

INTERNATIONAL JOURNAL OF
EXPERIMENTAL ALGORITHMS (IJEA)

VOLUME 2, ISSUE 2, 2011

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1282

International Journal of Experimental Algorithms (IJEA) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJEA Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF EXPERIMENTAL ALGORITHMS

(IJEA)

Book: Volume 2, Issue 2, August 2011

Publishing Date: 31-08-2011

ISSN (Online): 1985-4129

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJEA Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJEA Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2011

 EDITORIAL BOARD

ASSOCIATE EDITORS (AEiCs)

Associate Professor Dursun Delen
Oklahoma State University
United States of America

Professor Nizamettin Aydin
Yildiz Technical University
Turkey

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Doga Gursoy
Graz University of Technology (Austria)

Dr. Kenneth Revett
British University in Egypt (Egypt)

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011

TABLE OF CONTENTS

Volume 2, Issue 2, August 2011

Pages

27 - 41 Mathematical Derivation of Annuity Interest Rate and its Application

Karam A. Fayed

42 - 47 Distance Sort

Krishna Mohan Ankala, Hari Krishna Gurrum, Shanmukha Rao Kummari

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 27

Mathematical Derivation of Annuity Interest Rate
and its Application

K.A.Fayed karamfayed_1@hotmail.com
Ph.D.From Dept. of applied Mathematics and Computing,
Cranfield University, UK.
Faculty of commerce/Dept. of applied Statistics and Computing,
Port Said University, Port Fouad, Egypt.

Abstract

A fundamental task in business for investor or borrower is to know the interest rate of an
annuity. In this type of problem, the size of each periodic payment(R), the term(n), and the
amount(Sn) or the present value of the annuity(An) are usually given.However, a direct
equation representing the Annuity Interest Rate(i) is not available, since an approximate value
of the Annuity Interest Rate is obtained by interpolation methodbased on table showing
(Sn/R) values. This paper emphasizes the real time computational problem for Annuity
interest rate. It has therefore been important to derive an equation for computing the Annuity
Interest rate. The evaluation of error analysis has been discussed. The new algorithm saved
computational energy by approximately 99.9%than that of the tabulated one.

Keywords: Investment Mathematics, Statistical Toolbox, MATLAB Programming.

1. INTRODUCTION
There are many situations in which both businesses and individuals would be faced with
either receiving or paying a constant amount for a length of period. When a firm faces a
stream of constant payments on a bank loan for a period of time, we call that stream of cash
flows an annuity.

An annuity is a series of periodic payments, usually made in equal amounts. The payments
are computed by the compound interest method[1] and are made at equal intervals of time.
Individual investors may make constant payments on their home or car loans, or invest a fixed
amount year after year to save for their retirement. Any financial contract that calls for equally
spaced and level cash flows over a finite number of periods is called an annuity. If the cash
flow payments continue forever, the contract is called perpetuity. Constant cash flows that
occur at the end of each period are called ordinary annuities.

2. THE AMOUNT OF AN ANNUITY
In Business, the amount of an annuity is the final value at the end of the term of the annuity.
To derive the formula for the amount of an ordinary annuity,
let:
 R is the size of each regular payment.
 i is the interest rate per conversion period.
 n is the number of payments during the term of an annuity.
 Sn is the amount of an ordinary annuity.
Then:
 The amount of an ordinary annuity is given by:

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 28

Term

0 1 2 --------------- (n-2) (n-1) n
Amount of
annuity(Sn)

Payment

 R R +
 R R(1+i) +
 R R(1+i)

2
 +

 --------------- --------- +
 R R(1+i)

n-2
+

R R(1+i)
n-1

i annuity interest rate per conversion

Multiply both sides by (1+i), we have:

Subtracting Eq.(2) from Eq.(1), we get:

3. THE PRESENT VALUE OF AN ANNUITY
The present value of an annuity is the value at the beginning of the term of the annuity. The
present value of an annuity can be derived by the same way to get the following formula:

Where:
 An is the present value of an ordinary annuity.

4. ANNUITY INTEREST RATE PER CONVERSION(i)
The annuity equation (Eq.3 or Eq.4)can also be used to the find the interest rate or discount
rate for an annuity.To determine an accurate valueof the Annuity interest rate instead of using
a trial-and-error approach, we need to solve the equation for the unknown value i as follow:

a) When the Amount is Known (Sn)
(1) Two_Term Simplification
 To find the annuity interest rate when the amount is known, use the Eq.(3) as
follow:

From eq.(5), the term can be simplified using binomial theorem, since it can
obtain the binomial series which is valid for any real number as follow:

The term can be rewritten in the following form:
By replacing , we have:

From eq.(5) & the two i

th
 term expansion of eq.(7), We have:

Dividing both sides by i, we get:

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 29

Therefore:
Equation(8) represents the annuity interest rate equation for computingiafter the two i

th
term

expansion.

