

INTERNATIONAL JOURNAL OF SOFTWARE
ENGINEERING (IJSE)

VOLUME 2, ISSUE 5, 2011

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1320

I International Journal of Software Engineering (IJSE) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJSE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING

(IJSE)

Book: Volume 2, Issue 5, November / December 2011

Publishing Date: 15-12-2011

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2011

EDITORIAL PREFACE

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. It is the Fifth Issue of Volume Two of IJSE and it is published bi-monthly, with
papers being peer reviewed to high international standards.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 2, 2011, IJSE appears with more focused issues. Besides normal
publications, IJSE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

IJSE encourage researchers, practitioners, and developers to submit research papers reporting
original research results, technology trend surveys reviewing an area of research in software
engineering, software science, theoretical software engineering, computational intelligence, and
knowledge engineering, survey articles surveying a broad area in software engineering and
knowledge engineering, tool reviews and book reviews. Some important topics covered by IJSE
usually involve the study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software development deliverables,
practices, and technologies. IJSE is a refereed journal that promotes the publication of industry-
relevant research, to address the significant gap between research and practice.

IJSE gives the opportunity to researchers and practitioners for presenting their research,
technological advances, practical problems and concerns to the software engineering. IJSE is not
limited to a specific aspect of software engineering it cover all Software engineering topics. In
order to position IJSE amongst the most high quality journal on computer engineering sciences, a
group of highly professional scholars are serving on the editorial board. IJSE include empirical
studies, requirement engineering, software architecture, software testing, formal methods, and
verification.

International Editorial Board ensures that significant developments in software engineering from
around the world are reflected in IJSE. The submission and publication process of manuscript
done by efficient way. Readers of the IJSE will benefit from the papers presented in this issue in
order to aware the recent advances in the Software engineering. International Electronic editorial
and reviewer system allows for the fast publication of accepted manuscripts into issue publication
of IJSE. Because we know how important it is for authors to have their work published with a
minimum delay after submission of their manuscript. For that reason we continue to strive for fast
decision times and minimum delays in the publication processes. Papers are indexed &
abstracted with International indexers & abstractors.

Editorial Board Members
International Journal of Software Engineering (IJSE)

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Richard Millham
University of Bahamas
Bahamas

Dr. Vitus S.W. Lam
The University of Hong Kong
 Hong Kong

Dr Xiaohong (Sophie) Wang
Salisbury University
United States of America

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011

TABLE OF CONTENTS

Volume 2, Issue 5, November / December 2011

Pages

97 - 106

An Agile Software Development Framework

Malik F. Saleh

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 97

An Agile Software Development Framework

Malik F. Saleh msaleh@pmu.edu.sa
Management Information Systems
Prince Mohammad Bin Fahd University
Al Khobar, 31952, Saudi Arabia

Abstract

Agility in software projects can be attained when software development methodologies attain to external
factors and provide a framework internally for keeping software development projects focused. Developer
practices are the most important factor that has to cope with the challenges. Agile development assumes
a project context where the customer is actively collaborating with the development team. The greatest
problem agile teams face is too little involvement from the customer. For a project to be agile, the
developers have to cope with this lack of collaboration. Embracing changing requirements is not enough
to make agile methods cope with business and technology changes. This paper provides a conceptual
framework for tailoring agile methodologies to face different challenges. The framework is comprised of
three factors, namely, developer practices, customer collaboration, and predicting change.

Keywords: Agile Framework, Tailored Framework, Software Development, Developer Practices,
customer Collaboration, Predicting Change

1. INTRODUCTION
Different software development approaches share common principles such as improving customer
satisfaction, adopting to changing requirements, delivering working software, and creating a collaboration
among stakeholders and developers [1]. An investigative study by [2] found evidence of staffing stability
and design compatibility that affect the success of software projects that use incremental and iterative
development. The basic idea behind iterative development is to develop a software system incrementally,
allowing the developer to take advantage of what was learnt during the development of earlier deliverable
versions of the system. Therefore, iterative and incremental software development are viewed as the
cornerstone of the agile methodologies [3].

