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EDITORIAL PREFACE

The International Journal of Scientific and Statistical Computing (IJSSC) is an effective medium
for interchange of high quality theoretical and applied research in Scientific and Statistical
Computing from theoretical research to application development. This is the first issue of volume
first of IJSSC. International Journal of Scientific and Statistical Computing (IJSSC) aims to publish
research articles on numerical methods and techniques for scientific and statistical computation.
IJSSC publish original and high-quality articles that recognize statistical modeling as the general
framework for the application of statistical ideas.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 2, 2011, IJSSC appears in more focused issues. Besides normal
publications, IJSSC intend to organized special issues on more focused topics. Each special
issue will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJSSC is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJSSC as one
of the top International journal in computer science and security, a group of highly valuable and
senior International scholars are serving its Editorial Board who ensures that each issue must
publish qualitative research articles from International research communities relevant to
Computer science and security fields.

IJSSC editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build international reputation of IJSSC, we are disseminating the publication information
through Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J
Gate, ScientificCommons, Docstoc, Scribd, CiteSeerX and many more. Our International Editors
are working on establishing ISI listing and a good impact factor for IJSSC. I would like to remind
you that the success of the journal depends directly on the number of quality articles submitted
for review. Accordingly, I would like to request your participation by submitting quality manuscripts
for review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits that IJSSC editors   provide to the prospective authors is the mentoring nature of
the review process. IJSSC provides authors with high quality, helpful reviews that are shaped to
assist authors in improving their manuscripts.
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Optimum Algorithm for Computing the Standardized Moments 
Using MATLAB 7.10(R2010a) 

 
 

K.A.Fayed                              karamfayed_1@hotmail.com 
Ph.D.From Dept. of applied Mathematics and 
Computing, Cranfield University, UK. 
Faculty of commerce/Dept. of applied Statistics and Computing, 
Port Said University, Port Fouad, Egypt. 

 
Abstract 

 
A fundamental task in many statistical analyses is to characterize the location and variability 
of a data set. A further characterization of the data includes skewness and kurtosis. This 
paper emphasizes the real time computational problem for generally the r

th
  standardized 

moments and specially for both skewness and kurtosis. It has therefore been important to 
derive an optimum computational technique for the standardized moments. A new algorithm 
has been designed for the evaluation of the standardized moments. The evaluation of error 
analysis has been discussed. The new algorithm saved computational energy by 
approximately 99.95%than that of the previously published algorithms. 
 
Keywords:Statistical Toolbox, Mathematics, MATLAB Programming 

 
 
1. INTRODUCTION 
The formula used for Z –score appears in two virtually identical forms, recognizing the fact 
that we may be dealing with sample statistics or population parameters. These formulae are 
as follow: 
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Where: 
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x a row score to be standardized 

 n      sample size 

 ∑
=

=
n

i

i
x

n
x

1

1
Sample mean 

 µ Population mean 

s      Sample standard deviation 

 σ Population standard deviation 

z      Sample z score 

 Z Populationz score. 
 

Subtracting the mean centers the distribution and dividing by the standard normalizes the 
distribution. The interesting properties of Z score are that they have a zero mean (effect of 
centering) and a variance and standard of one (effect of normalizing). We can use Z score to 
compare samples coming from different distributions [1]. 
  
The most common and useful measure of dispersion is the standard deviation. The formula 
for sample standard deviation is as follow: 
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The population standard deviation is as follow: 
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2. MOMENTS 
In statistics, the moments are a method of estimation of population parameters such as mean, 
variance, skewness, and kurtosis from the sample moments. 

 
a) Central Moments 
Central moment is called moment about the mean. The central moments provide quantitative 
indices for deviations of empirical distributions. The r

th
central is given by: 
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Where: 

r
m r

th
 Sample and population central moments 

 
b) Standardized Moment 
The r

th
 standardized moment in statistics is the r

th
 central moment divided by σ

r
 (standard 

deviation raised to power r) as follow: 
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Where: 

r
α r

th
standardized moment 

From Eq.(4), Eq.(5),  & Eq.(6), We have: 
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Where: 

2m Second  central moments 

 
c) Computing Population Standardized Moments From Sample z Score 
In the real world, finding the standard deviation of an entire population is unrealistic except in 
certain cases such as standardized testing, where every element of a population is sampled. 
In most cases, the standard deviation is estimated by examining a random sample taken from 
the population as defined by eq.(3). 
From eq.(5) & eq.(7), We have: 
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Equation(8) represents the general equation for computing the r

th
 standardized moments of 

sample z-score. 
 

d) Simplified Standardized Moments 

From eq.(8), the term 
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can be simplified using binomial theorem, since it 

can obtain the binomial series which is valid for any real number   as follow: 
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By replacing  and  we have: 

 

 

 

 
For large values of  ,we get: 
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Substituting Eq.(12) in eq.(8), we get: 

 

 
Where:  

r
th
 simplified standardized moments. 

 
e) Mathematical Formulae of Standardized and Simplified Moments 
Using Eq.(8) & Eq.(13), we can get the following formulae: 
 

Name r
th
 Standardized moments Simplified moments 

Mean 1 

  

Variance 2 

  

Skewness 3 

  

Kurtosis 4 

  
 
f) Ratio Between Population and Sample z-Score 
From Eq.(7) & Eq.(8), we can get the exact and simplified ratio of population and sample z-
score as follow: 
Since: 

 
We get: 

 

 
And from Eq.(7) & Eq.(13), we can get: 

 

 

 
 

Eq.(14) and Eq.(15)  appear to be very dependent on the sample size. Therefore the ratio 

between population and sample z-score(required for computing ther
th
 standardized moments) 

depends on the sample size as given in Table_1. This table shows the variation. Figure_1 

shows that the sample z score gets closer to population Z score. Therefore, computing 

standardized moments using simplified technique is recommended for small sample size. 
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g) Formulae of Skewness and Kurtosis Applied in Statistical Packages 
The usual estimators of the population skewness and kurtosis used in Minitab, SAS, SPSS, 
and Excel are defined as follow [2], [3],[4]: 

 

 
Where: 

is the sample standard deviation. 
is the usual estimator of population skewness. 
is  known as the excess kurtosis(without adding 3). 