(2) Three_Term Simplification
From eq.(5) & the threei

th
 term expansion of eq.(7), We have:

Dividing both sides by i, we get:

Solving the above quadratic equation for i, we get:

Simplifying the above equation, we get:

Therefore, equation(9) represents the annuity interest rate equation for computing i after the
threei

th
 term expansion.

b) When the Present Value is Known (An)
(1) Two_Term Simplification:

Using Eq.(4), we can get the following formulae:

From eq.(10) & the two i

th
 term expansion of eq.(7), We have:

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 30

Dividing both sides by i, we get:

Therefore, equation(11) represents the annuity interest rate equation for computing i after the
two i

th
 term expansion.

(2) Three_Term Simplification

From eq.(10) & the three i
th
 term expansion of eq.(7), We have:

Dividing both sides by i, we get:

Solving the above quadratic equation for i, we get:

Simplifying the above equation, we get:

Therefore, equation(12) represents the annuity interest rate equation for computing i after the
three i

th
 term expansion.

5. CALCULATION OF ANNUITY INTEREST RATE

a) Tabulated Annuity Interest Rate
(1) Known Amount:
 Table_1 includes selection of annuity interest rate used in the investment market. The

ratio in Table_1 has been computed for given values of conversion period(n) and the
corresponding annuity interest rate. This ratio is used back to extract the annuity interest
rate(i_tabulated) from Tables given in [1].

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 31

i% exact

Time period (n)

n=10 n=20

i_tabulated Sn/R i_tabulated Sn/R

0.2 0.249 10.0904816840387 0.248 20.3845990093093
0.4 0.416 10.1819335047275 0.416 20.7785540890338
0.6 0.624 10.2743656882306 0.584 21.1821069182341
0.8 0.872 10.3677885591048 0.868 21.5955054350601
1 1.000 10.4622125411205 1.000 22.0190039947967

1.2 1.247 10.5576481580867 1.133 22.4528635317327
1.4 1.493 10.6541060346834 1.268 22.8973517249426
1.6 1.623 10.7515968972984 1.515 23.3527431680687
1.8 1.868 10.8501315748704 1.758 23.8193195431968
2 2.000 10.9497209997379 2.000 24.2973697989177

2.2 2.244 11.0503762084931 2.238 24.7871903326693
2.4 2.488 11.1521083428429 2.475 25.2890851774580
2.6 2.511 11.2549286504744 2.525 25.8033661930578
2.8 2.756 11.3588484859271 2.764 26.3303532617892
3 3.000 11.4638793114707 3.000 26.8703744889805

3.2 3.242 11.5700326979890 3.233 27.4237664082190
3.4 3.483 11.6773203258690 3.464 27.9908741914986
3.6 3.516 11.7857539858976 3.536 28.5720518643747
3.8 3.758 11.8953455801620 3.769 29.1676625262402
4 4.000 12.0061071229586 4.000 29.7780785758355

4.2 4.037 12.1180507417060 4.084 30.4036819421117
4.4 4.479 12.2311886778653 4.453 31.0448643205664
4.6 4.520 12.3455332878658 4.547 31.7020274151745
4.8 4.953 12.4610970440374 4.895 32.3755831860388
5 5.000 12.5778925355488 5.000 33.0659541028884

TABLE 1: Computing the ratio and tabulated annuity interest rate

(2) Known Present Value

Similarly, Table_2 computes the ratio for given values of conversion period(n) and the
corresponding annuity interest rate. This ratio is used back to extract the annuity interest
rate(i_tabulated) from Tables given in [1].

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 32

i% exact

Time period (n)

 n=10 n=20

i_tabulated An/R i_tabulated An/R

0.2 0.251 9.89087431187258 0.251 19.5860898344387
0.4 0.332 9.78347474743335 0.331 19.1840839823320
0.6 0.626 9.67776811620015 0.627 18.7935810581347
0.8 0.748 9.57372195913692 0.746 18.4141947010670
1 1.000 9.47130453070169 1.000 18.0455529662705

1.2 1.253 9.37048478137687 1.256 17.6872977422976
1.4 1.373 9.27123234066807 1.372 17.3390841937310
1.6 1.764 9.17351750055746 1.776 17.0005802277864
1.8 1.745 9.07731119939899 1.742 16.6714659838048
2 2.000 8.98258500624224 2.000 16.3514333445971

2.2 2.256 8.88931110557294 2.261 16.0401854686493
2.4 2.513 8.79746228245785 2.524 15.7374363422453
2.6 2.487 8.70701190808258 2.477 15.4429103506104
2.8 2.743 8.61793392567109 2.737 15.1563418672197
3 3.000 8.53020283677584 3.000 14.8774748604555

3.2 3.258 8.44379368792813 3.265 14.6060625168388
3.4 3.518 8.35868205763838 3.532 14.3418668800934
3.6 3.778 8.27484404373630 3.801 14.0846585053389
3.8 4.040 8.19225625104152 4.072 13.8342161277393
4 4.000 8.11089577935504 4.000 13.5903263449677

4.2 3.961 8.03074021176281 3.930 13.3527833128750
4.4 4.522 7.95176760324237 4.539 13.1213884537818
4.6 4.478 7.87395646956413 4.461 12.8959501768371
4.8 5.049 7.79728577647907 5.086 12.6762836099142
5 5.000 7.72173492918482 5.000 12.4622103425400

TABLE 2: Computing the ratio and tabulated annuity interest rate

b) Simplified Annuity Interest Rate

(1) Known Amount
Table_3 computes annuity interest rate derived in Eq.(9), Eq.(10), Eq.(11), and Eq.(12)

respectively. These Calculations have been computed for given values of (Table_3_a)
or (Table_3_b) in addition to different conversion period(n).

