INTERNATIONAL JOURNAL OF CONTEMPORARY ADVANCED MATHEMATICS (IJCM)

VOLUME 3, ISSUE 1, 2014

EDITED BY
DR. NABEEL TAHIR

ISSN (Online): 2180 - 1266
International Journal of Contemporary Advanced Mathematics (IJCM) is published both in traditional paper form and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by Computer Science Journals (CSC Journals), Malaysia.

IJCM Journal is a part of CSC Publishers
Computer Science Journals
http://www.cscjournals.org
EDITORIAL PREFACE

The International Journal of Contemporary Advanced Mathematics (IJCM) is an effective medium for interchange of high quality theoretical and applied research in Computational Linguistics from theoretical research to application development. This is the First Issue of Volume Three of IJCM. The Journal is published bi-monthly, with papers being peer reviewed to high international standards. International Journal of Contemporary Advanced Mathematics (IJCM) publish papers that describe state of the art techniques, scientific research studies and results in computational linguistics in general but on theoretical linguistics, psycholinguistics, natural language processing, grammatical inference, machine learning and cognitive science computational models of linguistic theorizing: standard and enriched context free models, principles and parameters models, optimality theory and researchers working within the minimalist program, and other approaches.

IJCM give an opportunity to scientists, researchers, and vendors from different disciplines of Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share common interests, explore new approaches, and initiate possible collaborative research and system development. This journal is helpful for the researchers and R&D engineers, scientists all those persons who are involve in Contemporary Advanced Mathematics.

Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCM as Editorial board members. All submissions are evaluated by the International Editorial Board. The International Editorial Board ensures that significant developments in image processing from around the world are reflected in the IJCM publications.

IJCM editors understand that how much it is important for authors and researchers to have their work published with a minimum delay after submission of their papers. They also strongly believe that the direct communication between the editors and authors are important for the welfare, quality and wellbeing of the Journal and its readers. Therefore, all activities from paper submission to paper publication are controlled through electronic systems that include electronic submission, editorial panel and review system that ensures rapid decision with least delays in the publication processes.

To build its international reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Scribd, CiteSeerX Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJCM. We would like to remind you that the success of our journal depends directly on the number of quality articles submitted for review. Accordingly, we would like to request your participation by submitting quality manuscripts for review and encouraging your colleagues to submit quality manuscripts for review. One of the great benefits we can provide to our prospective authors is the mentoring nature of our review process. IJCM provides authors with high quality, helpful reviews that are shaped to assist authors in improving their manuscripts.

Editorial Board Members
International Journal of Contemporary Advanced Mathematics (IJCM)
EDITORIAL BOARD

Editor-in-Chief (EiC)
Professor En-Bing Lin
Central Michigan University (United States of America)

ASSOCIATE EDITORS (AEiCS)

Dr. Yang Wang
Michigan State University
United States of America

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Armen G. Bagdasaryan
V.A. Trapeznikov Institute for Control Sciences
Russia

Dr. Taher Abualrub
American University of Sharjah
United Arab Emirates
Table of Content

Volume 3, Issue 1, January / February 2014

Pages

1 - 15 Computation of Moments in Group Testing with Re-testing and with Errors in Inspection

 Cox Lwaka Tamba, Martin Wafula Nandelenga
Computation of Moments in Group Testing with Re-testing and with Errors in Inspection

Cox Lwaka Tamba
Faculty of Science/Department of Mathematics/Division of Statistics
Egerton University
P.O Box 536, Egerton, Kenya

clwaka@yahoo.com

Martin Wafula Nandelenga
Faculty of Arts and Social Sciences/Department of Economics
Egerton University
P.O Box 536, Egerton, Kenya

nmartin200884@gmail.com

Abstract

Screening of grouped urine sample was suggested during the Second World War as a method for reducing the cost of detecting syphilis in U.S. soldiers. Grouping has been used in epidemiological studies for screening of human immunodeficiency virus HIV/AIDS antibody to help curb the spread of the virus in recent studies. It reduces the cost of testing and more importantly it offers a feasible way to lower the misclassifications associated with labeling samples when imperfect tests are used. Furthermore, misclassifications can be reduced by employing a re-testing design in a group testing procedure. This study has developed a computational statistical model for classifying a large sample of interest based on a proposed design of group testing with re-testing. This model permits computation of moments on the number of tests and misclassification arising in this design. Simulated data from a multinomial distribution (specifically a trinomial distribution) has been used to illustrate these computations. From our study, it has been established that re-testing reduces misclassifications significantly and more so, it is stable at high rates of probability of incidences as compared to Dorfman procedure although re-testing comes with a cost i.e. increase in the number of tests. Re-testing considered reduces the sensitivity of the testing scheme but at the same time it improves the specificity.