 

Sample size(n) 
Exact ratio Simplified ratio 

r=3 r=4 r=3 r=4 

20 1.07998 1.10803 1.07500 1.10000 
30 1.05217 1.07015 1.05000 1.06667 
50 1.03077 1.04123 1.03000 1.04000 

100 1.01519 1.02030 1.01500 1.02000 
200 1.00755 1.01008 1.00750 1.01000 
400 1.00376 1.00502 1.00375 1.00500 
600 1.00251 1.00334 1.00250 1.00333 

1000 1.00150 1.00200 1.00150 1.00200 
1400 1.00107 1.00143 1.00107 1.00143 
2000 1.00075 1.00100 1.00075 1.00100 
2600 1.00058 1.00077 1.00058 1.00077 
3000 1.00050 1.00067 1.00050 1.00066 
3600 1.00042 1.00056 1.00042 1.00055 
4000 1.00038 1.00050 1.00038 1.00050 
4500 1.00033 1.00044 1.00033 1.00044 
5000 1.00030 1.00040 1.00030 1.00040 
5500 1.00027 1.00036 1.00027 1.00036 
6000 1.00025 1.00033 1.00025 1.00033 
8000 1.00019 1.00025 1.00019 1.00025 
10000 1.00015 1.00020 1.00015 1.00020 

 

TABLE 1: Ratio between population and sample z-score 
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FIGURE 1: Ratio between population and sample z-score. 
 
h) Error Analysis of Standardized Moments 
The absolute relative error(ARE) between the standardized and simplified moments is given 
by: 

 

 

 
Therefore, the Absolute Relative Error(ARE)  appears to be very dependent on the sample 
size in  regardless with the sample z-score as given in Table_2. This table indicates that the 
error associated with the standardized moments(Skewness and Kurtosis) of the statistical 
packages technique is very large compared to the simplified one especially when the sample 
size is less than 300.Figure_2 shows the variation. Therefore, computing standardized 
moments using simplified technique is recommended especially when the sample size is less 
than 600. 
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Sample 
size(n) 

Skewness 
Absolute Relative Error 

(ARE)` 

Exact Simplified 
Statistical 
package 

Simplified Statistical 
Package Pract. Comp. 

20 -0.37911 -0.37736 -0.41057 0.4608 0.4608 8.2977 
30 -0.24103 -0.24053 -0.25390 0.2060 0.2060 5.3420 
50 -0.81154 -0.81094 -0.83686 0.0744 0.0744 3.1197 

100 0.19241 0.19237 0.19535 0.0186 0.0186 1.5293 
200 -0.11239 -0.11239 -0.11324 0.0046 0.0046 0.7572 
400 0.21474 0.21474 0.21555 0.0011 0.0011 0.3768 
600 0.01677 0.01677 0.01682 0.0005 0.0005 0.2508 

1000 0.05781 0.05781 0.05790 0.0001 0.0001 0.1502 
1400 -0.12846 -0.12846 -0.12860 9.5e-5 9.5e-5 0.10728 
2000 -0.02750 -0.02750 -0.02753 4.6e-5 4.6e-5 0.07507 
2600 0.03271 0.03271 0.03273 2.7e-5 2.7e-5 0.05773 
3000 -0.01793 -0.01793 -0.01795 2.1e-5 2.1e-5 0.05003 
3600 -0.02616 -0.02616 -0.02617 1.4e-5 1.4e-5 0.041688 
4000 -0.01818 -0.01818 -0.01819 1.1e-5 1.1e-5 0.037517 
4500 0.005310 0.005310 0.005312 9.2e-6 9.2e-6 0.033347 
5000 -0.04197 -0.04197 -0.04198 7.5e-6 7.5e-6 0.030011 
5500 -0.04199 -0.04199 -0.04200 6.2e-6 6.2e-6 0.027282 
6000 0.033432 0.033432 0.033440 5.2e-6 5.2e-6 0.025007 
8000 -0.00851 -0.00851 -0.00851 2.9e-6 2.9e-6 0.018754 
10000 -0.00057 -0.00057 -0.00057 1.8e-6 1.8e-6 0.015002 

 

TABLE 2: a)Skewness (ARE) 

 

Sample 
size(n) 

CPU time (Second) 

Exact Simplified 
Statistical 
package 

20 0.000185 0.000126 0.000146 
30 0.000189 0.000133 0.000145 
50 0.000200 0.000156 0.000154 

100 0.000213 0.000153 0.000163 
200 0.000234 0.000181 0.000185 
400 0.000301 0.000257 0.000239 
600 0.000394 0.000302 0.000357 

1000 0.000487 0.000407 0.000457 
1400 0.000584 0.000513 0.000518 
2000 0.000746 0.000676 0.000690 
2600 0.000989 0.000883 0.000909 
3000 0.001096 0.001046 0.001002 
3600 0.001233 0.001164 0.001162 
4000 0.001396 0.001329 0.001375 
4500 0.001489 0.001018 0.001355 
5000 0.001594 0.001559 0.001574 
5500 0.001785 0.001250 0.001683 
6000 0.001891 0.001286 0.001916 
8000 0.002164 0.001500 0.002286 

10000 0.002318 0.001802 0.003122 

 

TABLE 2: a)Skewness(CPU) 
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Sample 
 size(n) 

Kurtosis Absolute Relative Error(ARE) 
Exact Simplified Statistical 

Package 
Simplified Statistical 

Package Pract. Comp. 

20 3.0034 2.9816 3.377 0.725 0.725 12.439 
30 2.897 2.8876 3.1077 0.32593 0.32593 7.2722 
50 2.628 2.6249 2.7182 0.1184 0.11840 3.4341 

100 2.6438 2.643 2.6878 0.0298 0.0298 1.6648 
200 3.0312 3.031 3.0626 0.00747 0.00747 1.0361 
400 2.8435 2.8434 2.8566 0.00187 0.00187 0.4634 
600 2.967 2.967 2.9768 0.00083 0.00083 0.32998 

1000 2.932 2.932 2.938 0.00029 0.00029 0.19384 
1400 3.066 3.066 3.071 0.00015 0.00015 0.14793 
2000 3.023 3.023 3.027 7.5e-5 7.5e-5 0.1014 
2600 2.947 2.947 2.949 4.4e-5 4.4e-5 0.0749 
3000 2.963 2.963 2.965 3.3e-5 3.3e-5 0.06553 
3600 2.882 2.882 2.884 2.3e-5 2.3e-5 0.05220 
4000 2.976 2.976 2.978 1.8e-5 1.8e-5 0.04946 
4500 2.952 2.952 2.954 1.4e-5 1.4e-5 0.04341 
5000 3.010 3.010 3.011 1.1e-5 1.1e-5 0.04024 
5500 2.998 2.998 2.999 9.9e-6 9.9e-6 0.03636 
6000 3.073 3.073 3.074 8.3e-6 8.3e-6 0.03454 
8000 3.041 3.041 3.042 4.6e-6 4.6e-6 0.02552 

10000 2.911 2.911 2.912 2.9e-6 2.9e-6 0.01909 

 

TABLE 2: b) Kurtosis(ARE) 