Figure_1 shows the tabulated annuity interest rate, the exact annuity interest and the
simplified one against different annuity interest rate. This figure indicates that the simplified
annuity interest rate moves smoothly without any abrupt change or fluctuations. On the other
hand, the tabulated annuity interest rate moves irregularly along with different interest rate.
This variation reverses a wide range of errors associated with the tabulated calculation of
annuity interest rate.

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 33

i% exact i_Tabulated
Mathematical formula Absolute Relative Error(ARE) %
i_2_Term i_3_Term Tabulated 2_Term 3_Term

0.2 0.249 0.2010 0.20000 24.718 0.53 0.001
0.4 0.416 0.4042 0.40002 4.088 1.07 0.007
0.6 0.624 0.6097 0.60009 4.048 1.61 0.016
0.8 0.872 0.8173 0.8002 9.003 2.16 0.028
1 1.000 1.0271 1.0004 1.07e-08 2.71 0.044

1.2 1.247 1.2392 1.2007 3.930 3.26 0.064
1.4 1.493 1.4535 1.4012 6.656 3.82 0.086
1.6 1.623 1.6702 1.6017 1.446 4.38 0.112
1.8 1.868 1.8891 1.8025 3.810 4.95 0.140
2 2.000 2.1104 2.0034 0.00019 5.52 0.172

2.2 2.244 2.3341 2.2045 2.038 6.09 0.207
2.4 2.488 2.5602 2.4058 3.690 6.67 0.245
2.8 2.756 3.0196 2.8092 1.559 7.84 0.329
3 3.000 3.2530 3.0112 0.00069 8.43 0.375

3.2 3.242 3.4889 3.2135 1.328 9.03 0.424
3.4 3.483 3.7273 3.4161 2.467 9.62 0.475
3.6 3.516 3.9683 3.6190 2.326 10.23 0.529
3.8 3.758 4.2118 3.8222 1.086 10.83 0.586
4 4.000 4.4580 4.0258 590.0000 11.45 0.645

4.2 4.037 4.7067 4.2297 3.873 12.06 0.707
4.4 4.479 4.9581 4.4339 1.798 12.68 0.771
4.6 4.520 5.2122 4.6385 1.717 13.31 0.837
4.8 4.953 5.4691 4.8435 3.200 13.93 0.906
5 5.000 5.7286 5.0488 0.00073 14.57 0.977

TABLE 3: a)Annuity Interest Rate at known and time period n=10

i% exact i_Tabulated
Mathematical formula Absolute Relative Error(ARE) %
i_2_Term i_3_Term Tabulated 2_Term 3_Term

 0.2 0.248 0.20 0.20 24.40 1.21 0.01
0.4 0.416 0.40 0.40 4.00 2.44 0.04
0.6 0.584 0.62 0.60 2.62 3.69 0.09
0.8 0.868 0.83 0.80 8.58 4.96 0.15
1 1.000 1.06 1.00 0.00 6.26 0.24

1.2 1.133 1.29 1.20 5.56 7.58 0.33
1.4 1.268 1.52 1.41 9.39 8.92 0.45
1.6 1.515 1.76 1.60 5.32 10.28 0.58
1.8 1.758 2.01 1.81 2.29 11.67 0.72
2 2.000 2.26 2.017 0.00 13.08 0.88

2.2 2.238 2.51 2.22 1.76 14.52 1.05
2.4 2.475 2.78 2.43 3.12 15.98 1.23
2.8 2.764 3.33 2.84 1.29 18.99 1.64
3 3.000 3.61 3.05 0.00 20.53 1.86

3.2 3.233 3.90 3.26 1.05 22.10 2.09
3.4 3.464 4.20 3.47 1.89 23.69 2.33
3.6 3.536 4.51 3.69 1.77 25.32 2.59
3.8 3.769 4.82 3.90 0.80 26.97 2.86
4 4.000 5.14 4.12 0.00 28.65 3.13

4.2 4.084 5.47 4.34 2.76 30.37 3.42
4.4 4.453 5.81 4.56 1.21 32.11 3.72
4.6 4.547 6.15 4.78 1.14 33.89 4.02
4.8 4.895 6.51 5.01 1.99 35.69 4.34
5 5.000 6.87 5.23 0.00 37.53 4.67

TABLE 3: b)Annuity Interest Rate at known and time period n=20

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 34

FIGURE 1: Tabulated and Simplified annuity interest rate (known)

(2) Known Present Value:
The tabulated annuity interest rate and the simplified one are shown in Table_4. These

Calculations have been computed for given values of in addition to different conversion
period(n).