Keywords: Group, Re-test, Specificity, Sensitivity, Multinomial, Misclassifications.

1. INTRODUCTION

Pooling refers to the process of putting together individuals to form a group and then testing the group rather than testing each individual for evidence of the characteristic of interest. Pool testing began during World War II as an economical method of testing blood samples of army inductees in order to detect the presence of infection (Dorfman, 1943). The basic idea in pooling testing is that a test is done on a pool and a good reading indicates that the group contains no defective items and a defective reading indicates the presence of at least one defective. There are two objectives of pool testing: classification of the units of a population as either defective or non-defective (Dorfman, 1943) and estimation of the prevalence of a disease in a population (Sobel and Elashoff, 1975). Pool testing reduces the cost of testing when the prevalence rate is low. This is because if a pool tests negative, it implies all its constituent members are non-defective and hence it is not necessary to test each member of the pool. An algorithm of classifying a population of interest into defective and non-defective when each unit \(i \) of the population has a different probability \(p_i \) of being defective (which is called a generalized binomial group test, GBGT) problem has been studied (Hwang, 1975).
In situation where all the units have the same probability \(p \) of being defective, the generalized binomial group test problem reduces to a binary pool testing problem which is the Dorfman, (1943) procedure. Hwang (1976) has considered pool testing model in the presence of dilution effect i.e. a pool containing a few defective items may be misidentified as a pool containing no such items, especially when the size of the pool is large.

Pool testing has been used in testing the population for the presence of HIV/AIDS antibody (Kline et al., 1989 and Monzon et al., 1992). The cost effectiveness of pooling algorithm for the objective of identifying individuals with the trait has also been studied using hierarchical procedures (Johnson et al., 1992). In this procedure, each pool that test positive is divided into two equal groups, which are tested, groups that tested positive are further subdivided and tested and so on. This work has been extended by considering pooling algorithms when there are errors and showed that some of these algorithms can reduce the error rates of the screening procedures (the false positives and false negatives) compared to individual testing (Litvak et al., 1994). Computational statistics has been used in pool testing to compute the statistical measures when perfect and imperfect tests are used has been considered (Nyongesa and Syaywa, 2011; Nyongesa and Syaywa, 2010; Tamba et al., 2012).

The applications of pool testing are vast (Sobel and Groll, 1966). Pooling has been applied industries (Mundel, 1984), and recently it has been applied in screening the population for the presence of HIV antibody (Kline et al., 1989 and Manzon et al., 1992). Pool testing has been used in screening HIV antibody to help curb the further spread of the virus (Litvak et al., 1994). It has been established that pooling offers a feasible way to lower the error rates associated with labeling samples when screening low risk HIV population. For instance, given the limited precision of the available test kits, it has been shown that screening pooled sera can be used to reduce the probability that a sample labeled negative in fact has antibodies since each test has a certain sensitivity and specificity.

In this study, we discuss the computation of moments on number of tests and misclassifications based on a proposed group testing with re-testing strategy. To the authors knowledge no article has appeared in the literature of group-testing based on Monzon et al. (1992) design that has discussed the procedure in computational aspect. The rest of the paper is arranged as follows: Section 2 discusses the re-testing scheme whereas the model of this study is discussed in Section 3. The central moments and the number of tests are discussed in Section 4. Misclassifications in the group testing with re-testing scheme are discussed in Section 5. Section 6 provides the discussion and conclusion of the study.