 

Sample size(n) 

CPU time (Second) 
Exact Simplified Statistical  

Package 

20 0.000164 0.000125 0.000187 
30 0.000169 0.000127 0.000196 
50 0.000170 0.000153 0.000214 

100 0.000192 0.000151 0.000216 
200 0.000216 0.000176 0.000248 
400 0.000290 0.000256 0.000302 
600 0.000327 0.000295 0.000363 

1000 0.000547 0.000430 0.000457 
1400 0.000563 0.000543 0.000554 
2000 0.000737 0.000832 0.001109 
2600 0.000967 0.000914 0.000962 
3000 0.001020 0.000989 0.001173 
3600 0.001187 0.001181 0.001231 
4000 0.001338 0.000944 0.001073 
4500 0.001426 0.001482 0.001643 
5000 0.001128 0.001598 0.001619 
5500 0.001138 0.001732 0.001868 
6000 0.001826 0.001290 0.001893 
8000 0.002628 0.001832 0.002436 

10000 0.002571 0.001830 0.002922 

 

TABLE 2: b) Kurtosis(CPU) 
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FIGURE 2: Absolute Relative Error of standardized moments 

 
The percentage reduction in Absolute Relative Error between the statistical packages 
technique and the simplified one of the standardized moment is given by: 

 
Where: 

isthe percentage reduction in Absolute Relative Error between the statistical packages 
technique and the simplified one. 
 

Table_3 shows the percentage reduction in Absolute Relative Error between the statistical 
packages technique and the simplified one for different sample size. This table indicates that 
the simplified technique of the standardized moments gives reduction in ARE by 
approximately 96.7% compared to the statistical package technique especially when the 
sample size is less than 100.Figure_3 shows the variation.  

 

The squared error(Er) between the standardized and simplified moments is given by: 
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Sample 
size(n) 

Skewness (r=3) Kurtosis (r=4) 

Error 
percentage(%) 

Error 
reduction(%) 

Error 
percentage(%) 

Error 
reduction(%) 

20 5.553 94.447 5.828 94.172 
30 3.856 96.144 4.482 95.518 
50 2.385 97.615 3.448 96.552 

100 1.216 98.784 1.790 98.210 
200 0.608 99.392 0.721 99.279 
400 0.292 99.708 0.404 99.596 
600 0.199 99.801 0.252 99.748 
1000 0.067 99.933 0.150 99.850 
1400 0.089 99.911 0.101 99.899 
2000 0.061 99.939 0.074 99.926 
2600 0.047 99.953 0.059 99.941 
3000 0.042 99.958 0.050 99.950 
3600 0.034 99.966 0.044 99.956 
4000 0.029 99.971 0.036 99.964 
4500 0.028 99.972 0.032 99.968 
5000 0.025 99.975 0.027 99.973 
5500 0.023 99.977 0.027 99.973 
6000 0.021 99.979 0.024 99.976 
8000 0.015 99.985 0.018 99.982 

10000 0.012 99.988 0.015 99.985 
Mean 0.73 % 99.27 % 0.879% 99.121% 

 

TABLE 3: Error reduction of standardized moments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 3: Error and error reduction of standardized moments 
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3. POPULATION EXAMPLE 
A data set of 10000 points was randomly generated to have a mean of 100 and a standard 
deviation of  10. The histogram for this data is shown in figure_4 and looks fairly bell-shaped.  
A different sample size was randomly selected from the data set to calculate the two 
statistics(skewness and kurtosis). 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: Histogram of 10000 points randomly generated(µ=100,σ =10) 

 
4. IMPACT OF SAMPLE SIZE ON SKEWNESS AND KURTOSIS 
The 10000 point data set above was used to explore what happens to skewness and kurtosis 
based on sample size. There appears to be a lot of variation in the results based on sample 
size. The results are shown  in Table_2.Figure_5shows how the skewness and kurtosis 
changed with sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Impact of size sample on skewness and kurtosis  
 

5. PROCESSING TIME OF STANDARDIZED MOMENTS 
The processing time required for Computing the skewness and kurtosis is executed by 
LaptopDELL-inspiron-1520.Table_2 indicates that the processing time required for computing 
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the skewnessusing the simplified technique is minimum than other especially when the 
sample size increases. Figure_6 shows the variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 6:a) Execution time required for computing skewness 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 6: b) Execution time required for computing kurtosis 

 

6. COMPUTATIONAL ENERGY OF STANDARDIZED MOMENTS 
Computing the computational energy for standardized moments (skewness and kurtosis) 
requires the determination of the sample size(n), the square error(Er), and the central 
processing time(CPU time). Therefore, consider the sample size(n) represents the resistance, 
the square error is measured in [volts]

2
, and the CPU time in second. Then, the computational 

energy per sample size is given by: 
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Where: 
 CE   is the computational energy per sample size. 
 Eris the r

th
 square error. 

 tr       isr
th
 CPU time. 

 n       is the sample size. 
 
The computational energy saved by the simplified technique compared to the exact one is 
given by:  

 
Where: 

is the relative computational energy saved by the simplified technique. 
is the computational energy for the exact technique. 
is the computational energy for the simplified technique. 

 
Table_4 shows the computational energy(CE) for each technique. This table indicates that the 
simplified technique saved computational energy by approximately 96.7% compared to the 
statistical package technique. Figure_7 shows the variation. 
 

Sample 
 size(n) 

CE-Skewness (r=3) 

CE  
Exact 

CE 
 Simplified 

CE Statistical 
 Package 

CE saved by 
simplified (%) 

20 2.82e-07 1.92e-07 7.22e-05 99.73 
30 1.55e-08 1.09e-08 8.01e-06 99.86 
50 1.45e-08 1.13e-08 1.97e-05 99.94 

100 2.72e-11 1.95e-11 1.41e-07 99.98 
200 3.12e-13 2.41e-13 6.69e-09 99.99 
400 4.19e-14 3.58e-14 3.91e-09 99.99 
600 4.61e-17 3.53e-17 1.05e-11 99.99 

1000 1.62e-17 1.36e-17 3.44e-11 99.99 
1400 6.21e-17 5.45e-17 7.02e-11 99.99 
2000 5.96e-19 5.40e-19 1.47e-12 99.99 
Mean ---- ---- ---- 99.95% 

 

TABLE 4: Computational Energy of standardized moments(a:Skewness) 
 
 

Sample 
 size(n) 

CE-Kurtosis (r=4) 

CE  
Exact 

CE 
 Simplified 

CE Statistical 
 Package 

CE saved by 
simplified (%) 

20 3.88e-05 2.96e-05 0.01304 99.77 
30 5.02e-06 3.77e-06 2.89e-3 99.86 
50 3.29e-07 2.96e-07 3.48e-4 99.91 