One of the main reasons for using agile methodologies is to satisfy the needs of the users. The informal
communication among stakeholders and developers sometimes raises problems such as inability to cope
with system complexity and rapidly changing requirements, or inability to add new members to the
development team [4]. Agility can be attained when software development methodologies attain to
external factors and provide a framework internally for keeping software development projects focused.
Those methodologies can be applied in different units of the organization with minor modifications. It is
important to note that there is no best-fit methodology for an organization [5].

Agile methodologies appeared as a reaction to traditional ways of developing software and acknowledged
the need for an alternative to documentation driven, heavyweight software development processes.
Different agile methodologies are in use such as Extreme Programming, Scrum, Cockburn’s Crystal
family, and Feature Driven Development. These different methodologies have less documentation and
more code-oriented features that are common among them [6]. Extreme Programming (XP) tends to be
best accepted by the developers [7].

Extreme Programming is the most popular of the various types of agile methodologies. It takes many of
the best well-known software development practices and applies them during system development. XP is
a set of values, principles and practices for rapidly developing high-quality software by preaching the
values of community, simplicity, feedback and courage [6, 8]. According to [8] XP has twelve core
practices (see Table 1).

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 98

Core Practice Description

Planning Game The customer and development teams decide on what
features will be of implemented

Simple Design The simplest design that meets the business
requirements is selected

Small Releases Release a useful set of features into production and
update them frequently in short cycles

Metaphor Choose system names that helps you understand the
parts of the system and help you communicate more
effectively

40-Hour Week Maintain productivity and avoid burn out of the
development team

On-site customer On-site customer ensures effective communication as
a result less documentation will be required

Coding standard Coding standard is a way of communication and
documentation

Continuous
Integration

frequent code integration means less chances that
there will be diversion and it will result in more testing

Refactoring Applying small updates in small steps reduces the
risk of introducing errors

Pair Programming Programmers are paired to write code using a single
machine. This helps the code to be constantly
reviewed while being written and will produce high
quality code with little decrease in productivity

Collective Code
Ownership

The code belongs to every member of the team

Testing Test-driven development. Code is validated at all
times and before new features are added

TABLE 1: Extreme Programming Core Practices

In this paper we provide a conceptual framework for modifying the agile methodologies to cope with
changing requirements. This model is tailored to the needs of the developers and the needs of the
software project which makes the agile methodologies themselves flexible. In section 2 we discuss the
related work that enhances or negatively affects agile methodologies. Section 3 introduces the motivation
for this paper and the framework for improving agility in software development. Section 4 discusses the
conclusion and our future work.

2. BACKGROUND AND RELATED WORK
Little research has been undertaken into what is meant by agility and how a supposed agile method can
be evaluated with regard to its agile approach [9]. Agile methods are labeled as agile because of their
ability to handle changing requirements. It is also expected that the agile methods themselves are flexible
and can be tailored to the needs of the developers and the needs of the software project. There is also
acknowledgement in the literature that software methods should be tailored if they are to achieve
optimum effect [10]. Researchers believe that flexibility is one of the key selling points of agile methods
[8]. The suitability of more or less agility or planning depends on the context of development as well as on
the kind and size of the software to be developed [11].

Adoption of agile methods seems to need an all-or-nothing approach. They are often welcomed by both
managers and programmers as providing a much needed release from the overheads typically perceived
as being imposed by traditional software development approaches [12]. But managers are faced with
challenges. Software development managers may be unsure how to adopt agile methods incrementally
and which approach to choose as most appropriate for their situation [13]. Another challenge for the

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 99

managers is how to ensure that their adopted method can mature and grow as the development team’s
skills mature and how to ensure that the development team don’t resist change [12].

Various agile development methods include documented procedures that involve tasks and milestone,
and product development strategies that involve requirements, designs, and architectural plans.
Compared to unplanned methods, agile methods emphasize a fair amount of planning. Their general view
places more value on the planning process than the resulting documentation, so these methods often
appear less plan oriented than they really are [11]. While the agile methods have less documentation and
more code-oriented feature they are knowledge-intensive. Knowledge is gained and shared within the
different aspects of the methodology.

There are four factors that determine the success of software development projects: Quality is to deliver a
good software product to the customer or a project outcome as perceived by all stakeholders. Scope is
meeting all requirements and objectives that the customers wants in the software. Time is delivering the
final product to the customer on time. Delays in delivering releases, as long as the final product is
delivered on time, will not affect this factor. Finally, the last factor is cost which is delivering the product
within the estimated cost and effort [14].