2. THE RE-TESTING SCHEME
Suppose we have a large population; say of size \(N \rightarrow \infty \) with the purpose of testing the constituent members to detect the defective ones. To achieve this, Dorfman (1943) group testing procedure is employed as follows: subdivide \(N \) into \(n \) portions herein referred to as groups each of equal size say \(k \). Each of the \(n \) constructed groups is subjected to testing. Since the test kits employed in the study are not perfect, we employ repeated testing to recover some lost sensitivity (c.f Nyongesa 2011). In this testing strategy, if a group tests negative it is dropped from further investigation while if tests positive, it is re-tested and if it tests positive on the duplicate test, its constituent members are tested to identify the defective members. The testing procedure is represented in Figure 1.
Groups

1, 2, ..., i, ..., n

+ve
- ve

FIGURE 1: Group Testing with Re-testing Strategy.

The figure shows the n constructed groups and the test result on the ith group, for i=1, 2, ..., n.

The analysis in this study will require the following indicator functions:

Let

\[T_i = \begin{cases} 1; & \text{if the } i^{th} \text{ group tests positive on the test kit} \\ 0; & \text{otherwise} \end{cases} \]

\[T'_i = \begin{cases} 1; & \text{if the } i^{th} \text{ group test is positive on the re-test on the test kit} \\ 0; & \text{otherwise} \end{cases} \]

\[D_i = \begin{cases} 1; & \text{if the } i^{th} \text{ group is positive} \\ 0; & \text{otherwise} \end{cases} \]

\[T_{ij} = \begin{cases} 1; & \text{if the } j^{th} \text{ individual in an } i^{th} \text{ group tests positive on the test kit} \\ 0; & \text{otherwise} \end{cases} \]

and

\[\delta_y = \begin{cases} 1; & \text{if the } j^{th} \text{ individual in the } i^{th} \text{ group is positive with probability } p \\ 0; & \text{otherwise} \end{cases} \]

The indicator functions provided above are essential in the subsequent developments. The observations of the constituent members of the ith group will be represented by \((\delta_{i1}, \delta_{i2}, ..., \delta_{ij}, ..., \delta_{ik})\) or simply \(\{\delta_j\}_{j=1}^k\). Clearly,

\[\Pr(D_i = 0) = \Pr(\delta_{i1} = 0, \delta_{i2} = 0, ..., \delta_{ij} = 0, ..., \delta_{ik} = 0) \]

by definition. For analysis purposes, we shall assume that the constituent member of a group act independently of each other, hence

\[\Pr(D_i = 0) = (1 - p)^k, \text{ where, } p \text{ is the prevalence rate.} \]

3. THE MODEL

From Figure 1, let \(X_1\) be the number of groups that test positive on the initial test, \(X_2\) test negative on the initial test. Let \(X_{11}\) and \(X_{12}\) be the number of groups that test positive and
negative on the re-test respectively. Then X_{11} and X_{12} are random variables. Utilizing these random variables, we derive the probability of declaring a group as negative on the initial tests; $\pi_1 = \Pr(T_i = 0)$ as,

$$\pi_1 = (1 - p)^k \phi + [1 - (1 - p)^k](1 - \eta).$$ \hspace{1cm} (1)

where, η is the sensitivity and ϕ is the specificity of the test kits. By sensitivity, we mean the probability of correctly classifying a positive group and individual while specificity means the probability of correctly classifying a negative group and individual. The probability, $\pi_2 = \Pr(T_i = 1, T_i' = 0)$ of declaring a group as negative on re-testing a group initially classified as positive is

$$\pi_2 = \phi(1 - \phi)(1 - p)^k + \eta(1 - \eta)[1 - (1 - p)^k].$$ \hspace{1cm} (2)

With (1) and (2) at hand one can easily obtain the probability of classifying a group as positive on re-testing a group classified as positive on the initial test i.e. $\pi_3 = \Pr(T_i = 1, T_i' = 1)$ as,

$$\pi_3 = 1 - \pi_2 - \pi_1$$ \hspace{1cm} (3)

Equation (3) can be deduced as,

$$\pi_3 = (1 - \phi)^2 (1 - p)^k + \eta^2 [(1 - (1 - p)^k].$$

The probabilities $\pi_1, \pi_2, \text{and } \pi_3$ can be used to define the model of group testing with re-testing. The joint probability distribution of X_{22}, X_{12} and X_{11} is a multinomial model given by

$$f_{x_{22},x_{12},x_{11}}(x_2, x_{11}, x_{12}) = \binom{n}{x_2, x_{11}, x_{12}} \pi_1^{x_2} \pi_2^{x_{11}} (1 - \pi_1 - \pi_2)^{n-x_2-x_{11}}.$$ \hspace{1cm} (4)

