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Editorial Preface 

This is fourth issue of volume four of the Signal Processing: An International 
Journal (SPIJ). SPIJ is an International refereed journal for publication of 

current research in signal processing technologies. SPIJ publishes research 
papers dealing primarily with the technological aspects of signal processing 

(analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, 
practitioners, and those seeking an update on current experience, state of 

the art research theories and future prospects in relation to computer science 
in general but specific to computer security studies. Some important topics 

covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 
 

This journal publishes new dissertations and state of the art research to 
target its readership that not only includes researchers, industrialists and 
scientist but also advanced students and practitioners. The aim of SPIJ is to 

publish research which is not only technically proficient, but contains 
innovation or information for our international readers. In order to position 

SPIJ as one of the top International journal in signal processing, a group of 
highly valuable and senior International scholars are serving its Editorial 
Board who ensures that each issue must publish qualitative research articles 

from International research communities relevant to signal processing fields. 
   
SPIJ editors understand that how much it is important for authors and 
researchers to have their work published with a minimum delay after 

submission of their papers. They also strongly believe that the direct 
communication between the editors and authors are important for the 

welfare, quality and wellbeing of the Journal and its readers. Therefore, all 
activities from paper submission to paper publication are controlled through 

electronic systems that include electronic submission, editorial panel and 
review system that ensures rapid decision with least delays in the publication 
processes.  
 

To build its international reputation, we are disseminating the publication 
information through Google Books, Google Scholar, Directory of Open Access 

Journals (DOAJ), Open J Gate, ScientificCommons, Docstoc and many more. 
Our International Editors are working on establishing ISI listing and a good 
impact factor for SPIJ. We would like to remind you that the success of our 

journal depends directly on the number of quality articles submitted for 
review. Accordingly, we would like to request your participation by 

submitting quality manuscripts for review and encouraging your colleagues to 
submit quality manuscripts for review. One of the great benefits we can 
provide to our prospective authors is the mentoring nature of our review 

process. SPIJ provides authors with high quality, helpful reviews that are 
shaped to assist authors in improving their manuscripts.  
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Abstract 

 
Classification of ground vehicles based on acoustic signals using wireless sensor 
networks is a crucial task in many applications such as battlefield surveillance, 
border monitoring, and traffic control. Different signal processing algorithms and 
techniques that are used in classification of ground moving vehicles in wireless 
sensor networks are surveyed in this paper. Feature extraction techniques and 
classifiers are discussed for single and multiple vehicles based on acoustic 
signals. This paper divides the corresponding literature into three main areas: 
feature extraction, classification techniques, and collaboration and information 
fusion techniques. The open research issues in these areas are also pointed out 
in this paper. This paper evaluates five different classifiers using two different 
feature extraction methods. The first one is based on the spectrum analysis and 
the other one is based on wavelet packet transform. 
 
Keywords: Signal classification, feature extraction, distributed sensors, sensor fusion.  

 
  

 

1. INTRODUCTION 

Wireless sensor network (WSN) is a network of spatially distributed, densely deployed, and self 
organized sensor nodes, where a sensor node is a platform with sensing, computation and 
communication capabilities. WSN is an emerging technology because of the advances in 
technologies of: Micro-Electro-Mechanical Systems (MEMS), Microprocessors, wireless 
communication and power supply. New technologies provide cheap small accurate: sensors, 
processors, wireless transceivers, and long-life batteries. Sensor node is the integration of all of 
these technologies in a small board, like the ones in Fig. 3 part (b), it is called mote. Fig. 3 part (a) 
shows the basic architecture of the mote. All of the above motivate researchers and practitioners 
to design, deploy and implement networks of these sensor nodes in many applications. WSN has 
the following characteristics: concern is about the data but not about the sensor node itself, low 
cost, constrained power supply, static network, topology may change because of sensor node or 
link failure, sensor nodes are prone to destruction and failure, dense deployment, self-
organization, and spatial distribution. WSN is used in many remote sensing and data aggregation 
applications [1],[2]. Detection, classification, and tracking are the main signal processing functions 
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of the wireless sensor networks [3]. WSNs increase the covered area, redundancy of the sensors, 
and decision makers, which improves the performance and reliability of the decision making. To 
understand the work, design and operation of the WSNs see Refs. [4],[5]. Refs. [4],[6] categorizes 
the applications and describes the implementation of the WSNs. A survey of the architecture and 
sensor nodes deployment in WSNs is presented in Ref. [7]. WSN is a cost efficient technology. 
However, it has some constraints. Limited energy, limited bandwidth, and limited computational 
power are the main constraints of WSNs [8]. Therefore, to implement any digital signal 
processing algorithm it needs to be an intelligent signal processing and decision making algorithm 
with the following requirements: power efficiency, robustness, and scalability. In WSNs, observed 
data could be processed at the sensor node itself, distributed over the network, or at the gateway 
node. WSNs can be utilized for distributed digital signal processing [9]-[11]. Research in 
classification in wireless sensor networks can be divided into two areas: hardware area 
(platforms, sensors), and software area (signal processing algorithms, collaboration, and 
networking techniques) [12]. The signal processing techniques and collaboration schemes that 
are used in ground vehicle classification in WSN based on acoustic signals are surveyed, as in 
Fig 2, in this paper. Target classification in WSN is to label or categorize a target that passing 
through the area that is monitored by the WSN to one of a predefined classes based on an 
extracted feature vector. Classification in WSNs can be considered as a process as in Fig. 4, 
where a feature vector is extracted from the input signal, then classified, then the information is 
fused to come up with the final decision. Most of the researcher are interested in improving the 
performance of this process through selection and design an efficient tool, as in Table 1, for one 
of the followings tasks :   
    • Feature Extraction  
    • Classification Techniques  
    • Information Fusion  
 The remainder of the paper is organized as follows. Section 2 presents the recent methods that 
are used to extract features from the vehicle acoustic signals for single and multiple targets. 
Section 3 discusses the classification techniques. Section 4 presents the information fusion 
techniques. Section 5 outlines the the open research. And finally, conclusions are discussed in 
section 6.  