A framework was developed by Qumer and Henderson-Sellers which has four areas to crystallize the key
attributes of agility. The framework has the following dimensions: flexibility, speed, leanness, learning and
responsiveness. Flexibility is the ability to respond to change and leanness accentuates lower cost,
reduced timeframe and quality production [9].

Another framework was developed by [10] that is comprised of two factors that can improve method
tailoring effectiveness. The first area is the characteristics of the method, and the second is developer
practices. The framework was developed to overcome some of the problems traditionally associated with
software development’s tendency to replace older methods with new apparently improved alternatives. In
addition, the framework assesses how amenable Extreme Programming is to tailoring, and it developed a
set of recommendations for its improvement.

3. MOTIVATION AND THE CONCEPTUAL FRAMEWORK
A decade ago, a group of software practitioners agreed on some software development principles. The
Manifesto was launched and it was a breakthrough that had implicit goals of producing working software
that values meeting the requirements of the customer while having little documentation. Therefore, the
Manifesto inspired developers to produce software that was responsive to customers’ needs and employ
a light-weight development methodology.

In this decade, there is a shift from producing working software to improving the experience of the
customer with the software and instead of responding to change, agile developments have to predict the
change. The third shift in software development is that the software is developed before the customer
asks for it. Companies develop software and they compete for the customer. Therefore, collaboration with
customers is not possible. In effect, companies have to find the customer after the software has been
developed.

The motivation for this research is that agile methodologies are flexible enough to be adopted by software
developers but they need tailoring to provide a one size fit-all approach. We proposed a conceptual
framework drawn from the existing method tailoring literature. The main pillar of agile methodologies
involves the interaction between developers and customers. The greatest problem agile teams face is too
little involvement from the customer. For a project to be agile, the developers have to cope with the
challenges. The framework is comprised of three factors that can improve agile method tailoring
effectiveness and they are used to cope with challenges in agile methodologies, namely, developer
practices, customer collaboration, and predicting change.

This conceptual framework contributes in three areas: first, it provides a tailored approach to agile
methods. Second, it provides a solution for a one size fit-all approach for agile methods. Finally, it

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 100

provides flexibility in choosing agile methods without following the exact principles that agile
methodologies require from the development team.

3.1 Developer Practices
Agile methods are often seen as providing ways to avoid overheads typically perceived as being imposed
by traditional software development environments [12]. The fact that agile methods are focused on the
people rather than on reporting deliverables is often seen as a welcome shift of balance towards the most
important factor in software development: the personnel involved [9]. Agile methods actively involve the
customer in the development process. However, it is important to consider the involvement and input from
all stakeholders such as partners, and suppliers. In addition to external sources, other business units
within the organization should be involved [15]. Two aspects of the personnel involved in the
development of agile software projects are highlighted in this framework: The developer and the
customer.

Developers are likely to face challenges as they are required to change their work habits and acquire new
skills. The developers should work in self-organized teams. Where each leader and his team members
decide which task to work on or how a problem will be solved. This self- organizing structure will
encourage the developers to fully own the problem and provide the best solution for it. The team should
be cross-functional so that everyone can take a feature from the project idea and have its implementation.
It is important to remember when selecting an appropriate team structure that it is not permanent. While
you don’t want to continually change team structures, if the current structure is clearly wrong, change it
[16].

The team must select an iterative and adaptive approach to complete the project. The team will decide
the length of the iteration and the list of potential goals for that iteration. Each member of the team is
asked for the list of needed resources and an estimate to complete the tasks. The list of goals comes for
the customers, the team members, and the project leader. Team members need to brainstorm to find the
details of the tasks and how to implement them.

The iterative approach depends on an adaptive planning. Iterations in the development are to be adapted
based on feedback from all stakeholders rather than predicting the project plan. As a result, each
development’s iteration will create a plan for the next iteration that will adjust as the project features
unfold. This approach does not eliminate project objectives and milestones, rather, it encourages
flexibility in planning the entire projects details. In addition, the team will manage the details of the
projects while the customer is involved in the project features that will be delivered. Figure 1 illustrates
this approach.

FIGURE 1: Developers iterations and customers view

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 101

Each leader of a team is a member of the other teams that affect the group that he/she is leading. So,
output from one team is delivered as input to another team and the team leader is ensuring that the
implementation is according to the plan.