In this retesting strategy, π_2 is regarded as a measure that filters out negative groups from the groups that were initially classified as positive. The covariance matrix of the random variables X_{22}, X_{11} and X_{12} is

$$\text{Cov}(X_{22}, X_{12}, X_{11}) = \begin{pmatrix} n\pi_1(1 - \pi_1) & -n\pi_1\pi_2 & -n\pi_1\pi_3 \\ -n\pi_1\pi_2 & n\pi_2(1 - \pi_2) & -n\pi_2\pi_3 \\ -n\pi_1\pi_3 & -n\pi_2\pi_3 & n\pi_3(1 - \pi_3) \end{pmatrix}.$$ \hspace{1cm} (c.f Nyongesa, 2011).

4. CENTRAL MOMENTS AND THE NUMBER OF TESTS

In this section, we provide the number of tests based on the proposed re-testing design as presented in Figure 1 described by Model (4) and the central moments of the number of tests. Let Z be the number of tests in this proposed group testing scheme. Therefore,

$$Z = n + X_1 + kX_{11}.$$ \hspace{1cm} (5)
where, X_i is the number of groups that test positive on the initial test. To obtain the expected number of tests and the variance of the number of tests, we employ the martingale theory. The expected number of tests is

$$E[Z] = 1 + n + n\pi + kn\pi_3,$$

(6)

where, π is $\Pr(T_i = 1)$, the probability of classifying a group as positive by the initial test and is given by

$$\pi = \eta \left[1 - (1 - p)^k \right] + (1 - \phi)(1 - p)^k$$

(7)

The variance of the number of test is

$$\text{Var}(Z) = n\pi(1 - \pi) + 2kn\pi_3(1 - \pi) + k^2n\pi_3(1 - \pi_3)$$

(8)

from which, the standard deviation is $\sqrt{n\pi(1 - \pi) + 2kn\pi_3(1 - \pi) + k^2n\pi_3(1 - \pi_3)}$. Next, we consider the skewness and kurtosis of the number of tests. In general, using the theory of moment generating function of a multinomial distribution the central moments of X_1 and X_{11} can be obtained as follows:

$$E\left(X_1 - n\pi\right)^2 = n\pi(1 - n\pi)$$

$$E\left(X_1 - n\pi\right)^3 = n\pi\left[1 - 3\pi + 3n\pi + 2\pi^2 - 3n\pi^2 + n^2\pi^2\right]$$

$$E\left(X_1 - n\pi\right)^4 = n\pi\left[1 - 7\pi + 7n\pi + 12\pi^2 - 18n\pi^2 + 6(n\pi)^2 - 6\pi^3 + 11n\pi^3 - 6n^2\pi^3 + (n\pi)^3\right]$$

(9)

Similarly the central moments for X_{11} are given by

$$E\left(X_{11} - n\pi_3\right)^2 = n\pi_3(1 - n\pi_3)$$

$$E\left(X_{11} - n\pi_3\right)^3 = n\pi_3\left[1 - 3\pi_3 + 3n\pi_3 + 2\pi_3^2 - 3n\pi_3^2 + (n\pi_3)^2\right]$$

$$E\left(X_{11} - n\pi_3\right)^4 = n\pi_3\left[1 - 7\pi_3 + 7n\pi_3 + 12\pi_3^2 - 18n\pi_3^2 + 6(n\pi_3)^2 - 6\pi_3^3 + 11n\pi_3^3 - 6n^2\pi_3^3 + (n\pi_3)^3\right]$$

(10)

With the aid of Equations (9) and (10), we derive skewness and kurtosis of the random variable Z. First, by definition, the skewness, γ_1 of Z is

$$\gamma_1 = \frac{a}{b}$$

(11)
where,
\[
a = E \left\{ X_1 - n\pi \right\}^3 \left\{ 1 + 3k \frac{\pi_3}{\pi} + 3k^2 \left(\frac{\pi_3}{\pi} \right)^2 \right\} + E \left\{ X_1 - n\pi \right\}^2 \left(3k^3 \frac{\pi_3}{\pi} \left(1 - \frac{\pi_3}{\pi} \right) \right) + k^3 E \left\{ X_{11} - n\pi_3 \right\}^3
\]

\[
b = \left\{ n\pi (1 - \pi) + 2kn\pi_3 (1 - \pi) + k^2 n\pi_3 (1 - \pi_3) \right\}^{1/2}
\]