100 1.19e-08 9.37e-09 4.18e-05 99.97 
200 5.53e-10 4.51e-10 1.22e-05 99.99 
400 2.04e-11 1.80e-11 1.31e-06 99.99 
600 3.30e-12 2.98e-12 5.79e-07 99.99 

1000 3.95e-13 3.10e-13 1.47e-07 99.99 
1400 8.50e-14 8.20e-14 8.14e-08 99.99 
2000 1.89e-14 2.13e-14 5.2e-08 99.99 
Mean ---- ----- ------ 99.95% 

 

TABLE 4: Computational Energy of standardized moments(b:Kurtosis) 
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FIGURE 7: Computational Energy for standardized moments 
 

7. MATLAB PROGRAMMING 
A complete program can be obtained by writing to the author[4]. There is a part of MATLAB 
program shown here: 

%  Grenrate random  data set of size (n) points with mean (mu)  and a standard  
 % deviation (segma)and returns: (1) skewness and kurtosis,(2) cpu time,(3) ARE & 
% SquareError,(4) Computational Energy(CE),(5) computational energy saved  
%   by the simplified technique compared to the exact one 
options.Interpreter='tex'; 
prompt = {'Enter Sample size:','Enter mean(\mu) :','Enter std.dev.(\sigma) :'}; 
dlg_title = 'Generate random data set'; 
num_lines = 1; 
def = {'','',''}; 
options.Resize='on'; 
options.WindowStyle='normal'; 
answer = inputdlg(prompt,dlg_title,num_lines,def,options); 
ifisempty(answer) 
error('No inputs were found!') 
end 
n=str2num(answer{1}) 
mu= str2num(answer{2}) 
sigma = str2num(answer{3}) 
if n< 3 || isempty(n) 
error('n must be integer &>=2') 



Karam A. Fayed 
 

International Journal of Scientific and Statistical Computing (IJSSC), Volume (2) : Issue (1) : 2011      15 

end 
 // Part of the program is omitted // 

tic 
     S_SP=(n/((n-1)*(n-2)))*sum(((s-mean(s))./std(s)).^r); 

t_SP= toc; 
tic 

     S_E=(1/n)*(n/(n-1))^(r/2)*sum((zscore(s)).^r); 
t_E = toc; 
tic 

     S_S=(1/n+r/(2*n^2))*sum((zscore(s)). r̂); 
t_S = toc; 
     A_E=abs(((S_E-S_S)/S_E)*100); 
    A_S=abs((((n/(n-1))^(r/2)-(1+r/(2*n)))/(n/(n-1))^(r/2))*100) ; 
    A_SP=abs(((S_E-S_SP)/S_E)*100);  
    SK=dataset({ S_E,'Exact'},{ S_S,'Simplified'},{ S_SP,'Stat_Package'} ) 
  ARE=dataset({ A_E,'Practical'},{ A_S,'Computed'}, {A_SP,'Stat_Package'} )     
 // Part of the program is omitted // 
 

8. CONCLUSIONS 
Computer algorithms for fast implementation of standardized moments are an important 
continuing area of research.A new algorithm has been designed for the evaluation of the 
standardized moments.  As a result the new technique offered four advantages over the 
current technique: 

 
(1) It drastically reduces the CPU time for calculating the standardized moments 

especially when the sample size increases. 
(2) It drastically reduces the absolute relative error(ARE) for calculating the 

standardized moments(Skewness and Kurtosis) by 99.27% compared to the 
current one.  

(3) It gives minimum square error compared to the current algorithm. 
(4) It has lowest computational energy. 

The aforementioned features are combined in a mathematical formula to describe the system 
performance. This formula is called the computational energy. A quantitative study has been 
carried out to compute the computational energy for each technique. The results show that 
the simplified technique saved computational energy by 96.7% compared to the current one. 
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Abstract 

Generalized method of moment estimating function enables one to estimate regression 
parameters consistently and efficiently.  However, it involves one major computational problem:  
in complex data settings, solving generalized method of moments estimating function via Newton-
Raphson technique gives rise often to non-invertible Jacobian matrices.  Thus, parameter 
estimation becomes unreliable and computationally difficult. To overcome this problem, we 
propose to use secant method based on vector divisions instead of the usual Newton-Raphson 
technique to estimate the regression parameters. This new method of estimation demonstrates a 
decrease in the number of non-convergence iterations as compared to the Newton-Raphson 
technique and provides reliable estimates. We compare these two estimation approaches through 
a simulation study. 
 
Keywords: Quadratic Inference Function, Newton-Raphson, Jacobian, Secant Method, Vector 
Divisions. 

 
 

1. INTRODUCTION 
GENERALIZED method of moments (GMM) is a popular tool developed by Hansen (1982) to 
estimate regression parameters especially in settings where the number of equations exceeds 
the number of unknown parameters.  Recently, Qu et al. (2000) and Qu and Lindsay (2003 ) have 
formulated a GMM function known as the quadratic inference function (QIF) to analyze the effects 
of explanatory variables on repeated responses.  Since, in general, the correlation structure of 
repeated measures are unknown, Qu et al.(2000) assume a working structure which can be 
decomposed into several basis matrices.  These basis matrices are then combined to form a 
score vector whose dimension is quite large.  The objective is to use this score vector to estimate 
the vector of regression parameters.  The authors proposed to construct a generalized moment 
estimating function based on this score vector and thereafter use calculus to optimize the function 
and obtain estimates of the regression parameters.  The optimized function is non-linear and 
thus, the Newton-Raphson algorithm is implemented to solve iteratively the equation.  However, 
we often remark in simulation studies that the Jacobian matrix of the Newton-Raphson iterative 
equation is close to singularity.  This may lead to unreliable parameter estimates or a blockage of 
the iterative process.  Our objective in this paper is to apply an alternative iterative method that 
omits the computation of the inverse Jacobian matrix.  Yixun (2008) and Mamode Khan (2011) 
considered the secant method of estimation which is based on vector divisions. In this paper, we 
use this approach to estimate the regression parameters based on the GMM objective function 
and compare the Newton-Raphson estimation approach with the Secant method based vector 
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divisions. The comparison between these two techniques is made through simulating AR(1) 
correlated Poisson counts with different covariate designs.   
The organization of the paper is as follows:  In section 2, we provide the estimating equations of  
the Generalized method of moments  and its estimation procedures. In section 3, we introduce 
the method of secant iterative scheme based on vector divisions following Mamode Khan (2011). 
In the next section, we present a simulation study whereby we generate AR(1) correlated Poisson 
counts and use GMM and Secant based on vector divisions to estimate the regression 
parameters. In the last section, we provide the conclusions and recommendations based on  
comparisons of these two techniques. 
 