The development team should separate the interfaces from implementations. The responsibilities
between developers and architects should be divided around the interfaces and implementations.
Collaboration should occur between these two groups. Architects should become more like developers
with respect to accepting changes that occur within the life cycle of a system. Developers should be given
standard interfaces to work with that were created by interface design experts and finally developers
shouldn't be overwhelmed with too much architectural complexity [17]. Therefore, the first practice that
the agile team should adopt is dividing responsibility to allow the developers to focus on Implementations.

The team structure depends on the organizations and the project. Large teams may include members
with more diverse skills, experiences, and approaches and, as such they are not as much at risk to the
loss of a key person. In addition, large teams provide more opportunities for individuals to specialize in a
technology or a subset of the application. On the other hand, there are even more advantages to a small
team that would support agile methods. In small teams, developers need less time coordinating the
efforts of the team members and an individual developer is less likely to take on distinct roles [16].
The development of software by large teams of developers requires a steady flow of elicited
requirements. Without this steady flow of requirements, the project run the risk of delaying new software
iterations and bad code due to badly specified requirements, all resulting in the waste of large amounts of
resources. For the development to remain agile, the requirements are defined and implemented quickly,
while others move through their lifecycle at a regular pace [18]. Whether the project consists of large
teams or small teams the responsibilities are divided and three processes are created: Formation of the
system, implementation by the developers and evaluation by the developers, the architects, and the
customers (See Fig. 2).

FIGURE 2: Dividing and sharing responsibilities

The interaction between the customer and the development team is a vital feature and an important
success factor in agile software development [19-21]. Agile methods expand the customer role within the
entire development process by involving them in writing user stories, discussing product features,
prioritizing the feature lists, and providing rapid feedback to the development team on a regular basis [21].
A study found that the greatest problem agile teams face is too little involvement from the product owner
or customer [20]. For a project to be agile, the developers have to cope with the challenges. The following
agile approach is used to cope with challenges:

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 102

• Communication Challenges: e-Collaboration is to be used when the customer is having little

involvement in the project or the involvement is not on a regular basis.
• Clarification Challenges: When developers are waiting for scenarios, stories, or clarification from

the customer, the development stops until the developers receive the required customer’s
clarification. Therefore, the solution is changing priority to keep the project on time and within the
scope. They have to change the priorities of the features and the iteration.

• Onsite Customer Challenges: A situation is faced where the developers don't have an on-site
customer. One of the developers is chosen to play the role of a fulltime customer or an agile
Tester. His role is to develop and run system tests and develop and run acceptance tests. This
developer will coordinate with the customer to provide stories to the development team.

Agile methods actively involve the customer in the development process. For agile projects, the customer
is not only the one requesting the software, it also includes partners, suppliers, and other business units
inside the organization. The developers in the project internally need to gain external knowledge and
ideas about the project that they will develop.

3.2 Collaboration
The involvement of team members in a project depends on the information provided. Communication
plays a fundamental factor in the success of a project. Communication according to [22] acts as the glue
that links together all work by the team members. Everyone should communicate with everyone else.
Problems arise if the team leader withholds information from the developers. The project leader should
provide mentoring and sharing of relevant project information with all members. While the leadership role
is important to coordinate and lead the project, it is more important to create a culture that fosters a
collaboration, rather than communication between all team members. Additionally, developers are more
involved in the project if the team members share relevant project information with each others, not just
the project leader. Therefore, how the work is coordinated in the project is an important factor that affects
the success of the project.

Another success factor that affects the project is the feedback that team members receive from each
other. Developers can benefit from this feedback to improve their skills and to produce better code that
has been shared with others. Therefore, when pair programming is employed each person in the team
shares the ownership of the code and the feedback improves the skills of the other team member. When
the entire team participates in giving feedback to other members, a group ownership of the code will be
employed and as a result the skills of every team member are improved. If the skills of all the developers
are enhanced, developers can collaborate by face-to-face communication, which is the best method of
conveying information, or they can collaborate in the code that they write. Code communication is
essential for group ownership of the project. Developers have to understand the code that was written by
others in order to modify it if there is a need. Another essential enhancement for the collaboration among
team members is to provide cross training. Cross training enhances the development and creates a
shared team-interaction model [23].