Next is the computation of kurtosis, \(\gamma_2 \) and is given by,

\[
\gamma_2 = \frac{c}{d}
\]

where,
\[
c = E \left\{ X_1 - n\pi \right\}^4 \left\{ 1 + 4k \frac{\pi_3}{\pi} + 6 \left(k \frac{\pi_3}{\pi} \right)^2 + 4 \left(k \frac{\pi_3}{\pi} \right)^3 \right\} + E \left\{ X_1 - n\pi \right\}^3 \left\{ 6k^2 \frac{\pi_3}{\pi} \left(1 - \frac{\pi_3}{\pi} \right) + 12k^3 \frac{\pi_3^2}{\pi^2} \left(1 - \frac{\pi_3}{\pi} \right) + 4 \left(k \frac{\pi_3}{\pi} \right)^3 \right\} + E \left\{ X_1 - n\pi \right\}^2 \left\{ 6k^2 n\pi_3 \left(1 - \frac{\pi_3}{\pi} \right) + 4k^3 \frac{\pi_3}{\pi} \left(1 - \frac{\pi_3^2}{\pi^2} \right) \right\} + k^4 E \left\{ X_{11} - n\pi_3 \right\}^4
\]

\[
d = \left\{ n\pi (1 - \pi) + 2kn\pi_3 (1 - \pi) + k^2 n\pi_3 (1 - \pi_3) \right\}^2
\]

5. MISCLASSIFICATIONS IN THE GROUP TESTING STRATEGY WITH RETESTING

In this study, we modeled the model of interest with errors of inspection through sensitivity and specificity of the test kits. Thus allowing errors in inspection, misclassifications are bound to arise and this is the subject of this section. There are two possible misclassifications namely: false negative and false positive. A false positive refers to a non-defective item being classified as defective whereas a false negative means that a defective item is classified as non-defective.

First, we derive sensitivity of the re-testing scheme, Sensitivity= \(\Pr(T_i = 1, T'_i = 1, T_{ij} = 1 \mid \delta_j = 1) \) and by the assumption of independence in the tests used, we have the sensitivity as

\[
Sensitivity = \eta^3.
\]

Thus the false positive probability of the scheme is

\[
f_p = 1 - \eta^3.
\]

Note that \(\eta^3 < \eta \) since \(0 \leq \eta \leq 1 \) therefore the re-testing procedure lowers the sensitivity, thus this calls for re-testing of groups that were classified as negative in order to recover some lost sensitivity. Similarly \(\eta^3 \leq \eta^2 \), and hence the sensitivity of this re-testing procedure is less than that of pool testing strategy without re-testing (cf Tamba et al., 2012). Now the specificity of this testing procedure is given by
Specificity = \Pr(T_i = 0 \mid D_y = 0) + \Pr(T_i = 1, T_j = 0 \mid D_y = 0) + \\
\Pr(T_i = 1, T_j = 1, T_k = 0 \mid D_y = 0). \tag{15}

= 1 - (1 - \phi) \left\{ (1 - \phi)^2 (1 - p)^{k-1} + \eta^2 (1 - (1 - p)^{k-1}) \right\}.

This design improves the specificity as compared to the Dorfman (1943) Model. One minus the specificity of the testing scheme yields the probability of false negative as

\[f_n = (1 - \phi) \left\{ (1 - \phi)^2 (1 - p)^{k-1} + \eta^2 (1 - (1 - p)^{k-1}) \right\}. \tag{16} \]

To investigate the performance of this design we shall utilize Equation (14) and (16), in our computations.