2. GENERALIZED METHOD OF MOMENTS 
Qu et al. (2000 ) introduced a GMM of the form of a quadratic objective function that combines an 
extended score function with its covariance matrix.  
The construction of the extended score function is based on the generalized estimating equation, 
that is 
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Equation (3) can accommodate the popular correlation structures.  Equation (1) can then be 
written as  

                    0)().....()( 2

1

2211

1

2

1

=−+++








∂

∂
=

−

=

−

∑ iiimm

I

i

i

T

T

i yAMaMaMaAg µ
β

µ
β    (4) 

Based on this representation, Qu et al. ( 2000) defined an extended score                       
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 In principle, the vector )(* βg  contains more equations than parameters but they can be 

combined optimally following GMM to form a quadratic objective function of the form 
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The idea is to minimize )(βS .  Qu et al. (2000 ) showed that asymptotically,  
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Then the vector of regression parameters β  is estimated iteratively using the Newton-Raphson 

technique  
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Qu et al. (2000) showed that asymptotically β̂  is consistent and its variance reaches the Cramer-

Rao type lower bound. The algorithm works as follows: After assuming a working structure for the 

basis matrices, we construct )(βS&  and )(βS&&  for an initial of vector regression parameters 0β̂ .  

We replace in equation (10) to obtain an updated 1β̂ . We then use 1β̂  to obtain )ˆ( 1βS&&  and 

)ˆ( 1βS& .  However, this iterative equation may not be successful in estimating parameters for 

every type of setting.  In fact, we carried out an experiment that involves the simulation of 
correlated Poisson counts and noted that while estimating the regression parameters, the 

Jacobian matrix )ˆ(βS&&  often turns out to be singular and ill-conditioned. This ultimately blocks 

the computation process. To remedy the situation, we propose   an alternative approach known 
as the secant method based on vector divisions to estimate the parameters. In the next section, 
we introduce the secant method and show its iterative scheme. 

  

3.  SECANT METHOD 
The traditional secant iterative formula to estimate a scalar parameter β  is given by 
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where   0)( =βF  

However, this iterative formula cannot be applied directly to obtain the vector of regression 

parameters β  in equation (8) since β  is here multi-dimensional. To overcome this issue, Yixun 

Shi (2008) developed an iterative multi-dimensional secant formula using vector divisions. We 

adapt his procedures to solve equation (8).  By letting  )()( ββ SF &= , we estimate iteratively 

using  
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The iterative process works as follows: For initial values of 10
ˆ,ˆ ββ , we calculate 2β̂  using 

equation (13) or (14). Then using 1β̂  and 2β̂ , we calculate 3β̂ . The iterative process continues 

until convergence, i.e,  
5

1 10||ˆˆ|| −
+ <−

tt
ββ .  However, to ensure convergence, we can use a 

steepest direction coefficient  following Mamode Khan (2011) and Yixun (2008).  
 

4 SIMULATION STUDY 
In this section, we generate AR(1) correlated Poisson counts following McKenzie (1986) with true 

mean parameters 1,1 10 == ββ . Note that in GMM, the bases matrices 0M , 1M  and 2M are : 

0M : The identity matrix,  1M  has one on the two main off-diagonals and 2M  has 1 on the 

corners )1,1(  and ).( nn . We consider different covariates designs: 
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and for the second covariate 2it
x , we generate I standard normal values.    

 
 

For each design, we run 5,000 simulations for 100,60,20=I  and 500 . The following tables 

provide the simulated mean of the estimates and the number of non-convergent simulations 

under both techniques.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 1: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 1 
 
 

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9621 0.9872 0.9632 0.9881 2341 1550 
60 0.9991 0.9999 0.9992 1.0054 1201 910 

100 0.9990 1.0024 1.0014 0.9996 825 534 
400 1.0010 0.9998 0.9999 0.9999 230 100 
600 0.9999 0.9999 0.9999 0.9999 98 30 

1000 1.0000 1.0000 1.0000 1.0000 54 10 
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TABLE 2: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 3: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 3 
 
For each design, we assume small initial values of the mean parameters to run the simulations. 
As noted, there is no huge discrepancy between the estimated parameters and the true value of 
the regression parameters. As the cluster size increases, the discrepancies become lesser under 
both estimation techniques in all of the designs. This is in accordance with the consistency 
properties of the estimators under the GMM approach. As regards to the number of non-
convergent simulations, the Newton-Raphson technique reports a comparatively higher number 
of non-convergent simulations than the Secant method as the Jacobian matrix becomes close to 
singularity. This problem was noted in almost all cluster sizes. However, as the cluster size 
increases, the number of non-convergent simulations decreases significantly under both 
approaches. The non-convergence problem also occurs because of the choice of the steepest 
descent coefficient as reported by Mamode Khan (2011). Under some simulations, these 
coefficients were modified to yield convergence and to speed convergence. Based on the 
simulation results, we may conclude that GMM based on the secant method using vector 
divisions is a computationally fast and efficient approach. Also, its computational complexities 
compared with the Newton-Raphson method will be lesser.  In the same context, Mamode Khan 
(2011) showed through simulation studies that the secant method is an efficient estimation 
approach from a computational perspective as it reduces the number of non-convergent 
simulations and provides equally consistent estimates.  

  

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9943 0.9899 0.9942 0.9892 2562 1899 
60 0.9993 0.9997 0.9992 0.9998 1666 1032 

100 0.9990 1.0003 0.9999 0.9999 1321 998 
400 1.0001 0.9998 0.9999 0.9999 344 223 
600 0.9999 0.9999 0.9999 0.9999 142 97 

1000 1.0000 1.0000 1.0000 1.0000 76 55 

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9897 0.9899 0.9901 0.9900 1040 999 
60 0.9997 0.9999 0.9998 1.0001 889 762 

100 0.9999 1.0001 1.0000 0.9996 762 566 
400 1.0001 0.9999 0.9999 0.9999 444 320 
600 0.9999 0.9999 0.9999 0.9999 102 87 

1000 1.0000 1.0000 1.0000 1.0000 65 34 
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5 : CONCLUSION 
Generalized method of moments is an efficient estimation approach that yields consistent and 
reliable estimates of regression parameters particularly in an over-determined system of non-
linear equations but its estimation procedures often give rise to singular Jacobian matrices. This 
makes computation quite difficult. In this paper, we propose an alternative to Newton-Raphson 
known as the Secant method based on vector divisions. This approach omits the computation of 
the Jacobian matrix and provides equally consistent and reliable estimates than GMM under 
Newton-Raphson approach. Another advantage of this method is the computational complexities 
are lesser than Newton-Raphson as the inverse of a matrix requires quite a number of flop 
counts. Based on simulation results, we note that both Newton-Raphson and Secant method 
based on vector divisions yield consistent estimates but the secant method yields fewer non-
convergent simulations than Newton-Raphson. However, care must be taken when choosing 
initial values of the parameters. Otherwise, the resulting estimates may be unreliable.  Thus, we 
may conclude that GMM based Secant method is a more optimal estimation methodology. 
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Abstract 

