5-10 square meters. During their investigations, distribution of sand boils and ground fissures in the alluvial areas in Bantul graben are concentrated on the west side of the trending north-southwest Opak river fault with a length of approximately 30-35 km and turn towards the east around Gantiwarno subdistrict, Klaten, Central Java.

Based on the lithology of the area, central Yogyakarta was filled by Quaternary sediments as a result from of Merapi volcano activity (see fig 2). The type of soil to a depth of 30 meters from surface in this area consists of coarse sand, which moderate to poor gradation, and the grain size of the sand is included in the zone that allows the liquefaction [6]. In geohydrology term, this volcanic-clastic sediment has three layers of groundwater (aquifers) known as shallow, middle, and deep aquifers [9]. Shallow aquifer depths are varied and most of the water used by the community as a main water for family purposes. Most of the water depth is very shallow, especially found on the rivers banks of river which have headwater from Merapi volcano.

In this paper, we will assessed one of the important factors that affect the liquefaction, i.e. groundwater depth in the southern part of the volcanic-clastic sediments. Correlation and statistical processing of the liquefaction observation positions [7] and the depth of the watertable can be used to preliminary analyzing of the liquefaction occurrence for the next shallow earthquake.

2. METHODS
2.1 Data Acquisition
The depth of shallow groundwater measurements performed at the end of the rainy season in 2012, where the deposition took place in the area of Bantul regency dominated by loose sand
(unconsolidated sand). Deposition of this sediment is laid from Mount Merapi to the South Coast, which is bounded by Piyungan hills on the east side and Progo River on the West side [2].

The total number of measuring wells are 493. Distribution of the well-point measurements following the village’s areas which still have open wells. These are clustered mainly in areas relatively far from urban areas. Measurement points are taken at open wells, so the depth of water table can be directly measured by using a tape meter.

In the northern part, the measurement is limited to the east and west of Mlati district. This restriction is consistent with the planned location of a major research thesis whose took area is in the southern part of Yogyakarta Province. North Sleman regency areas are relatively not affected directly by an earthquake in Jogjakarta which normally occurs around the Opak’s fault.

On the East side, the measurement area bounded by Berbah and Prambanan districts, and to the south following the Opak and Oya rivers. On the western side, the study is limited by the Progo River. Measurement is not performed in the area of limestone hills in the Pandak district.

Measurements were made using simple equipment, such as; (a) Measuring tape, meter roll is used with a maximum length of 50 meters. This meter is used to measure the depth of the well from the surface of the water wells and measure the height of the lip edge of the well from the surface of the ground. (b) A Handy GPS, be used to locate and relocate the position of the measuring point. (c) Notebook, contains a data sheet that informs the position, height, depth of the water table, the location of the measurement, and the information associated with the measurement. (d) Field Guide, is used to locate and determine the points of measurement in the field.

2.2 Analysis
Analysis was performed by using the position map of the liquefaction observation in Figure 1 and groundwater depth map. The scenario is taken as follows; (1) creating the map contour which depths of water table, where there were liquefaction occurred, are below the average, (2) the map where 80% (percentile 80) occurred, and (3) map where all liquefaction data were used. These results are mapped as a function of the depth of ground water to show the consistency of water table depth and liquefaction occurrence.

3. RESULTS AND DISCUSSIONS
Water table depth map in the study area can be seen in Figure 3. It has seen that the area which has 7 to 12 m depth looks spots in the city of Yogyakarta and the North Ring Road, Mlati and surrounding districts, and a few places around the districts of Prambanan.

Areas that have shallow water table (less than 2 meters) covers the eastern part of the sub-district Sanden, Kretek, Bambanglipuro, Pundong, the town of Bantul, Jetis, Pleret, and Sewon. Sub-districts to the west of Yogyakarta city, covering; Kasihan, Sedayu, several locations in Moyudan, and West Godean also have shallow water table depth (less than 2 meters). Some places in the southern districts such as; Depok, Berbah and Piyungan also has a shallow water table depth.
3.1 Overlay of Liquefaction Positions and Ground Water Level
Overlay of map in Fig 1 and Fig 3 can be seen in Fig 4. We can see good correlation between groundwater depths to the position marked by the occurrence of liquefaction. Good correlation occurs in the area of surrounding districts; Pundong, Patalan, Banguntapan, Berbah, Prambanan and Bambanglipuro. There are no liquefaction occurrences in areas with relatively deep water table; Jetis, North Imogiri, Piyungan, and the Yogyakarta city.