6. RESULTS

To this end, we have presented formulas that can be used to compute the central moments of the number of tests in group testing with re-testing scheme. We illustrate the procedure by computing the central moment measures for various sensitivity and specificity.
TABLE1: Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for $N=100$, $k=10$, $\eta = \phi = 99\%$.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>$P=0.01$</th>
<th>$P=0.05$</th>
<th>$P=0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>γ_1</td>
</tr>
<tr>
<td>Number of non-defective groups on the 1st test</td>
<td>8.9470</td>
<td>1.0005</td>
<td>-0.888</td>
</tr>
<tr>
<td>Number of non-defective groups on re-test</td>
<td>0.0980</td>
<td>0.3250</td>
<td>0.9265</td>
</tr>
<tr>
<td>Number of defective groups on the re-test</td>
<td>0.9550</td>
<td>0.9428</td>
<td>0.9265</td>
</tr>
<tr>
<td>Number of group tests</td>
<td>11.053</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total number of individual tests</td>
<td>9.550</td>
<td>9.428</td>
<td>0.9265</td>
</tr>
<tr>
<td>Total number of tests</td>
<td>21.576</td>
<td>9.428</td>
<td>0.9265</td>
</tr>
<tr>
<td>Total testing cost</td>
<td>21.576</td>
<td>9.428</td>
<td>0.9265</td>
</tr>
<tr>
<td>Percentage savings</td>
<td>78.424</td>
<td>9.428</td>
<td>0.9265</td>
</tr>
<tr>
<td>Characteristics</td>
<td>(P=0.01)</td>
<td>(\mu)</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Number of non-defective groups on the 1st test</td>
<td></td>
<td>20.275</td>
<td>1.9973</td>
</tr>
<tr>
<td>Number of non-defective groups on re-test</td>
<td></td>
<td>0.241</td>
<td>0.5119</td>
</tr>
<tr>
<td>Number of defective groups on the re-test</td>
<td></td>
<td>4.4840</td>
<td>1.9387</td>
</tr>
<tr>
<td>Number of group tests</td>
<td></td>
<td>29.725</td>
<td>-</td>
</tr>
<tr>
<td>Total number of individual tests</td>
<td></td>
<td>89.680</td>
<td>39.740</td>
</tr>
<tr>
<td>Total number of tests</td>
<td></td>
<td>120.41</td>
<td>39.740</td>
</tr>
<tr>
<td>Total testing cost</td>
<td></td>
<td>24.082</td>
<td>7.9480</td>
</tr>
<tr>
<td>Percentage savings</td>
<td></td>
<td>75.918</td>
<td>7.9480</td>
</tr>
</tbody>
</table>

TABLE 2: Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for \(N=500, k=20, \eta = \phi = 99\% $.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>P=0.01</th>
<th>P=0.05</th>
<th>P=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu)</td>
<td>(\sigma)</td>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>Number of non-defective groups on the 1st test</td>
<td>8.6440</td>
<td>1.1700</td>
<td>-.5423</td>
</tr>
<tr>
<td>Number of non-defective groups on re-test</td>
<td>0.4970</td>
<td>0.6982</td>
<td>1.2849</td>
</tr>
<tr>
<td>Number of defective groups on the re-test</td>
<td>0.8590</td>
<td>0.9300</td>
<td>0.8361</td>
</tr>
<tr>
<td>Number of group tests</td>
<td>11.356</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total number of individual tests</td>
<td>8.590</td>
<td>9.300</td>
<td>0.8361</td>
</tr>
<tr>
<td>Total number of tests</td>
<td>20.946</td>
<td>9.300</td>
<td>0.8361</td>
</tr>
<tr>
<td>Total testing cost</td>
<td>20.946</td>
<td>9.300</td>
<td>0.8361</td>
</tr>
<tr>
<td>Percentage savings</td>
<td>79.054</td>
<td>9.300</td>
<td>0.8361</td>
</tr>
</tbody>
</table>

TABLE 3: Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for \(N=100, k=10, \eta = \phi = 95\% \).
TABLE 4: Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for \(N=500, k=20, \eta = \phi = 95\% \).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>(P=0.01)</th>
<th>(P=0.05)</th>
<th>(P=0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu)</td>
<td>(\sigma)</td>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>Number of non-defective groups on the 1st test</td>
<td>19.777</td>
<td>2.0304</td>
<td>-0.1293</td>
</tr>
<tr>
<td>Number of non-defective groups on re-test</td>
<td>1.1230</td>
<td>1.0704</td>
<td>0.9512</td>
</tr>
<tr>
<td>Number of defective groups on the re-test</td>
<td>4.1000</td>
<td>1.8146</td>
<td>0.3253</td>
</tr>
<tr>
<td>Number of group tests</td>
<td>30.223</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total number of individual tests</td>
<td>82.000</td>
<td>36.292</td>
<td>0.3253</td>
</tr>
<tr>
<td>Total number of tests</td>
<td>113.22</td>
<td>36.292</td>
<td>0.3253</td>
</tr>
<tr>
<td>Total testing cost</td>
<td>22.645</td>
<td>7.2584</td>
<td>0.3253</td>
</tr>
<tr>
<td>Percentage savings</td>
<td>77.355</td>
<td>7.2584</td>
<td>0.3253</td>
</tr>
</tbody>
</table>
TABLE 5: Number of false positives in the group testing with retesting strategy for different group sizes for $\eta = \phi = 99\%$.