In this paper, the effects and the optimization of machining parameters on surface roughness and 
specific cutting energy during surface grinding of 6061Al-SiC35P composites under different 
process parameters such as Vol% of SiC, feed and depth of cut were investigated using 
response surface methodology (RSM). The specific cutting energy and surface roughness are 
considered as performance characteristics.  Experiments are conducted using standard RSM 
design called Central composite design (CCD). A second order response model was developed 
for specific cutting energy and surface roughness. The results identify the significant influence 
factors to minimise the specific cutting energy and surface roughness. Derringer’s desirability 
function was then used for simultaneous optimization of specific cutting energy and surface 
roughness. The confirmation results demonstrate the practicability and effectiveness of the 
proposed approach. 

Key words: Metal Matrix composites; Specific cutting energy; Surface Roughness; ANOVA; Response 
surface methodology; desirability function  

 
 
1. INTRODUCTION 
Discontinuously reinforced aluminium composites(DRAC’s) is one of the important composites 
among the metal matrix composites, which have SiC particles with aluminium matrix is harder 
than tungsten carbide , which pose many problems in machining[1-2]. The aluminium alloy 
reinforced with discontinuous ceramic reinforcements is rapidly replacing conventional materials 
in various automotive, aerospace and automobile industries. But DRAC’s grinding is one of the 
major problems, which resist its wide spread engineering application [3]. 
 
A fundamental parameter derived from the force measurements is the specific grinding energy, 
which is the energy per unit volume of material removal. Any proposed mechanisms of abrasive 
workpiece interactions must be consistent with the magnitude of the specific cutting energy and 
its dependence on the operating parameters [4]. While Al/SiC-MMC specimen slides over a hard 
cutting tool edge during grinding, due to friction, high temperature and pressure the particles of 
Al/SiC-MMC adhere to the grinding wheel which affects the surface quality of the specimen [5]. 
This also results in decreased uncut chip thickness and hence the increased specific cutting 
energy for grinding. Rowe et. al. Investigated the creep feed grinding of Nickel-based alloy and 
found that specific cutting energy is as high as 400 J/mm3 for 150 mm3 per mm width of metal 
removal [5] 
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A Di Ilio et.al [6] investigated the machining characteristics of Al2009-SiC-15P, Al2009-SiC-20P 
and Al2009-SiC-25P, concluded that composite shows better surface finish than the pure 
aluminium. They developed a model of the grinding process based on empirical relations and 
observed that workpiece surface roughness can be related with the equivalent chip thickness 
through a power relationship; it shows a decreasing linear trend as the hardness of workpiece 
material increases. Sanjay Agarwal et.al [7] conducted a study on surface and subsurface of the 
ground ceramic material and concluded that cutting force and specific cutting energy can 
considerably be reduced due to dislodgement of individual grains, resulting from microcracks 
along the grain boundaries. Brinksmeier et. al. [8] made an attempt to quantify the size effect and 
possibility of using this in grinding for controlled subsurface work hardening of metals. It is 
observed that, Main physical quantity characterizing the size effect is specific grinding energy 
which increases with decreasing chip thickness. Lowering cutting speed at a constant chip 
thickness shifts the chip formation mechanism towards micro-ploughing and thus additionally 
increases the specific grinding energy. Li et.al [9] investigated the effects of wheel wear on 
process responses and ground ceramic quality, particularly the flexural strength. Strong 
relationships between the wheel surface conditions and the process responses are found. During 
the initial stage of wheel wear, the surface density of diamond grits, surface roughness and 
flexural strength decreased, and the specific normal force, specific tangential force, force ratio, 
and specific cutting energy increased. Ren et.al [10] demonstrated the correlation of specific 
cutting energy with the grinding process parameters and the material property parameters for the 
tungsten carbides. The study also examines material-removal mechanisms and surface finish in 
grinding of such materials. Their study revealed that specific cutting energy is related not only to 
grinding process parameters, but also to the physical–mechanical properties of the workpiece 
material 
 
Matheiu Barge et.al.[11] conducted scratching experiment on flat surface of AISI4140 steel and 
found that hardening and softening of the workpiece is key for the study of force and energy. 
Hwang et.al.[4] found that under a feed of 500 mm/min and for all the wheel speeds used, an 
increase in the wheel depth of cut from 0.1–2 mm slightly improved the ground surface finish, but 
greatly prolonged the wheel life. This increase did not deepen the subsurface damage layer for 
the alumina and alumina–titania, but resulted in a slightly deeper damage layer for the zirconia. 
Zhong et.al [12] conducted experiments on grinding of Al2O3 composites using SiC wheel and 
diamond wheel and found that SiC wheel is suitable for rough grinding and diamond wheel for 
finish grinding. Hood et.al.[13] used two separate L9 taguchi fractional array for grinding of γ -TiAl 

alloy and BuRTi alloy and found that former require 10% less power and 25% less specific cutting 
energy compared to the later. They also observed that, high wheel speed, low depth of cut and 
low feed will result in improved surface roughness. Seeman et.al.[14] developed a second order 
response surface model for surface roughness and tool wear of Al/SiC composites. They 
concluded that formation of BUE will affect the tool wear and surface roughness. Krajnik [15] 
compared RSM and Genetic algorithm for centreless grinding of 9SMn28. Kwak and Kim [16] 
developed a second order response surface model for surface roughness and grinding force on 
grinding of Al/SiC/mg composites. They investigated that optimum content of SiC and Mg in 
AC8A aluminium alloy is 30vol% and 9vol% respectively. Kwak [17] presented the application of 
Taguchi and RSM for the geometric error. A second-order response model for the geometric error 
was developed and the utilization of the response surface model was evaluated with constraints 
of the surface roughness and the MRR. Box and Draper [18] proposed central composite 
rotatable design for fitting a second order response surface based on the criterion of rotatability.  
From the above literature review it is evident that less amount of work is done to investigate the 
combined effect of specific cutting energy and surface roughness in grinding of Al-SiC 
composites. Hence in this study an attempt is made to optimise the specific cutting energy and 
surface roughness during grinding of Al-SiC35p composites using desirability function in response 
surface methodology. 
 