 

Reference Feature 
Extractor 

Classifier Classes 
Number 

Classification 
Rate 

Fusion 
Method 

[12] TESPAR ANN 2 up to 100% - 

[13] and [14] DWT MPP 2 98,25% - 

[15] HLA, PSD ANN 4 HLA: 92%, 
PSD: 94% 

- 

[16] HLA ANN 18 88% running sum 

[17] HLA MAP 6 89% - 

[18] MFCC GMM, HMM 
and ML 

9 77%, 88% - 

[19] FFT, DWT, 
STFT, PCA 

kNN, MPP 4 85%, 88% MRI 

[20] STFT, PCA ANN 3 - - 

[21] FFT, PSD, 
AR 

kNN, ML, 
SVM 

2 78% - 97% - 

[22] DWT ANN 4 73% - 

[23] CC HMM 9 96% - 

[24] WPT LDA, CART 3 - - 

[25] CWT ANN 6 95% - 

[26] TVAR, PCA ANN 6 83%-95% - 

[27] BHM CART 9 90% Decision 
Fusion 

[28] STFT, RID ANN, MVG 6 up to 87% - 

[29] EE, PCA ANN, Fuzzy 5 up to 97% - 
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Logic 

[30] AR ANN 4 up to 84% - 

[31] FFT, PSD kNN - -% - 

[32] FFT, WDT kNN 2 62% Dempsler-
Shafer, MV 

[33] FFT Template 
Matching 

8 -% template 
storing 

[34] PSD kNN, ML 2 77%, 89% Distributed 
Classification 

[35] - kNN, ML, 
SVM 

2 69%, 68%, 
69% 

MAP 
Bayesian, 
Nearest 

Neighbor, 
Majority 
Voting, 

Distance-
based 

[36] Harmonic 
and 

Frequency 
Components 

SVM 5 85% modified 
Bayesian 
(decision 

level) 

[37] Harmonic 
set 

MVG 3-5 70-80% - 

[38] STFT,PCA C4.5, KNN, 
PNN, SVM 

4 60-93% - 

[39] WPT CART - - - 

[40] MFCC RNN 4 85% - 

[41] PSD KNN, ML, 
SVM 

2 up to 97% - 

[42] PSD, PCA SVM 3 up to 93% - 

[43] MFCCs GMM 2 up to 94.1% CART 

[44] FFT, WT KNN, MPP, K-
Means 

3 95.5% - 

[45] WPT ML, ANN 3 up to 98% - 

[46] PSD ANN 4 up to 99% - 

[47] WPT cascaded 
fuzzy 

classifier 
(CFC) 

3 - Dempster–
Shafer (DS) 

 
Table 1: Recent feature extraction and classification techniques used for vehicle 

classification based on acoustic signals. 
 