Figure_2 shows the tabulated annuity interest rate, the exact annuity interest and the

simplified one against different annuity interest rate for known values of . This figure
indicates that the simplified annuity interest rate moves smoothly without any abrupt change
or fluctuations. On the other hand, the tabulated annuity interest rate moves irregularly along
with different interest rate. This variation reverses a wide range of errors associated with the
tabulated calculation of annuity interest rate.

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 35

i% exact i_Tabulated
Mathematical formula Absolute Relative Error(ARE) %
i_2_Term i_3_Term Tabulated 2_Term 3_Term

 0.2 0.251 0.243 0.244 25.343 21.251 22.045
0.4 0.332 0.481 0.488 16.968 20.292 21.876
0.6 0.626 0.716 0.730 4.309 19.345 21.715
0.8 0.748 0.947 0.973 6.502 18.411 21.563
1 1.000 1.175 1.214 0.000 17.488 21.419

1.2 1.253 1.399 1.455 4.445 16.577 21.284
1.4 1.373 1.619 1.696 1.915 15.677 21.158
1.6 1.764 1.837 1.937 10.244 14.789 21.040
1.8 1.745 2.050 2.177 3.033 13.912 20.932
2 2.000 2.261 2.417 0.001 13.046 20.833

2.2 2.256 2.468 2.656 2.539 12.191 20.744
2.4 2.513 2.672 2.896 4.708 11.346 20.664
2.8 2.743 3.071 3.375 2.037 9.688 20.536
3 3.000 3.266 3.615 0.000 8.874 20.488

3.2 3.258 3.458 3.854 1.822 8.070 20.450
3.4 3.518 3.647 4.094 3.462 7.276 20.424
3.6 3.778 3.834 4.335 4.955 6.491 20.410
3.8 4.040 4.017 4.575 6.320 5.716 20.407
4 4.000 4.198 4.817 0.001 4.950 20.417

4.2 3.961 4.376 5.058 5.702 4.194 20.440
4.4 4.522 4.552 5.301 2.778 3.446 20.477
4.6 4.478 4.725 5.544 2.653 2.707 20.527
4.8 5.049 4.895 5.788 5.186 1.978 20.592
5 5.000 5.063 6.034 0.000 1.256 20.672

TABLE 4: a)Annuity Interest Rate at known and time period n=10

i% exact i_Tabulated
Mathematical formula Absolute Relative Error(ARE) %
i_2_Term i_3_Term Tabulated 2_Term 3_Term

0.2 0.251 0.218 0.221 25.652 8.924 10.386
0.4 0.331 0.429 0.441 17.239 7.357 10.276
0.6 0.627 0.635 0.661 4.434 5.826 10.198
0.8 0.746 0.835 0.881 6.725 4.329 10.154
1 1.000 1.029 1.101 0.000 2.866 10.145

1.2 1.256 1.217 1.322 4.688 1.434 10.174
1.4 1.372 1.400 1.543 2.028 0.034 10.243
1.6 1.776 1.579 1.766 10.993 1.335 10.357
1.8 1.742 1.752 1.989 3.250 2.674 10.517
2 2.000 1.920 2.215 0.000 3.985 10.728

2.2 2.261 2.084 2.442 2.763 5.268 10.995
2.4 2.524 2.243 2.672 5.158 6.523 11.323
2.8 2.737 2.549 3.141 2.243 8.954 12.193
3 3.000 2.696 3.383 0.001 10.131 12.752

3.2 3.265 2.839 3.629 2.029 11.284 13.411
3.4 3.532 2.978 3.882 3.879 12.413 14.185
3.6 3.801 3.113 4.143 5.579 13.518 15.095
3.8 4.072 3.245 4.414 7.152 14.601 16.166
4 4.000 3.374 4.698 0.000 15.662 17.438

4.2 3.930 3.499 4.996 6.426 16.702 18.960
4.4 4.539 3.620 5.316 3.165 17.720 20.813
4.6 4.461 3.739 5.663 3.016 18.718 23.119
4.8 5.086 3.855 6.053 5.956 19.696 26.098
5 5.000 3.967 6.510 0.000 20.655 30.206

TABLE 4: b)Annuity Interest Rate at known and time period n=20

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 36

FIGURE 2: Tabulated and Simplified annuity interest rate (known)

6.ERROR ANALYSIS OF ANNUITY INTEREST RATE
The percentage absolute relative error(ARE) between the exact and simplified Annuity
Interest Rate is given by:

Table_3 and Table_4 show the percentage Absolute Relative Error(ARE)of the tabulated and
simplified annuity interest rate respectively. These tables compute the error associated with
the annuity interest rate at known amount and present value respectively.Figure_3 shows the
variation. Therefore, computing the annuity interest rateusing Eq.(9)
,three_Term_simplification, is recommended especially when theamount is known and lower
conversion time period(n).

Similarly, Figure_4 indicates that the annuity interest rate using Eq.(11)
,two_Term_simplification, is recommended especially when the present value is known and
lower conversion time period(n).