2.  DESIGN OF EXPERIMENT BASED ON RESPONSE SURFACE 
METHODOLOGY 

In order to investigate the influence of various factors on the Specific cutting energy (SE) and 
surface roughness (Ra), three principal factors such as the volume percentage of SiC (X1), feed 
(X2) and depth of cut (X3) were taken. In this study, these factors were chosen as the independent 
input variables. The desired responses were the specific cutting energy (SE) and surface 
roughness (Ra) which are assumed to be affected by the above three principal factors. The 
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response surface methodology was employed for modeling and analyzing the machining 
parameters in the grinding process so as to obtain the machinability performances of responses 
[2].  
 
In the RSM, the quantitative form of relationship between the desired response and independent 
input variables is represented as y= F(X1, X2, X3) 
 
Where y is the desired response and F is the response function (or response surface). In the 
procedure of analysis, the approximation of y was proposed using the fitted second-order 
polynomial regression model, which is called the quadratic model. The quadratic model of y can 
be written as given in equation (1) [19-22]: 
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Where a 0 is constant, a i, a i, and a ij represent the coefficients of linear, quadratic, and 
interaction terms respectively. Xi reveals the coded variables that correspond to the studied 
factors.  
The necessary data for building the response models are generally collected by the experimental 
design. In this study, the collections of experimental data were adopted using central composite 
design (CCD). The factorial portion of CCD is a full factorial design with all combinations of the 
factors at two levels (high, +1 and low, −1) and composed of the six axial points and six central 
points (coded level 0) which is the midpoint between the high and low levels[23]. The star points 
are at the face of the cubic portion on the design which corresponds to a value of α =1 and this 
type of design is commonly called the face-centered CCD.  
 

3.  DESIRABILITY FUNCTION 
The desirability function approach to simultaneously optimizing multiple equations was originally 
proposed by Harrington (1965) and later improved by Derringer and Suich (1984) [24]. 
Essentially, the approach is to translate the functions to a common scale ([0, 1]), combine them 
using the geometric mean and optimize the overall metric. The method involves transformation of 
each predicted response, ŷ, to a dimensionless partial desirability function, di, which includes the 
researcher’s priorities and desires when building the optimization procedure. One or two-sided 
functions are used, depending on whether each of the n responses has to be maximized or 
minimized, or has an allotted target value. If the response is to be minimised the response di can 
be defined as: 
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In Eq. (2), L, H and T are, respectively the lowest, highest and the target values and wt is the 
weight. The value of wt can be varied between 0.1 and 10. The value of one creates a linear 
ramp function between the low value, goal and the high value. Increased wt moves the result 
towards the goal or its decrease creates the opposite effect. The partial desirability function di 
ranges between 0, (for a completely undesired response), and 1, (for a fully desired response). 

The partial desirability functions are then combined into a single composite response, the global 
desirability function D, defined as the geometric mean of the different di-values: 

D= (d1
v
1*d2

v
2*dn

v
n)

1/n
     (0 ≤D ≤1) --------------(3) 

In equation (3) vi is the relative importance assigned to the response i. The relative importance vi 

is a comparative scale for weighting each of the resulting di in the overall desirability product and 
it varies from the least important (vi = 1) to the most important (vi = 5). It is noteworthy that the 
outcome of the overall desirability D depends on the vi value that offers users flexibility in the 
definition of desirability functions. 
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4.  EXPERIMENTAL PROCEDURE 
Al-SiC specimens having aluminum alloy 6061 as the matrix and containing 8 vol.%,10 vol.% and 
12 vol.%  of silicon carbide particles of mean diameter 35µm in the form of cylindrical bars of 
length 120mm and diameter 20mm. The specimens were manufactured at Vikram Sarbhai Space 
Centre (VSSC) Trivandrum by Stir casting process with pouring temperature 700-710°C, stirring 
rate 195rpm. The specimen were extruded at 457°C, with extrusion ratio 30:1, and direct 
extrusion speed 6.1m/min to produce length 120mm  and Ø22mm cylindrical bars. The extruded 
specimens were solution treated for 2 hr at a temperature of 540oC in a muffle furnace; 
Temperatures were accurate to within ±2

o
C and quench delays in all cases were within 20s. After 

solution treatment, the samples were water quenched to room temperature. Further the specimen 
is machined to 17mm square cross-section. Table-1 shows the chemical composition of Al 6061 
alloy. Grinding method as machining process was selected.  Experiments were conducted on 5 
HP, 2880rpm, conventional surface grinding machine (Bhuraji make) with automatic (hydraulic) 
table-feed and Norton make diamond grinding wheel ASD76R100B2 with outer diameter 175mm, 
width of 12.5mm, thickness of 5mm and inner diameter of 31.75 which is generally used for 
finishing operation. The honing stick having specification GN0390220K7V7 is used for dressing 
the wheel. The experiments conducted under dry conditions. 
 

Table-1: Chemical composition of Al 6061 alloy 
 

E
l
e
m
e
n
t 

C
u 

M
g 

S
i 

C
r 

F
e 

A
l 

V
o
l
u
m
e
 
% 

0
.
2
5 

1 
0
.
6 

0
.
2
5 

0
.
2 

B
a
l
a
n
c
e 

The levels and factors selected for the experimentation are given in Table-2. Selection of factors 
for optimization was based on preliminary experiments, prior knowledge of the literature, and 

known instrumental limitations. The time required for machining the each specimen is measured. 
The volume of metal removed per unit time gives the metal removal rate. The surface roughness 
of the specimen is measured using Taylor/Hobson surtronoic 3+ surface roughness measuring 

instrument 

             TABLE 2: Levels of independent Factors 
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5: RESULTS AND DISCUSSION 
 
5.1 Development of Mathematical Model  
The mathematical relationship between responses and grindingparameters were established 
using experimental test results from planned set of experiments; face-centered CCD. Table-3 and 
Table-4 Below shows coefficients of response surface regression and the corresponding p-value 
for specific cutting energy and surface roughness.  
 

TABLE 3: Regression analysis for Specific cutting energy 
 

Term Coeffficients P-value 
Constant  543.669 0.020 
X1  18.469 0.424 
X2 -11.125 0.086 
X3 -37.725 0.001 
X1

2 - 1.587 0.148 
X2

2
   0.089 0.053 

X3
2
   0.948 0.004 

X1X2   0.030 0.807 
X1X3   0.628 0.060 
X2X3   0.098 0.129 
 

TABLE 4: Regression analysis for Surface roughness 
 

Term Coefficient P-value 
Constant   2.1966 0.003 
X1 - 0.2542 0.002 
X2   0.0078 0.643 
X3 - 0.0088 0.703 
X1

2
   0.0095 0.008 

X2
2
   0.00003 0.789 

X3
2
 - 0.0001 0.874 

X1X2 - 0.001 0.025 
X1X3   0.0019 0.048 
X2X3   0.00013 0.462 

It is observed from Table-3 for the response surface regression analysis of specific cutting energy 
that, linear and square of depth of cut and square of feed are more significant as their P-value are 
less than 0.05. Similarly regression analysis of surface roughness from Table-4 shows that, linear 
and square of SiC volume percentage and interaction of SiC vol percentage with feed and depth 
of cut are more significant. Equation (4) and (5) represent the developed response surface 
regression equation for specific cutting energy and surface roughness respectively. 