 

2. FEATURE EXTRACTION OF ACOUSTIC SIGNATURE 
Feature extraction is the most significant phase of the classification process. To classify an 
object, a set of features of that object is extracted to label that object to one of a predefined 
classes. This set of features is generated from a source signal as in Fig. 1. Feature extraction can 
be considered as dimensionality reduction technique. In feature extraction certain transforms or 
techniques are used to select and generate the features that represent the characteristic of the 
source signal. This set of features is called a feature vector. Feature vectors could be generated 

in time, frequency, or time \ frequency domain.  
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Figure 1: Classification block diagram. 
 
 
 
 
 

 
   
 
    
Figure 2: Taxonomy of the techniques that are used in target classification using acoustic 

signature in wireless sensor networks 
 
 

.  
Figure 3: Wireless sensor node examples in part (b) and the common architecture of a 

senor node in part (a). 
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Figure 4: A summary diagram of the feature extraction, classification , and collaboration 
algorithms that are used in vehicle classification using WSNs. 

   

 

2.1 Time Domain 
The computation of feature vector in time domain is usually simple. Ref. [48] discusses two time-
domain feature generation methods. The first method is based on the energy distribution of the 
signal, where the energy of a short time window of the source signal is used to discriminate 
between classes. The second method is based on counting the number of zero crossings of a 
signal within a time interval. The energy envelope (EE) in time domain is considered in [29]. Time 
Encoded Signal Processing and Recognition (TESPAR) is a method that is used in speech 
waveform encoding. TESPAR is used in [12] to generate features from vehicle acoustic and 
seismic signals. TESPAR is based on the duration and shape of the portion of the waveform that 
is between two zero crossings. 
 
Principal Component Analysis (PCA) is popular statistical tools that is used for dimensional 
reduction. PCA is based on finding the principal eigenvectors of the covariance matrix of the set 
of signals. PCA is used as a feature extraction method in [19, 20, 38, 42]. 

 

2.2 Frequency Domain 
 Frequency based feature generation methods, like Fast Fourier Transform (FFT), are common 
approaches in vehicle classification [16], [20], [31], [33]-[35], [49]. In [31] Fast Fourier Transform 
(FFT) and Power Spectral Density (PSD) are used to extract feature vectors. Similarly in [35], the 
first 100 of 512 FFT coefficients are averaged by pairs to get a 50-dimensional FFT-based feature 
vector with resolution of 19.375 Hz and information for frequencies up to 968.75 Hz. Ref. [34] 
presents schemes to generate low dimension feature vectors based on PSD using an approach 
that selects the most common frequency bands of PSD in all the training sets for each class. Ref. 
[33] proposes an algorithm that uses the overall shape of the frequency spectrum to extract the 
feature vector of each class. Principal component eigenvectors of the covariance matrix of the 
zero-mean-adjusted samples of spectrum are also used to extract the sound signature as in [20]. 
Some vehicle acoustic signatures have a pattern of relation between the harmonics amplitude. 
Harmonics are the peaks of the spectral domain. The relation between the amplitude and the 
phase of these peaks is used to form the feature vector. Harmonic Line Association (HLA) feature 
vector is used in [30], where the magnitude of the second through 12th harmonic frequency 
components are considered as the feature vector to be used for vehicle classification. Different 
algorithms are used to estimate the fundamental frequency. In [36], two sets of features are 
extracted from the vehicle sound. The first one is based on the harmonic vector. The second one 
is a key frequency feature vector. In [37], the number of harmonics is modeled as a function of 



Ahmad Aljaafreh &  Ala Al-Fuqaha 

Signal Processing-An International Journal (SPIJ), Volume (4): Issue (4)                                      180 

the vehicle type. Looking for stable features other than the harmonics relation, Ref. [50] models 
the vehicle acoustic signature by a coupled harmonic signal. Cepstral coefficients (CC) are the 
coefficients of the inverse Fourier Transform of the log of the magnitude of the spectrum [23]. 
Mel-frequency cepstral coefficients (MFCC) is used in [18],[40],[43] as a feature extractor, where 
the feature vector is made up of few of the lowest cepstrum coefficients. Mel-frequency cepstrum 
(MFC) is a representation of the short-term power spectrum of a sound, where the log power 
spectrum on a nonlinear mel scale of frequency is transformed based on a linear cosine 
transform. 
 