The greatest problem agile teams face is too little involvement from the customer. What if the customer
does not exist when the software was being developed? It is a normal business practice for software
development companies to develop software first and then compete for the customer. Companies find the
customer after the software has been developed therefore collaboration with customers is not possible.

For agile methods to be used with software projects that don’t have a specific customer, tailoring is
needed. First, requirement gathering has to employ survey and brainstorming techniques to gather the
requirements. Survey is conducted based on potential customers and brainstorming is conducted among
the team members. One of the developers, or a group, is chosen to take on the distinct role of the
customer. The role of this developer will have the story telling role of the customer, running system tests
and running acceptance tests.

Finally, the agile Manifesto values individuals and interactions over processes and tools, working software
over comprehensive documentation, and customer collaboration over contract negotiation [24]. While

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 103

collaboration is an important principle, e-collaboration can be used when the customer cannot be onsite.
Therefore, agile projects have to create a culture where everyone is putting ideas in the project as well as
taking them out regardless of the medium being use. Collaboration can be face-to-face, phone
conferencing, web conferencing, emails, or using the many e-collaboration tools.

3.3 Predicting Change
When implementing change, different method for requirement elicitation can be used. Interviews are
widely used when the developers elicit information from system experts and each other about the
structure and the behavior of the system [25]. Agile methods embrace changing requirements, even late
in the development cycle. Projects most responsive to change will offer support for future changing
requirements. Other than requirement changes, software face two types of change: technology
infrastructure and business processes. Utilizing of technology requires alignment of technology strategies
with the business strategies. This alignment reflects the view that the business success depends on the
linkage of business strategy with information technology.

When faced with the challenge of predicting future changes in technology, an agile team has to
distinguish between operational technology and strategic technology. The acceptance of new
technologies by their intended users persists as an important issue for the developers. Therefore, support
for new technology should be built-in in the design of the software. For example developers should use
software components that support the latest technology. Developers use reusable components to
produce high quality software systems. These systems need to satisfy not only the initial demands of the
customer, but they need to also offer support for future, changing requirements [26]. A good example to
support this idea is providing applications that run on different operating systems in the Smartphone
ecosystems.

Finally, software development should focus on the business models and business processes before they
focus on technology infrastructure or applications. The software team has to be aware of market trends
when implementing software projects. The software industry shifted from the client-server to the
distributed model then from the services oriented architecture to the Cloud. Therefore, keeping an eye on
demand for future trends will make the transition to new changing requirements manageable for software
developers.

4. ANALYSIS OF THE TAILORED FRAMEWORK
One of the main reasons for using agile methodologies is to satisfy the needs of the users and to address
the issue of changing requirements. Agile developments introduced new concepts for effective
communication such as on-site customer to ensure effective communication with the developers. As a
result of this communication, less documentation is required for agile projects.

Ultimately, communication is at the center of solving problems in agile developments. However, certain
agile development projects cannot have an on-site customer because the project is being developed
without a customer or for other reasons. Tailoring of agile developments to satisfy the needs of different
situations is therefore required to keep the communication at the core of practices for agile methods.
While the argument is that agile development cannot be used without a customer, tailoring of the agile
methodologies is proof that development projects can use agile methodologies even if the project does
not have an on-site customer. Other communication challenges can be solved in different ways. E-
Collaboration is to be used when the customer is having little involvement in the project or the
involvement is not on a regular basis. While the developers wait for scenarios, stories, or clarification from
the customer, the development stops until the developers receive the required customer’s clarification.
The solution is to change priorities to keep the project on time and within the scope

Following a coding standard is another way of communication among developers and for documenting
the project. Communication through a coding standard is not affected because this is an internal factor
and it is not affected by the different situations that the projects might face. Therefore, a coding standard
is enforced and developers have to use a coding standard that can be understood by all members of the
development team.

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 104

Some projects require small teams while others require large teams with diverse skills and experiences.
Large teams provide opportunities for a developer to specialize in a technology or a subset of the
application. One of the core practices of agile methodologies is collective code ownership. Developers
who specialize in a technology or a subset of the application must share their knowledge with the
development team to facilitate the collective code ownership practice.