Regression equation for specific cutting energy 
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Regression equation for surface roughness  
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Where 
1

ŷ and 
2

ŷ  are the responses for specific cutting energy and surface roughness 

respectively. X1, X2 and X3 represents the decoded values of SiC volume percentage, Feed 
(mm/s) and depth of cut (microns) respectively. 

 
5.2 Analysis of the Developed Mathematical Model 
The ANOVA and F- ratio test have been performed to justify the goodness of fit of the developed 
mathematical models.  

The calculated values of F- ratios for lack-of-fit have been compared to standard values of F- 
ratios corresponding to their degrees of freedom to find the adequacy of the developed 
mathematical models. Table-5 and Table-6 shows the ANOVA for specific cutting energy and 
surface roughness respectively. The standard percentage point of F distribution for 95% 
confidence level (F0.05,5,5) is 5.05. Since the F-value for lack of fit is less than the standard value, 
both the models are adequate at 95% confidence level. R2-value the measure of fitness of the 
model for specific cutting energy and surface roughness are 95.45% and 99.3% respectively. It 
indicates that model fits well with the experimental results 
 

TABLE 5: Analysis of variance for specific cutting energy 
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TABLE 6: Analysis of variance for Surface roughness 
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Based on the response surface equation (4) and (5) contour plots for specific cutting energy and 
surface roughness are plotted. Fig-1 and Fig-2 shows the contour plot for specific cutting energy 
and surface roughness respectively. From Fig-1 it is observed that, specific energy increase with 
increase in feed. It is mainly due to the reason that increase in feed will decrease the contact time 
between the wheel and the workpiece which results in ploughing of wheel on the workpiece. 
Increased ploughing will increase the surface temperature and hence specific cutting energy [25]. 
Higher the specific cutting energy higher will be the heat dissipated and poor will be the surface 
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finish [26].Moreover increase in feed will increase the cutting force which results in increased 
specific cutting energy. It is also observed that with depth of cut up to 13 to 14 microns specific 
cutting energy decreases. But increase in depth of cut beyond 14microns will results in increase 
of specific cutting energy. The initial decrease was, due to the increase in the maximum chip 
thickness with the increase in depth of cut, which resulted in decrease in specific cutting energy. 
The increase in specific cutting energy beyond certain value of depth of cut could be due to the 
reduction in friction between the wheel and the work and brittle fracture of the material [6]. Fig-2 
shows the contour plot for surface roughness. It is observed from the figure that surface 
roughness improves with decrease in depth of cut and also with increase in volume percentage of 
SiC. It may be due to the reason that material becomes harder with increased volume percentage 
of SiC, which results in improved surface roughness. 
 
 
 
 
 
 

 
FIGURE 1: Contour plot for Specific energy                      FIGURE 2: Contour plot for Surface 

Roughness 
 
5.3 Analysis for the Optimisation of Response  
Desirability function method popularised by Derringer and Suich [27] is used for the optimisation 
of specific cutting energy and surface roughness. The general approach is to first convert each 
response Y into an individual desirability function di that varies over the range. 0 ≤di ≤1  
Where, if the response Y ^ is at its goal or target, then di=1, and if the response is outside an 
acceptable region, di=0. 
 
The weight of the desirability function for each response defines its shape. The individual 
desirability functions are combined to provide a measure of the composite or overall desirability of 
the multi response system. This measure of composite desirability is the weighted geometric 
mean of the individual desirability for the responses [28]. The optimal operating conditions can 
then be determined by maximizing the composite desirability.  
 
Fig-3 Shows the optimisation plot for of specific cutting energy and surface roughness. The goal 
is to minimise specific cutting energy and surface roughness. The upper value and target value 
for specific cutting energy have been fixed at 150 and 70 respectively. Similarly for the surface 
roughness the upper and target values are fixed at 1.3 and 0.65 respectively. Both the responses 
are assigned a weight of 3 and importance of 3. The optimisation plot shows that composite 
desirability is almost nearer to 1. The optimum value of specific cutting energy and surface 
roughness are 69.99J/mm

3
 and 0.6505 microns respectively for machining  Al-6061 SiC12 vl% 

specimen with feed 60mm/s and depth of cut 9.05 microns.  
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FIGURE 3: Optimum results for minimum specific cutting energy and minimum surface roughness 
 

6. MODEL VALIDATION RUN 
The response surface model developed in equation (4) and (5) were validated by the set of test 
runs. Table-7 gives the results obtained from experimental test, and the results obtained by the 
developed response surface model. The parentage error for specific cutting energy is within 9.5% 
and for surface roughness is within 2.5%. Hence it can be concluded that fitted model agrees 
very close to the experimental results. 
 

TABLE 7: Validation of the results 
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7. CONCLUSION 
In this study, the Response surface methodology was applied for analyzing Specific cutting 
energy and surface roughness in the surface grinding of DRACs. Based on experimental results, 
following conclusions were drawn from the above experimental work. 

i. It is observed that specific cutting energy increase with increase in feed. It may be due to the 
reason that all the cutting energy is dissipated in to heat at increased feed. 

ii. Specific cutting energy is lower with increase in SiC weigt percentage of the specimen. This 
phenomenon is attributed to the fact that specific cutting energy associated with the ductile 
material removal process is much higher than that with a brittle removal mode. 

iii. Surface roughness improves with increased SiC volume percentage of specimen and 
decrease in depth of cut. It is mainly due to the fact that, increase in vol% of SiC will increase 
the hardness of the specimen, which results in decrease ploughing of the wheel during 
grinding.  

iv. Response surface regression is used to develop a second order equation for specific cutting 
energy and surface roughness. For 95% confidence level, it is observed that fitted value is 
very close to the experimental value.  

v. Desirability function approach is applied to find the optimal cutting condition for minimum 
specific cutting energy and minimum surface roughness. Maintaining the feed at 60mm/s and 
depth of cut at 9 microns while machining Al6061-12%volSiC will produce a minimum specific 
cutting energy of 69.99J/mm3 and a minimum surface roughness of 0.6505 microns. 
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