Two types of spectral features are explored in [21]: Non-parametric FFT-based PSD estimates, 
and Parametric PSD estimates using autoregressive (AR) modeling of time series. In AR model 
the value of any variable at any time is modeled as a function of a finite number of the past values 
of that variable. The number of the involved past values is called the model order. AR of the first 
order is a Markov chain, where the current value depends only on the previous value. A randam 

variable X  can be modeled at time t  using AR of order P  as follows:  

 
tktk

p

k

t xx ωθ +−∑
1=

=

 (1) 

 where kθ
 denotes the corresponding autoregressive coefficients. tω

 is a white gaussian noise 

with zero mean. If kθ
 is varying with time then the AR process is called Time Varying 

Autoregressive (TVAR). TVAR is used to model the acoustic signal in [26, 51]. A filter bank is 
used based on the biology based hearing model (BHM) as a feature extraction system in [27]. 
 

Feature Extraction Example using the Spectrum Distribution: 
The goal is to develop a scheme for extracting a low dimension feature vector, which is able to 
produce good classification results. The first feature extraction technique of acoustic signals in 
this paper is based on the low frequency band of the overall spectrum distribution. The low 
frequency band is utilized, because most of the vehicle's sounds come from the rotating parts, 
which rotate and reciprocate in a low frequency, mainly less than 600 Hz as it is clear in Fig. 6. 
Sounds of moving ground vehicles are recorded at the nodes at a rate of 4960 Hz as in Fig.5. 
After the positive detection decision, a signal of event is preprocessed as the following:  
 
 
 

 
    

Figure 5:  Time domain for three different sounds for two different vehicles v1 and v1. 
 



Ahmad Aljaafreh &  Ala Al-Fuqaha 

Signal Processing-An International Journal (SPIJ), Volume (4): Issue (4)                                      181 

 

 
      
Figure 6: Frequency distribution for three different sounds for two different vehicles v1 and v1. Fs 

is sampling frequency =4960. Fw is FFT window size=512. 
 
 
  DC bias should be removed by subtracting the mean from the time series samples. 
 

 

)(*
1

)(=)(
1=

nx
N

nxnx i

N

n

ii ∑−

 (2) 
. 
Feature vector will be the median of the magnitude of the STFT of a signal of event. It will be 
computed as the following: the magnitude of the spectrum is computed by FFT for a hamming 
window of size 512, without overlapping. 
 

 
))((=)( nxFFTWX ii  (3) 

 
After this, the spectrum magnitude is normalized for every frame  

 

)(
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WX
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i

K

W
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i

∑
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where K is the window size. The median of all frames is considered as the extracted feature 
vector.  

 
))((=)( WXmedianWX iif  (5) 

 The mean of all frames could also be considered as the extracted feature vector.  

 

)(
1

=)(
1=

WX
Z

WX i

Z

i

if ∑
 (6) 

where kNz /= . The first 64 points of the median of the spectrum magnitude contain up to 620 
Hz. This gives a 64 dimensional vector that characterizes each vehicle sound. We compared 
feature extraction using the mean and the median. The median gives better results, specially for 
noisy environments. Fig.7 displays the acoustic spectral distribution of vehicle 1 and vehicle 2. 
For the unknown utterance, the same steps are done, except one frame of FFT is considered as 
the feature to be classified to reduce the computational cost, because this FFT computation is 
performed online. This can be extended to have multiple frames, but this will increase the 
computational cost.  
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Figure  7: Acoustic spectra distribution of vehicle 1 and vehicle 2. To the left is vehicle 1 
    

2.3 Time Frequency Domain  

Short Time Fourier Transform (STFT) is used in [38] to transform the overlapped acoustic 
Hamming windowed frames to a feature vector. Ref. [52] proposes a probabilistic classifier that is 
trained on the principal components subspace of the short-time Fourier transform of the acoustic 
signature. Wavelet transforms provide multi-resolution time-frequency analysis [53]. Wavelet 
transforms (WT) is the the projection of a signal onto the wavelet. Wavelet is a series of functions 

)(, tbaψ
 derived from a base function 

)(tψ
 by translation and dilation.  

 

)(
||

1
=)(,

a

pt

a
tba

−
ψψ

 (7) 

where a is called scale parameter, b is called translation or shift parameter, and 
)(tψ

 is called 
wavelet base function. Wavelet Transform is called CWT when values of a and b are continuous, 
and it is called DWT when they are discrete [54]. Discrete Wavelet Transform (DWT) 
approximation coefficients y are calculated by passing the time series samples x through a low 
pass filter with impulse response g. 