3.2 Classification of Liquefaction Based On Depth of Water
The analysis of groundwater depth is done only at liquefiable area plotted as a function of distance (in degrees) from the earthquake epicenter. Average value of the water depth is 2.05m (std 1.16m). This suggests that the average depth of ground water affecting liquefaction occurrence is very shallow (see red dotted line A in Fig 5). The green shaded area shows the maximum depth of the shallowest 80% of the data. The dashed red line B shows the maximum depth of all observation data.
Based on the pre-defined water table depth (<2.05m (A), <3m (P80), and <5.3 (B)), see fig 5, we then map the areas which have possibility to liquefy (see fig 6). Map of liquefaction potential with a mean value of 2.05m identified with dense-dot (area A). For this classification, the districts; Kretek, Bambanglipuro, Pundong, Patalan, Bantul, Banguntapan and Berbah, have higher potential due to liquefaction. Some parts of districts; Sedayu and Gamping, and some areas along Progo River also has a very shallow water table which means have to high liquefaction potentials.

FIGURE 5: Water table depth plot of liquefaction observation from the epicenter (BMKG). Red dashed line A is the mean value (average), and line B is the maximum depth of the water table observations. The green area is the area of 80% shallowest (P80).
Influential on the hazard due to the earthquake. Excellent correlation was shown between the shallowness of groundwater with the observational liquefaction data due to earthquake 26 May 2006. Almost the entire area of research (90%) have the liquefaction potential if assumed that the possible liquefaction reach 5.3m depth.

4. CONCLUSION
Yogyakarta area, which is dominated by volcanic-clastic sediments of Quaternary Young Merapi led to a layer of sand which reserve groundwater as a shallow aquifer. Shallow aquifer is very influential on the hazard due to the earthquake. Excellent correlation was shown between the shallowness of groundwater with the observational liquefaction data due to earthquake 26 May 2006. Almost the entire area of research (90%) have the liquefaction potential if assumed that the possible liquefaction reach 5.3m depth.

5. ACKNOWLEDGEMENT
Thanks to the team of open-well water table measurement and Geophysics Laboratory, UGM for funding this research.

6. REFERENCES

INSTRUCTIONS TO CONTRIBUTORS

International Journal of Applied Sciences (IJAS) is publishing articles in all areas of applied sciences. IJAS seeks to promote and disseminate knowledge in the applied sciences, natural and social sciences, industrial research materials science and technology, energy technology and society including impacts on the environment, climate, security, and economy, environmental sciences, physics of the games, creativity and new product development, professional ethics, hydrology and water resources, wind energy. IJAS is an academic peer reviewed on-line international journal of broad appeal aimed at fast publication of cutting edge multidisciplinary research articles reporting on original research across the fields of pure and applied sciences.

To build its International reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJAS.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Started with Volume 5, 2014, IJAS appears with more focused issues. Besides normal publications, IJAS intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) – either member of the editorial board or another recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We understand that it is through the effort of volunteers that CSC Journals continues to grow and flourish.

IJAS LIST OF TOPICS
The realm of International Journal of Applied Sciences (IJAS) extends, but not limited, to the following:

- Agricultura
- Audio
- Automotive Engineering
- Biological
- Bombs
- Building officials
- Chemical
- Combat Engineering
- Cryogenics
- Domestic Educational Technologies
- Energy
- Engineering geology
- Entertainment
- Environmental Engineering Science
- Environmental technology
- Fire Protection Engineering
- Fishing
- Food Technology
- Health Safety
- Industrial Technology
- Machinery
- Architectural
- Automotive
- biochemical
- Biomedical
- Broadcast
- Ceramic
- Civil
- Construction
- Domestic appliances
- Domestic Technology
- Energy storage
- Enterprise
- Environmental
- Environmental Risk Assessment
- Financial Engineering
- Fisheries science
- Food
- Genetic
- Health Technologies
- Industry Business Informatics
- Manufacturing
CALL FOR PAPERS

Volume: 5 - Issue: 2

i. Paper Submission: October 31, 2014 ii. Author Notification: November 30, 2014

iii. Issue Publication: December 2014
CONTACT INFORMATION

Computer Science Journals Sdn Bhd
B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA
Phone: 006 03 6207 1607
 006 03 2782 6991
Fax: 006 03 6207 1697
Email: cscpress@cscjournals.org