<table>
<thead>
<tr>
<th>Probability, p</th>
<th>$N=100$, $k=10$</th>
<th>$N=500$, $k=20$</th>
<th>$N=1000$, $k=20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>γ_1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0298</td>
<td>0.1699</td>
<td>5.5352</td>
</tr>
<tr>
<td>0.02</td>
<td>0.0602</td>
<td>0.2416</td>
<td>3.8927</td>
</tr>
<tr>
<td>0.03</td>
<td>0.0870</td>
<td>0.2905</td>
<td>3.2375</td>
</tr>
<tr>
<td>0.04</td>
<td>0.1188</td>
<td>0.3396</td>
<td>2.7700</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1435</td>
<td>0.3732</td>
<td>2.5206</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2930</td>
<td>0.5332</td>
<td>1.7642</td>
</tr>
<tr>
<td>0.15</td>
<td>0.4361</td>
<td>0.6505</td>
<td>1.4460</td>
</tr>
</tbody>
</table>

TABLE 6: Number of false positives in the group testing with retesting strategy for different group sizes for $\eta = \phi = 95\%$.

<table>
<thead>
<tr>
<th>Probability, p</th>
<th>$N=100$, $k=10$</th>
<th>$N=500$, $k=20$</th>
<th>$N=1000$, $k=20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>γ_1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1623</td>
<td>0.3730</td>
<td>1.9160</td>
</tr>
<tr>
<td>0.02</td>
<td>0.2988</td>
<td>0.5061</td>
<td>1.4121</td>
</tr>
<tr>
<td>0.03</td>
<td>0.4168</td>
<td>0.5978</td>
<td>1.1957</td>
</tr>
<tr>
<td>0.04</td>
<td>0.5555</td>
<td>0.6901</td>
<td>1.0357</td>
</tr>
<tr>
<td>0.05</td>
<td>0.6822</td>
<td>0.7648</td>
<td>0.9346</td>
</tr>
<tr>
<td>0.1</td>
<td>1.3217</td>
<td>1.0645</td>
<td>0.6714</td>
</tr>
<tr>
<td>0.15</td>
<td>1.9276</td>
<td>1.2856</td>
<td>0.5560</td>
</tr>
<tr>
<td>Probability, p</td>
<td>$N=100$, $k=10$</td>
<td>$N=500$, $k=20$</td>
<td>$N=1000$, $k=20$</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>γ_1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0840</td>
<td>0.2897</td>
<td>3.4459</td>
</tr>
<tr>
<td>0.02</td>
<td>0.1599</td>
<td>0.3995</td>
<td>2.4949</td>
</tr>
<tr>
<td>0.03</td>
<td>0.2283</td>
<td>0.4772</td>
<td>2.0856</td>
</tr>
<tr>
<td>0.04</td>
<td>0.2897</td>
<td>0.5375</td>
<td>1.8494</td>
</tr>
<tr>
<td>0.05</td>
<td>0.3444</td>
<td>0.5858</td>
<td>1.6947</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5419</td>
<td>0.7339</td>
<td>1.3461</td>
</tr>
<tr>
<td>0.15</td>
<td>0.6433</td>
<td>0.7990</td>
<td>1.2327</td>
</tr>
</tbody>
</table>

TABLE 7: Number of false negatives in the group testing with retesting strategy for different group sizes for $\eta = \phi = 99\%$.