)(g)(x=)(g*)(x=)(y
=

knknnn
k

−∑
∞

−∞ . 
The signal is also decomposed simultaneously using a high-pass filter h. The outputs from the 
high-pass filter are the detail coefficients. The two filters are related to each other. DWT is exactly 
the same as the Wavelet Packet Transform (WPT) except that in DWT the next level is the result 
of one step of wavelet transform of the approximation branch and not the detail one. Wavelet 
packet transform can be viewed as a tree structure. The root of the tree is the time series of the 
vehicle sound. The next level is the result of one step of wavelet transform. Subsequent levels in 
the tree are obtained by applying the wavelet transform to the low and high pass filter results of 
the previous step's wavelet transform. The Branches of the tree are the blocks of coefficients. 
Each block represents a band of frequency. Feature extraction of acoustic signals is based on the 
energy distribution of the block coefficients of wavelet packet transform. A wavelet-based 
acoustic signal analysis of military vehicles is presented in [13, 55]. Discrete Wavelet Transform 
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(DWT) is used in [13] and [14] to extract features using statistical parameters and energy content 
of the wavelet coefficients. Wavelet Packet Transform (WPT) has a higher frequency resolution 
than the DWT [56]. WPT is also used to extract vehicle acoustic signatures by obtaining the 
distribution of the energies among blocks of wavelet packet coefficients like in [24],[39]. Ref. [53] 
has a proof that wavelet analysis methods is suitable for feature extraction of acoustic signals 
. 

Feature Extraction Using Wavelet Packet Transform: 
After the positive detection decision, a one second time series is preprocessed as the following:   
    • The wavelet packet transform is applied for this signal then the energy of each block 
coefficients of the (L) level is calculated.  

    • This approach provides a vector of length = original time series length 
L/2  . Which is 

considered the feature vector. 

 
 
  
    

Figure  8: Wavelet block energy distribution for vehicle one in first row for three different 
sounds and for vehicle 2 in the second row. 

   
Fig. 8 displays the blocks energy distribution for vehicle 1 and vehicle 2. In this paper we used 
classification rate as the metric for the evaluation of the feature extraction performance. But this 
metric depends on the classifier itself. Thus, we compare the classification rate for two classifiers 
as shown in Fig. 12. 

 

2.4 Feature Extraction Performance Using Separability Measures 
Separability measures provide a measure of class discriminability based on feature space 
partitioning. A good feature vector extractor provides close feature vectors for the same class, 
and far feature vectors for distinct classes. The goal is to have a feature extraction method that 
has high distance between distinct classes and low distance within each class. The metric, in this 
paper, is the separability ratio (sr), which is the ratio between the intraclass distance and the 
average interclass distance [57]. 
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 gD
 represents the average of the variances of distance within all classes. ikV

 is the normalized 

feature vector. C is the number of classes. iP
 is the probability of class i. in

 number of vectors in 

class i. im
 is the mean vector for class i.  
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 lD
 represents the average of the distances between all classes. m is the mean for all classes.  
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 The smaller the ratio is the better the separability. This means that the best feature extraction 

scheme is the one that decreases gD
 and increases lD

. 
 

 

3. CLASSIFICATION TECHNEQUES 
Classifiers provide the functions or the rules that divide the feature space into regions, where 

each region corresponds to a certain class. Having a number of N -dimensional feature vectors 

for each class, a function can be deduced to partition the N  feature space to number of regions, 
where each region represents a class. This process is called supervised learning or classification. 
Classifiers can be categorized to parametric or non-parametric. Some researches combine 
multiple different classifiers, called compound classifiers. 
 
3.1 Parametric Classifiers 
Parametric classifiers are the classifiers that can be represented in closed-form. for instance, 
assuming that the distribution of a certain class as a parametric form such as Gaussian. Some 
classifiers are based on discrimination function with a certain parametric form such as support 
vector machine. Below are the most parametric classifiers that have been used in vehicle 
classification based on acoustic signature. 
 
3.1.1 Bayesian Classifier 
Bayesian classifier is a probabilistic classifier based on using Bayes' theorem. Maximum 
likelihood (ML) is used to estimate the Bayesian classifier parameters. Maximum A posteriori 
Probability (MAP) can also be considered as a generalization of ML. Each class is assumed to be 
independent instances of parametric distributed random process. A naive Bayes classifier is a 
variation of the Bayesian classifier with assumption of an independent feature model. Bayesian 
classifier is used in many research papers with assumption that each class is a normal distributed 

random process [35],[41],[58],[59] where features vector S  of each class C  is assumed to be 
independent instances of normally distributed random process.  