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 37

FIGURE 3: Percentage absolute relative error of annuity interest rate (known)

FIGURE 4: Percentage absolute relative error of annuity interest rate (known)

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 38

The percentage reduction in Relative Error between the tabulated technique and the
simplified one of the annuity interest rate is given by:

Where:

isthe percentage reduction in Relative Error between the tabulated technique and the

simplified one.If is positive values, Error reduction will occur using simplified technique. If it
is negative values, Error reduction will occur using tabulated technique. otherwise, there is no
error reduction.

 Table_5 shows the percentage reduction in Relative Error between the tabulated technique
and the simplified one for different interest rate.
The squared error(Er) between the exact values and the computed annuity interest rate is
given by:

i%
exact

Known /R & n=10 Known /R & n=10

Error
reduction

(%)

Squared error(Ei) Error
reduction

(%)

Squared error(Ei)

Tabulated 3_Term Tabulated 2_Term

0.2 99.99 24.44 1.4E-07 16.15 25.69 18.06
0.4 99.82 2.67 8.6E-06 -19.59 46.07 65.88
0.6 99.60 5.90 9.7E-05 -348.99 6.68 134.72
0.8 99.68 51.89 5.4E-04 -183.16 27.05 216.93
1.2 98.37 22.24 5.9E-03 -272.92 28.45 395.70
1.4 98.70 86.84 1.5E-02 -718.45 7.19 481.73
1.6 92.24 5.36 3.2E-02 -44.37 268.65 559.93
1.8 96.30 47.05 6.4E-02 -358.70 29.80 627.10
2.2 89.82 20.12 2.1E-01 -380.08 31.21 719.30
2.4 93.35 78.46 3.5E-01 -141.01 127.66 741.51
2.6 91.60 78.29 5.5E-01 -142.18 127.35 746.97
2.8 78.88 19.06 8.5E-01 -375.70 32.52 735.81
3.2 68.08 18.08 1.8E+00 -342.99 33.98 666.86
3.4 80.72 70.38 2.6E+00 -110.15 138.56 611.94
3.6 77.23 70.15 3.6E+00 -31.00 318.18 546.06
3.8 46.04 17.05 5.0E+00 9.56 576.82 471.79
4.2 81.74 264.72 8.8E+00 26.45 573.52 310.23
4.4 57.11 62.60 1.2E+01 -24.06 149.37 229.91
4.6 51.22 62.42 1.5E+01 -2.05 148.92 155.11
4.8 71.67 235.95 1.9E+01 61.87 619.73 90.10

Mean 83.61 % ______ ______ _____ ______ _______

TABLE 5: Squared error and Error reduction for computing Annuity Interest Rate

If the integer values of annuity interest rate in Table_5(integer values of i_exact) is excluded
due to very small errors associated with it. This indicates that the 3_Term simplified technique
of known amount gives reduction in ARE by approximately 83.61% compared to the tabulated
technique. Figure_5.a shows the variation. On the other hand, the tabulated technique of
known present value is appropriate compared to the simplified one. This led us to implement
a correction factor which will be discussed in the coming paper.Figure_5.b shows the
variation.

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 39

FIGURE 5: Percentage error reduction of annuity interest rate.

7. PROCESSING TIME OF THE ANNUITY INTEREST RATE
The processing time required for Computing the annuity interest rateis executed by
LaptopDELL-inspiron-1520.Table_6 indicates that the average processing time required for
computing the annuity interest rateusing the tabulated and the simplified technique.

i% exact

Known /R & n=10 Known /R & n=10

CPU time (Second) CPU time (Second)

Tabulated 3_Term Tabulated 2_Term

1.6 63.5 2.6137e-007 65 5.4142e-007

TABLE 6: Average CPU time of Annuity Interest Rate

8. MATLAB PROGRAMMING:
A complete program can be obtained by writing directly to the author[2].

9. COMPUTATIONAL ENERGY OF THE ANNUITY INTEREST RATE
Computing the computational energy for annuity interest rate requires the determination of
conversion period(n), the square error(Ei), and the average processing time(CPU time).
Therefore, consider the conversion period(n) represents the resistance, the square error is
measured in [volts]2, and the CPU time in second. Then, the computational energy per
conversion period is given by:

Where:
 CE is the computational energy per conversion period.
 Eiis the i

th
 square error.

 t isthe averageCPU time.

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 40

 n is the conversion period.

The computational energy saved by the simplified technique compared to the
tabulated one is given by:

Where:

is the relative computational energy saved by the simplified technique.
is the computational energy for the Tabulated method.
is the computational energy for the simplified technique.