<table>
<thead>
<tr>
<th>Probability, p</th>
<th>$N=100$, $k=10$</th>
<th>$N=500$, $k=20$</th>
<th>$N=1000$, k-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>γ_1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.3971</td>
<td>0.6289</td>
<td>1.5773</td>
</tr>
<tr>
<td>0.02</td>
<td>0.7447</td>
<td>0.8597</td>
<td>1.1455</td>
</tr>
<tr>
<td>0.03</td>
<td>1.0594</td>
<td>1.0236</td>
<td>0.9556</td>
</tr>
<tr>
<td>0.04</td>
<td>1.3424</td>
<td>1.1505</td>
<td>0.8449</td>
</tr>
<tr>
<td>0.05</td>
<td>1.5948</td>
<td>1.2522</td>
<td>0.7718</td>
</tr>
<tr>
<td>0.1</td>
<td>2.5157</td>
<td>1.5640</td>
<td>0.6040</td>
</tr>
<tr>
<td>0.15</td>
<td>2.9931</td>
<td>1.6998</td>
<td>0.5475</td>
</tr>
</tbody>
</table>

TABLE 8: Number of false negatives in the group testing with retesting strategy for different group sizes for $\eta = \phi = 95\%$.

Remark 1: In all the above tables we have; $\mu = mean, \sigma = standard deviation, \gamma_1 = skewness, \gamma_2 = kurtosis$
7. DISCUSSIONS AND CONCLUSION
This study has presented a computational group testing strategy with re-testing. It has been shown from the results; Tables 1, 2, 3 and 4 that when the group size and prevalence rate are small, significant savings are realized. This is an empirical result since group testing is only feasible when the prevalence rate is small otherwise individual testing is preferred. Similarly large groups are prone to increase the dilution effect and hence increase the misclassifications. It has been established that re-testing groups that were initially classified as positive increases the cost of testing however, the false negatives significantly reduces as compared to the Dorfman procedure when imperfect tests are used (Tamba et al., 2011). The results in Tables 5, 6, 7 and 8 show that the higher the efficiency of the tests, the lower the misclassifications. This implies that group testing should be carried out when specificity and sensitivity of the testing procedure are high. It has also been noted that this re-testing strategy improves the specificity of the testing procedure making it viable in screening the population for presence of HIV/AIDS. Misclassifications are high when the prevalence rate is high and the efficiency of the test kits is low.

8. REFERENCES

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Contemporary Advanced Mathematics (IJCM) brings together both of these aspects of biology and creates a platform for exploration and progress of these, relatively new disciplines by facilitating the exchange of information in the fields of computing and statistics, mathematics in the Technology sciences are expected to have a substantial impact on the scientific, engineering and economic development of the world. Together they are a comprehensive application of mathematics, statistics, science and computer science with an aim to understand living systems.

We invite specialists, researchers and scientists from the fields of computer science, mathematics, statistics, physics and such related sciences to share their understanding and contributions towards scientific applications that set scientific or policy objectives, motivate method development and demonstrate the operation of new methods in the field of Contemporary Advanced Mathematics.

To build its International reputation, we are disseminating the publication information through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. Our International Editors are working on establishing ISI listing and a good impact factor for IJCM.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. Started with Volume 3, 2014, IJCM appears in more focused issues. Besides normal publications, IJCM intend to organized special issues on more focused topics. Each special issue will have a designated editor (editors) – either member of the editorial board or another recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We understand that it is through the effort of volunteers that CSC Journals continues to grow and flourish.

LIST OF TOPICS
The realm of International Journal of Contemporary Advanced Mathematics extends, but not limited, to the following:

- Biomedical modelling and computer simulation
- Computational genomics
- Computational intelligence
- Computational proteomics
- DNA assembly, clustering, and mapping
- E-health
- Fuzzy logic
- Gene expression and microarrays
- Genetic algorithms
- Hidden Markov models
- High performance computing
- Molecular evolution and phylogeny
- Molecular modelling and simulation
- Neural networks

CALL FOR PAPERS

Volume: 3 - Issue: 2

i. Paper Submission: February 28, 2014
 ii. Author Notification: March 31, 2014
 iii. Issue Publication: April 2014
CONTACT INFORMATION

Computer Science Journals Sdn Bhd
B-5-8 Plaza Mont Kiara, Mont Kiara

50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627
Fax: 006 03 6204 5628
Email: cscpress@cscjournals.org