 
),()|(p iii NS Σ≈ µθ

 (13) 
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 i=1,2 ....C. iµ
 and iΣ

 are the mean and covariance matrix respectively. iθ
 is the parameter set 

of 
th

i  distribution, iθ
 = ii Σ,{µ

 }. 
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 To represent each training set of each class as a distribution with Σ̂  and 
µ̂

 parameters the 

likelihood of θ̂  
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should be maximized by equating ilθ∆
=0, then ML estimations of 

µ
 and Σ  are 
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for minimum error classification the a posteriori probability should be maximized  
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)(xhi  denote the logarithmic version of 

)|(p Siθ
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where G  is constant can be ignored in the optimization 
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 where D  is constant then any vehicle feature vector x  is classified to class i  according to the 

discriminant functions 
)(xhi  if 

)(>)( xhxh ji  for all 
ij ≠
. Linear discriminant Analysis (LDA) 

assumes that the class covariances iΣ
 are identical. LDA is used as a linear classifier in [24] 

ML  is the optimum classifier but it needs large number of training set. Training ML  classifier 
with small number of training set will not give an invertible covariance matrix. This makes it hard 
to compute the discriminant functions. 
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3.1.2  Support Vector Machine (SVM) 
 SVM is widely used as a learning algorithm for classifications and regressions. SVM classify data 

ix
 by class label 

1}1,{ −+∈iy
 given a set of examples 

},{ ii yx
 by finding a hyperplane bwx +  

,
n

Rx ∈  which separate the data point ix
 of each class . as in Fig.  9. 

 

 
 
    

Figure  9: An Example of Two Classes Problem. Squares and Circles Represent Class 1 and 
Class 2 Respectively. 

    

 
)(=)( bwxsignxg +
 (21) 

 

where w  is the weight vector, b  is the bias. SVM  choose the hyperplane that maximize the 
distance between the hyperplane and the closest points in each feature space region which are 
called support vectors. So the unique optimal hyperplane is the plane that maximize this distance  

 
PPwbwxi /|| +

 (22) 
 This is equivalent to the following optimization problem 
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For the cases that nonlinear separable, a kernel function maps the input vectors to a higher 
dimension space in which a linear hyperplane can be used to separate inputs. So the 
classification decision function becomes:  
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 where SVs are the support vectors. 
0

iα
 and b are a lagrangian expression parameters. 

pK (
,

)ip
 is the kernel function. It is required to represent data as a vector of a real number to 

use SVM  to classify moving ground vehicles. Performance of SVM  classifier for vehicle 
acoustic signature classification for both feature extraction methods is also evaluated. It is found 
that SVM is a good classifier for stochastic signal in WSN [12], [42], [60]–[63]. 
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3.1.3  Gaussian Mixture Model (GMM) 
Due to the constraints in WSN resources, parametric models such as Gaussian mixture model is 
preferred to non-parametric models [43]. Modeling of acoustic signal in WSN using a parametric 
model, like GMM requires little resources, and has a good pattern matching performance [43]. 
GMM is a statistical method that is used for classification and clustering. GMM is a linear 
combination of M-Gaussian pdfs. Let x be a N-dimensional feature vector, then the distribution of 
x is as follows:  

 

);(=)(
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ii

m

i

m xxf θφα∑
 (25) 

 where     
1=

1= i

m

i
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 ,   
mii 1,...,:0 ∈≥α

 

iα
 is the mixing weight, 

);( ix θφ
 is the Gaussian mixture component. Component i  has N-

variate Gaussian density function with weight iα
, mean vector iµ , and covariance matrix iΣ . 

 
Expectation maximization (EM) is one of the common algorithm that is used to obtain the GMM 

parameters 
),,(= iiii ΣµΦ α

 from the training set. The GMM generated from the training set will 
be used in vehicle classification as in Fig. 10.  
 

 
    

Figure  10: Main block diagram of pattern recognition 
 

   Any vehicle feature vector x  is classified to class iC
 if it maximizes 

)().|(=)|( iii CpCxpxCp
. If all the classes are assumed to occur with the same probability, 

then the concern is to maximize 
)|( iCxp

 for every possible class. GMM is used as a classifier 
in WSN based on the features that are extracted from the vehicle sounds in [43]. Ref. [43] 
concludes that the GMM, as a parametric classifier, outperforms the KNN and SVM classifiers, 
and it also concludes that GMM needs relatively less resources. 