Table_7 shows the computational energy(CE) for each technique. This table indicates that the
simplified technique saved computational energy by approximately 99.9% compared to the
tabulated one. Figure(6) shows the variation in computational energy required for calculation.

i_exact %
Known /R & n=10

CE_Tabulated CE_3_Term CE_saved by 3_Term

0.2 155.20 3.58E-15 100
0.4 16.98 2.26E-13 99.9999999999987
0.6 37.48 2.53E-12 99.9999999999933
0.8 329.47 1.40E-11 99.9999999999958
1.2 141.24 1.55E-10 99.9999999998906
1.4 551.42 3.84E-10 99.9999999999304
1.6 34.03 8.42E-10 99.9999999975242
1.8 298.74 1.68E-09 99.9999999994367
2.2 127.76 5.45E-09 99.9999999957343
2.4 498.21 9.06E-09 99.9999999981822
2.6 497.11 1.44E-08 99.9999999970962
2.8 121.01 2.22E-08 99.9999999816483
3.2 114.84 4.82E-08 99.9999999580682
3.4 446.94 6.84E-08 99.9999999847050
3.6 445.43 9.51E-08 99.9999999786590
3.8 108.29 1.30E-07 99.9999998801563
4.2 1680.97 2.31E-07 99.9999999862822
4.4 397.53 3.01E-07 99.9999999242805
4.6 396.35 3.88E-07 99.9999999020713
4.8 1498.30 4.95E-07 99.9999999669690

Mean ------------ ---------- 99.99

TABLE 7: Computational Energy of Annuity Interest Rate(CE)

Karam A. Fayed

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 41

FIGURE 6:Percentage Computational Energy of annuity interest rate.

10. CONCLUSIONS
A new mathematical formula is derived here to compute an approximate value of the Annuity
Interest Rate. It can be implemented using simple calculator, to save time and to avoid
systematic errors associated with tables, and to calculate missing values of i in tables. Since
other solutions depend on a trial-and-error approach.

A new algorithm has been derived for fast evaluation of the annuity interest rate. As a result
the new technique offered four advantages over the tabulated one:

(1) It drastically reduces the average CPU time required for calculating the annuity
interest rate.

(2) It drastically reduces the absolute relative error(ARE) for calculating the annuity
interest rateby 83.61%compared to the current one.

(3) It gives minimum square error compared to the current tabulated method.
(4) It has lowest computational energy.

The aforementioned features are combined in a mathematical formula to describe the system
performance. This formula is called the computational energy. A quantitative study has been
carried out to compute the computational energy for each technique. The results show that
the simplified technique saved computational energy by 99.9% compared to the current one.
A correction factor will be discussed in the next paper.

11. REFERENCES
[1] Shao and Shao, “Mathematics for management and finance”, eighth edition,

1998.

[2] Email: karamfayed_1@hotmail.com

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 42

Distance Sort

Krishna Mohan Ankala krishna.ankala@gmail.com
Assoc.Prof, Dept of Computer science,
Ucek, JNTU Kakinada.

Hari Krishna Gurram, harikrishna553@gmail.com
M.Tech (CS),
Ucek, JNTU Kakinada.

Shanmukha Rao Kummari kshanmuk@gmail.com
M.Tech(CS),
Ucek, JNTU Kakinada.

Abstract

One of the fundamental issues in computer science is ordering a list of items. Although there is a number
of sorting algorithms, sorting problem has attracted a great deal of research, because efficient sorting is
important to optimize the use of other algorithms. This paper presents a new sorting algorithm which runs
faster by decreasing the number of comparisons by taking some extra memory. In this algorithm we are
using lists to sort the elements. This algorithm was analyzed, implemented and tested and the results are
promising for a random data.

Keywords: Distance Sort, Distance

1. INTRODUCTION
Today real world getting tremendous amounts of data from various sources like data warehouse, data
marts etc. To search for particular information we need to arrange this data in a sensible order. Many
years ago, it was estimated that more than half the time on commercial computers was spent in sorting.
Fortunately variety of sorting algorithms came into existence with different techniques [1].

Many algorithms are well known for sorting the unordered lists. Most important of them are merge sort,
heap sort, shell sort and quick sort etc. [2]. As stated in [3], sorting has been considered as a
fundamental problem in the study of algorithms, that due to many reasons:

� The need to sort the information is inherent in many applications.
� Algorithms often use sorting as a key subroutine.
� Many engineering issues come to the fore when implementing sorting algorithms.
� In algorithm design, there are many essential techniques represented in the body of sorting

algorithms.
�

Sorting algorithms plays a vital role in various indexing techniques used in data warehousing, and daily
transactions in online Transactional processing (OLTP). Efficient sorting is important to optimize the use
of other sorting algorithms that require sorted lists correctly.

Sorting algorithms can be classified by:

• Computational complexity (best, average and worst behavior) of element comparisons in
terms list size n. For a typical sorting algorithm best case, average case and worst case is
O(n log n), example merge sort.

• Number of swaps

• Stability : A sorting algorithm is stable if whenever there are two records X and Y, with the
same key and X appearing before Y in original list, X will be appear before Y in the sorted list.

• Usage of memory

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 43

In this paper, a new sorting algorithm (Distance sort) is proposed; here the basic idea is by taking
a random sample of elements in the input we calculate the distance first, which is used to sort the
elements in the given input. Here, we are taking the sample size as one percent of the total size
of the input. As compared to other sorting algorithms this algorithm takes more memory, To
restrict it from using very huge memory we are restricting the size of the list to 1.5 * n in sorting
the data with n elements.

Section 2 presents the concept of Distance sorting algorithm and its pseudo code. Section 3
shows the implementation results for various sizes of random input. Finally, the conclusion was
presented in section 4.