Projects most responsive to change will offer support for future changing requirements. Software projects
face two types of change: technological infrastructure and business processes. Utilizing of technology
requires alignment of technology strategies with the business strategies. Agile projects are mandated to
keep the developers aware of the latest technology changes and developers are mandated to implement
the latest technology.

Therefore, agile methodologies are flexible to cope with external factors such as changing requirements
while the core practices are not affected. Coping with external factors requires flexibility in the developer
practices without changing the core practices of agile developments. Core practices that are internal in
the projects are not affected by the different situations that agile projects face.

5. CONCLUSIONS
Projects don't have to follow a formal, well-established methodology to be successful in software
development projects. Most agile methodologies institutionalize the same set of practices. It often does
not matter which one you choose, as long as you follow it diligently. Areas that agile development focuses
on are the communication among all stakeholders, iterations with continuous integration, and feedback.
One of the main reasons for using agile methodologies is to satisfy the needs of the users. The informal
communication among stakeholders and developers sometimes raises problems such as inability to cope
with system complexity and rapidly changing requirements. Agile methods are labeled as agile because
of their ability to handle changing requirements. It is also expected that the agile methods themselves are
flexible and can be tailored to the needs of the developers and the needs of the software project.

Agility is attained when software development methodologies attain to external factors and by being
flexible internally in software development. This framework proposed three factors for making agile
frameworks agile in their practices. We showed evidence that developers practices and eliciting the
requirements play a major role in making the software development successful. Therefore this conceptual
framework created two customized practices for making agile methodologies handle different situations
when the original practices do not accounting for these situations.

The third factor was introduced because there is a shift from producing working software to improving the
experience of the customer with the software and instead of responding to change, agile developments
have to predict the change. The third shift in software development is that the software is developed
before the customer asks for it. Companies develop software and they compete for the customer.
Therefore, collaboration with customers is not always possible.

6. REFERENCES
[1] Paetsch, F., A. Eberlein, and F. Maurer, Requirements Engineering and Agile Software

Development, in Proceedings of the Twelfth International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises. 2003, IEEE Computer Society. p. 308.

[2] Tan, T., et al., Productivity trends in incremental and iterative software development, in

Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement. 2009, IEEE Computer Society. p. 1-10.

[3] Larman, C. and V.R. Basili, Iterative and Incremental Development: A Brief History. Computer,

2003. 36(6): p. 47-56.

[4] Uikey, N., U. Suman, and A.K. Ramani, A Documented Approach in Agile Software Development.

International Journal of Software Engineering (IJSE), 2011. 2(2): p. 13-22.

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 105

[5] Kar, N.J. Adopting Agile Methodologies of Software Development. 2006; Available from:
http://www.infosys.com/infosys-labs/publications/Documents/adopting-agile-methodologies.pdf.

[6] Agarwal, R. and D. Umphress, Extreme programming for a single person team, in Proceedings of

the 46th Annual Southeast Regional Conference on XX. 2008, ACM: Auburn, Alabama. p. 82-87.

[7] Ilieva, S., P. Ivanov, and E. Stefanova. Analyses of an agile methodology implementation. in 30th

EUROMICRO Conference 2004. Rennes, France: IEEE Computer Society.

[8] Beck, K., Extreme Programming Explained: Embrace Change. 2000, Reading, MA: Addison-

Wesley.

[9] Qumer, A. and B. Henderson-Sellers, An evaluation of the degree of agility in six agile methods

and its applicability for method engineering Information and Software Technology, 2011. 53(5): p.
509-520.

[10] Conboy, K. and B. Fitzgerald, Method and developer characteristics for effective agile method

tailoring: A study of XP expert opinion. ACM Trans. Softw. Eng. Methodol., 2010. 20(1): p. 1-30.

[11] Boehm, B., Get ready for agile methods with care. Computer, 2002. 35: p. 64-69.

[12] Qumer, A. and B. Henderson-Sellers, A framework to support the evaluation, adoption and

improvement of agile methods in practice Journal of Systems and Software, 2008. 81(11): p.
1899-1919.

[13] Syed-Abdullah, S., M. Holcombe, and M. Gheorge, The impact of an agile methodology on the

well being of development teams. Empirical Software Engineering 2007. 11: p. 145–169.

[14] Chow, T. and D.-B. Cao, A survey study of critical success factors in agile software projects

Journal of Systems and Software, 2008. 81(6): p. 961-971.