 

3.1.4  Hidden Markov Model (HMM) 
Acoustic signals could be modeled as HMM. HMM has a specific discrete number of unobserved 
states; each state has a transition probability to any other state and an initial probability. Each 
state may be considered as representing a certain sound of the vehicle [23]. Ref. [23] models the 
cepstral coefficients that are obtained from the time domain signal as HMM, where the pdfs of the 
states are assumed to be Gaussian with non-zero means and with a diagonal covariance matrix. 
Modeling the vehicle sounds as HMM is based on the assumption that the acoustic signal of the 
vehicle is consisting of a sequence of a discrete number of sounds, where the statics of each 
sound of these sounds is described by a separate state. The parameters of the HMM are: the 
state transition probability to any other state, the initial probability for each state, and the 
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observation pdf parameters for each state. Estimation of the maximum likelihood parameters of 
the HMM given a data set of the vehicle sounds can be done by a special case of the 
Expectation-maximization algorithm called the Baum-Welch algorithm; it is also known as the 
forward-backward algorithm. HMM implementation for vehicle classification is based on the 
estimation of the sequence of states, given a sequence of observations. Some known algorithms 
are used for that such as the Viterbi algorithm. GMM is static pattern model, while HMM is a 
sequential pattern model. 
 
3.1.5  Minimum Distance Approach 
Minimum Distance Approach (MPP) is a simple parametric classifier that is based on the 
minimum distance between the feature vector and the average of the class distribution. MPP 
assume the distribution of the training set of each class as Gaussian distribution. MPP measure 
the distance between the average of each class distribution and the feature vector of the test 
data, then it corresponds the test data to the class that has the minimum distance. MPP is used 
as a classifier in Refs [13],[19],[44] . 
 
3.2  Non-parametric Classifiers 
 In this kind of classifiers no assumptions are made about the probability density function for each 
class. 
 
3.2.1  KNN classifier 
KNN is a simple and accurate method for classifying objects based on the majority of the closest 
training examples in the feature space. KNN is rarely used in wireless sensor networks because it 
needs large memory and high computation. In our experiments we set K to be three. So the KNN 
classifier finds the closest three neighbors out of all the training set. After that, the KNN classifier 
counts how many of these three is in class one and how many is in class two then based on the 
majority classify the tested one. KNN is implemented in many literatures as a benchmark to 
evaluate other classifiers [21],[31],[34],[35],[44] 

 
3.2.2  Artificial Neural Network (ANN) 
Artificial neural networks are a learning intelligent tools used to solve problem that hard to be 
modeled analytically. A key feature of neural networks is the ability to learn from examples of 
input/ output pairs in a supervised fashion. In [40], rough neural network is used to recognize type 
of vehicles in WSN. The network has 25 input neurons, corresponding to the 25-dimisional 
feature vector, 25 hidden layer neurons, and 4 output neurons. Neural network classifier and the 
maximum likelihood classifier are compared concerning their advantages and disadvantages in 
[45]. Artificial neural networks were used as a technique to classify and identify vehicles based on 
acoustic signals in [46], where a two-layer back propagation neural network is trained by the 
output of a self organized maps neural network.  

 

3.2.3  Fuzzy Logic Rule-Based classifier 
 Fuzzy Logic Rule-Based classifier (FLRBC) maps the input to the output based on some rules 
[64]. Fuzzy logic inference is a simple approach to solving a problem rather than attempting to 
model it mathematically. Empirically, the fuzzy logic inference depends on human's experience 
more than the technical understanding of the problem. As in Fig. 11, fuzzy logic inference 
consists of three stages:   
  1.  Fuzzification: map any input to a degree of membership in one or more membership      
functions, the input variable is evaluated in term of the linguistic condition.  
  2.  Fuzzy inference: fuzzy inference is the calculation of the fuzzy output.  
  3.  Defuzzification: defuzzification is to convert the fuzzy output to a crisp output.  
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Figure  11: The stages of fuzzy logic inference design.  
 

Cascaded fuzzy classifier is proposed in [47] to classify ground moving vehicles locally at sensor 
nodes in WSN. 

  
3.2.4  Decision Tree 
Decision tree is a nonlinear classifier that depend on a multistage decision system, where the 
classes are sequentially rejected until reach the accepted class. This kind of classifier split the 
feature space into unique regions, where each region represents a class [65]. In Refs. 
[38],[43],[66] decision tree is utilized as a classifier. C4.5 algorithm is used to generate a decision 
tree in [38]. Decision tree is sometimes describes as classification tree or regression tree. 
Classification And Regression Tree (CART) analysis is used to refer to both of classification and 
regression. 
 