2: DISTANCE SORT

2.1 Concept
This algorithm works efficiently on random data by calculating the approximate position of the
element. The main logic presented here is by calculating the approximate position we are able to
minimize the number of comparisons, obviously the efficiency of the algorithm is increased.

2.2 Pseudocode
In pseudocode, the distance sort algorithm might be expressed as,
function sort (input, size)
1. var sizeOfSample := size / 100
2. average(input)
3. var maximum, minimum
4. var distance := getDistance()
5. if distance := 0
6. distance := 1
7. end if
8. findMaxMin(input)
9. marker = maximum + 1
10. var approxEle := getApproxEle() + 1
11. var constraintSize = 1.5 * size
12. if approxEle > constraintSize
13. approxEle := constraintSize
14. end if
15. Node in[approxEle]
16. initializeNode()
17. for i:=0 to size do
18. var x := input[i]
19. var position := (x – minimum) / distance
20. If position > approxEle
21. Position := approxEle
22. end if
23. if in[position].element := marker
24. in[position].element := x
25. end if
26. else
27. if (in[position].element >= x)
28. Node temp
29. temp.element = x
30. temp.next = in[position]
31. in[position] = temp
32. end if
33. else
34. var flag := 1
35. Node temp1 := in[position]

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 44

36. Node temp := in[position]
37. while (temp1.element < input[i])
38. temp := temp1
39. temp1 := temp1.next
40. if(temp1 := null)
41. temp1.element := x
42. flag := 0
43. break
44. end if
45. end while
46. if flag := 0
47. Node temp2
48. temp2.element := input[i]
49. temp.next := temp2
50. end if
51. else
52. temp2.element := input[i]
53. temp2.next := temp1
54. temp.next := temp2
55. end else
56. end else
57. end for
58. var counter := 0
59. for i:=0 to approxEle
60. Node temp3 := in[i]
61. while (temp3.element != 0)
62. input[counter]:= temp3.element
63. counter := counter + 1
64. temp3 := temp3.next
65. if temp3 := null
66. break
67. end if
68. if (counter := (size -1))
69. break
70. end if
71. end while
72. if (counter := (size -1))
73. Break
74. end if
75. end for
76. end sort

Line 1, declares a variable sizeOfSample, which calculates the one percent of total input elements. By
using this variable we are going ti calculate the approximate distance between the elements.
In line2, we called the function, average, the pseudocode for that function is given below.
function average(input)

1. var counter := 0
2. for counter 0 to sizeOfSample
3. randPos := rand(size)
4. average :=average + input[randPos]
5. End LOOP
6. average = average/sizeOfSample
7. end average

In line 4 of sort method we are calling the getDistance method which is used to calculate the
approximation distance between the random elements, the pseudocode for the getDistance method is
given below.
function getDistance()

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 45

1. var dist = (2*average)/ size
2. if(dist < 0)
3. dist = -1 * dist
4. Return dist
5. end getDistance

In line8 of sort method we are calling the findMaxMin method, which is used to calculate the maximum
and minimum values in the input elements.

function findMaxMin()

1. var counter := 0
2. maximum := input[0]
3. minimum := input[0]
4. for counter 1 to size
5. if (minimum > input[counter])
6. minimum := input[counter]
7. end if
8. if(maximum < input[counter])
9. maximum := input[counter]
10. end if
11. end for
12. end findMaxMin

In line 9 of sort method we are calling the getApproxEle method which is used to calculate the
approximate number of Nodes used to sort the given data. The pseudocode for the getApproxEle method
is given below.
function getApproxEle()

1. return (maximum – minimum)/distance
2. end getApproxEle

Lines 10, 11, 12, 13 are used to constrain the number of nodes to sort the input elements. Line 14
declares an array in of type Node. The pseudo code for the structure Node is given below.

1. struct Node
2. int element
3. Node next
4. End struct Node

In line 15 of sort method we are calculating the initializeNode method which is used to initialize the nodes.
The pseudocode for the initializeNode is given below.
Function initializeNode()

1. var counter := 0
2. for counter 0 to approxEle
3. in[counter].element := marker
4. In[counter].next := null
5. end for
6. end initializeNode

In line 18, we are calculating the approximate position for each input element, by calculating the
approximate position we are going to reduce the number of comparisons. Lines 19 to 70 sort the
elements by comparing from the approximation position.

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 46

3: IMPLEMENTATION RESULTS

Number Of
Elements

Time Taken Total comparisons

1000000 335 1428360
2000000 725 2856095
3000000 1105 4282827
4000000 1492 5708973
5000000 1874 7135946
6000000 2300 8558582
7000000 2666 9983612

TABLE 1: Best case scenario for Distance Sort (Time in milliseconds)

When there are very less number of duplicates in the input then this algorithm works in best case. If there
are more duplicates in the input then this algorithm goes into the worst case.

FIGURE 1: Best case comparison of Distance sort Vs Merge Sort.

Fig 1 shows that in best case distance sort work far better than the merge sort, Since in best case the
position of an element is found approximately equal to the actual position. The best case occurs for the
distance sort only when there are less number of duplicates.