[15] Conboy, K. and L. Morgan, Beyond the customer: Opening the agile systems development

process Information and Software Technology, 2011. 53(5): p. 535-542.

[16] Cohn, M., Succeeding with Agile: Software Development Using Scrum. 2009, Redwood City, CA:

Addison-Wesley Professional.

[17] Gall, N. and A. Bradley, Best Practices for Dividing Developer and Architect Responsibilities to

Achieve SOA-Based Agility. Gartner, 2099.

[18] Vlaanderen, K., et al., The agile requirements refinery: Applying SCRUM principles to software

product management Information and Software Technology, 2011. 53(1): p. 58-70.

[19] Chow, T. and D. Cao, A survey study of critical success factors in agile software projects. Journal

of System Software, 2008. 81: p. 961–971.

[20] Hoda, R., J. Noble, and S. Marshall, Agile undercover: when customer’s don’t

collaborate. 2010, Springer: Norway. p. 73–87.

[21] Hoda, R., J. Noble, and S. Marshall, The impact of inadequate customer collaboration on self-
organizing Agile teams Information and Software Technology, 2011. 53(5): p. 521-534.

[22] Moe, N.B., T. Dingsøyr, and T. Dybå, A teamwork model for understanding an agile team: A case

study of a Scrum project. Information and Software Technology, 2010. 52(5): p. 480-491.

Malik F. Saleh

International Journal of Software Engineering (IJSE), Volume (2) : Issue (5) : 2011 106

[23] Marks, M.A., et al., The impact of cross-training on team effectiveness. Journal of Applied
Psychology, 2002. 87(1): p. 3-13.

[24] Manifesto. Principles behind the Agile Manifesto. 2001 [cited 2011 August]; Available from:

http://agilemanifesto.org/.

[25] Lindvall, M. and K. Sandahl, How Well do Experienced Software Developers Predict Software

Change? Journal of Systems and Software, 1998. 43(1): p. 19-27.

[26] Vaucher, S. and H. Sahraoui, Do software libraries evolve differently than applications?: an

empirical investigation, in Proceedings of the 2007 Symposium on Library-Centric Software
Design. 2007, ACM: Montreal, Canada. p. 88-96.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. IJSE encourage researchers, practitioners, and developers to submit research
papers reporting original research results, technology trend surveys reviewing an area of
research in software engineering and knowledge engineering, survey articles surveying a broad
area in software engineering and knowledge engineering, tool reviews and book reviews. The
general topics covered by IJSE usually involve the study on collection and analysis of data and
experience that can be used to characterize, evaluate and reveal relationships between software
development deliverables, practices, and technologies. IJSE is a refereed journal that promotes
the publication of industry-relevant research, to address the significant gap between research and
practice.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with Volume 3, 2012, IJSE will appear with more focused issues. Besides normal
publications, IJSE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJSE LIST OF TOPICS
The realm of International Journal of Software Engineering (IJSE) extends, but not limited, to the
following:

• Ambiguity in Software Development • Application of Object-Oriented Technology
to Engin

• Architecting an OO System for Size Clarity
Reuse E

• Composition and Extension

• Computer-Based Engineering Techniques • Data Modeling Techniques

• History of Software Engineering • IDEF

• Impact of CASE on Software Development Life
Cycle

• Intellectual Property

• Iterative Model • Knowledge Engineering Methods and
Practices

• Licensing • Modeling Languages

• Object-Oriented Systems • Project Management

• Quality Management • Rational Unified Processing

• SDLC • Software Components

• Software Deployment

•

•

• Software Design and applications in Various
Domain

• Software Engineering Demographics • Software Engineering Economics

• Software Engineering Methods and Practices • Software Engineering Professionalism

• Software Ergonomics • Software Maintenance and Evaluation

• Structured Analysis • Structuring (Large) OO Systems

• Systems Engineering • Test Driven Development

• UML •

CALL FOR PAPERS

Volume: 3 - Issue: 1

i. Submission Deadline : December 31, 2011 ii. Author Notification: January 31, 2012

iii. Issue Publication: February 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

M-3-19 Plaza Damas, Sri Hartamas
50480, Kuala Lumpur

Malaysia

Phone: 006 03 6207 1607
 006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