Since we are finding the input element position approximately by the distance (we calculated from the
average value), If the distance is calculated appropriately, then this algorithm works in best case, if the
distance is not appropriate then this algorithm goes into worst case.

Krishna Mohan Ankala, Hari Krishna Gurram & Shanmukha Rao Kummari

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (2) : 2011 47

4: CONCLUSION
This distance sorting algorithm works very fast when there are very less number of duplicates in the input
data and this algorithm totally depends on the distance value we are calculating to find out approximate
position of the element to reduce comparisons.

5: REFERENCES
[1] Kruse R., and Ryba A., Data Structures and Program Design in C++, Prentice Hall, 1999.

[2] Shahzad B. and Afzal M., “Enhanced ShellSorting Algorithm,” Computer Journal of
 Enformatika, vol. 21, no. 6, pp. 66-70, 2007.

[3] Cormen T., Leiserson C., Rivest R., and Stein C., Introduction to Algorithms, McGraw Hill, 2001.

[4] Aho A., Hopcroft J., and Ullman J., The Design and Analysis of Computer Algorithms, Addison

Wesley, 1974.

[5] Astrachanm O., Bubble Sort: An Archaeological Algorithmic Analysis, Duk University, 2003.

[6] Bell D., “The Principles of Sorting,” Computer Journal of the Association for Computing Machinery, vol.

1, no. 2, pp. 71-77, 1958.

[7] Box R. and Lacey S., “A Fast Easy Sort,”Computer Journal of Byte Magazine, vol. 16,no. 4, pp. 315-

315, 1991.
.
[8] Deitel H. and Deitel P., C++ How to Program, Prentice Hall, 2001.

[9] Friend E., “Sorting on Electronic ComputerSystems,” Computer Journal of ACM, vol. 3,
 no. 2, pp. 134-168, 1956.

[10] Knuth D., The Art of Computer Programming,Addison Wesley, 1998.

[11] Ledley R., Programming and Utilizing Digital Computers, McGraw Hill, 1962.

[12] Levitin A., Introduction to the Design andAnalysis of Algorithms, Addison Wesley, 2007.

[13] Nyhoff L., An Introduction to Data Structures, Nyhoff Publishers, Amsterdam, 2005.

[14] Organick E., A FORTRAN Primer, AddisonWesley, 1963.

[15] Pratt V., Shellsort and Sorting Networks,Garland Publishers, 1979.

[16] Sedgewick R., “Analysis of Shellsort andRelated Algorithms,” in Proceedings of the 4th
 Annual European Symposium on Algorithms,pp. 1-11, 1996.

[17] Seward H., “Information Sorting in theApplication of Electronic Digital Computers to
 Business Operations,” Masters Thesis, 1954.

[18] Shell D., “A High Speed Sorting Procedure,”Computer Journal of Communications of the ACM, vol. 2,

no. 7, pp. 30-32, 1959.

[19] Thorup M., “Randomized Sorting in O(n log logn) Time and Linear Space Using Addition,Shift, and

Bit Wise Boolean Operations,”Computer Journal of Algorithms, vol. 42, no. 2,pp. 205-230, 2002.

INSTRUCTIONS TO CONTRIBUTORS

Experimental Algorithmics studies algorithms and data structures by joining experimental studies
with the more traditional theoretical analyses. With this regard, the aim of The International
Journal of Experimental Algorithms (IJEA) is (1) to stimulate research in algorithms based upon
implementation and experimentation; in particular, to encourage testing, evaluation and reuse of
complex theoretical algorithms and data structures; and (2) to distribute programs and testbeds
throughout the research community and to provide a repository of useful programs and packages
to both researchers and practitioners. IJEA is a high-quality, refereed, archival journal devoted to
the study of algorithms and data structures through a combination of experimentation and
classical analysis and design techniques. IJEA contributions are also in the area of test
generation and result assessment as applied to algorithms.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJEA.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 2, 2011, IJEA appears in more focused issues. Besides normal publications,
IJEA intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJEA LIST OF TOPICS
The realm of International Journal of Experimental Algorithms (IJEA) extends, but not limited, to
the following:

 Algorithm Engineering Heuristics
 Algorithmic Code Mathematical Programming For Algorithms
 Algorithmic Engineering Metaheuristic Methodologies

 Algorithmic Network Analysis Network Design

 Analysis of Algorithms Parallel Processing

 Approximation Techniques Randomized Techniques in Algorithms
 Cache Oblivious algorithm Routing and Scheduling
 Combinatorial Optimization Searching and Sorting
 Combinatorial Structures and Graphs Topological Accuracy
 Computational Biology Visualization Code
 Computational Geometry VLSI Design
 Computational Learning Theory Graphics
 Computational Optimization
 Data Structures
 Distributed and Parallel Algorithms
 Dynamic Graph Algorithms
 Experimental Techniques and Statistics
 Graph Manipulation

CALL FOR PAPERS

Volume: 3 - Issue: 1 - February 2012

i. Paper Submission: November 30, 2011 ii. Author Notification: January01, 2012

iii. Issue Publication: January / February 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD
B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607
006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