3.3  Classifiers Evaluation and Comparison 
Classification evaluation is to measure how accurate the classifier is. There are three main 
classification metrics that are used to evaluate the performance of the classifier namely: Correct 
classification rate, detection probability, and false alarm probability. Correct classification rate is 
the ratio of the correctly classified events from all the samples for all classes. Detection 
probability for a certain class is the ratio of the correctly classified events from the samples of that 
class. False alarm probability for a certain class is the ratio of the wrongly classified events for 
that class from all samples of other classes. Classifiers might have a high accuracy if tested with 
the same training data. Thus, a classification validation is needed. There are two common 
methods that are used for classification validation. The first is called hold-out or split-sample 
method, where a single part of the data is set a side for testing. The second method is the cross 
validation method. k-fold cross-validation divides the data into k subsets. The classifier is trained 
k times, each time leaving out one of the subsets from training to be used for testing the classifier. 
If k equals the sample size, the method is called leave-one-out. Ref [45] compared the 
recognition rate and the robustness of two classifiers, neural network classifier and maximum 
likelihood classifier. Neural fuzzy techniques for classification of vehicle acoustic signal is used in 
Ref. [29]. In [38], Four different classifiers decision tree (C4.5), KNN, probabilistic neural network 
(PNN) and SVM are cpmpared. The classification results indicate the performance of SVM 
outperforms C4.5, KNN, and PNN. SVM, ML, and KNN are used in [35] to evaluate their data set. 
In this paper, five different classifiers are compared as in Fig. 12. 
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Figure  12: A comparison of the correct classification rates for different classifiers for two different 
feature extraction methods. The first one is base on the spectrum analysis and the other one is 

based on wavelet packet transform. 
 
3.4  Single Target Classification 
Single vehicle classification is to label or classify a vehicle to one of the predefined classes. 
Classification is based on the feature vector, which is generated from the observed continuous 
stochastic signal. This stochastic signal could be acoustic, seismic, electromagnetic, or any other 
kind of signals. The feature vector will be the input of the classifier. The classifier could be any 
kind of the classifiers that are mentioned in the classifiers section. Classifiers could be parametric 
or non parametric. The parameters of the parametric one are estimated from a training set. Non 
parametric classifiers are also trained by a training set. Single vehicle classification techniques 
can be used for multiple vehicle classification after sources separation or with the assumption that 
that the sensor will not observe two or more vehicles at the same time. This assumption is not 
realistic, especially in battlefield scenarios. 

 

3.5  Multiple Targets Classification 
Many researchers assume that multiple targets could be separated in time and space. However, 
in many of the surveillance applications this assumption is not realistic, where multiple targets can 
exist in the sensing range of one sensor at the same time as in Fig. 13. This makes the sensor 
observes a combination of signals. The combination of multiple signals can be modeled as linear, 
nonlinear, or convoluting combination of the single target signals. Ref. [67] exploits the classifier 
that is trained in single target classification to classify a convoy of vehicles. Most of the literature 
models the multiple targets classification problem as a Blind Source Separation (BSS) problem. 
BSS problem has been tackled in the literature in many ways, such as neural network [68]-[70] 
and Independent Component Analysis (ICA). ICA is frequently used to separate or extract the 
source signals  [71]-[75]. In  [76] the source extraction problem in wireless sensor network is 
studied in two different sensor network models. Fast fixed-point ICA algorithm is used for source 
separation [51] presents a statistical method based on particle filtering for the multiple vehicle 
acoustic signals separation problem in wireless sensor networks. In  [77], a recognition system 
links BSS algorithm with an acoustic signature recognizer based on missing feature theory (MFT). 
The result of the comparison between FasICA, Robust SOBI, and their work shows that both of 
former algorithms are better for mixtures of two signals and more. Refs. [78],[79] discuss problem 
of source estimation in sensor network for multiple targets detection, then a distributed source 
estimation algorithm is developed. These solutions have some drawbacks that make it hard to be 
implemented in WSNs. It is evident that the manager nodes need to perform source separation 
and source number estimation. These tasks are computationally intensive when executed on the 
individual sensor nodes. The manager node does the following: estimation of the number of 
sources, separation or extraction of sources, classification of sources. [80] presents a system that 
is able to recover speech signal in the presence of additive non-stationary noise. This done 
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through a combination of the classification and mask estimation. Ref. [37] uses a multi-variate 
Gaussian classifier for classifying individual acoustic targets after beamforming the received 
signal in the direction of the targets. We direct the reader for more information in beamforming to 
[81]. Classification of multiple targets without the separation of the sources based on multiple 
hypothesis testing is an efficient way of classification [82]. A distributed classifiers based on 
modeling each target as a zero mean stationary Gaussian random process and the same for the 
mixed signals is proposed in Ref. [83].  
 
 

 
    

Figure  13: A summary diagram of the techniques that are used in multiple vehicle classification 
using WSNs. 

 
 

4. COLLABORATIVE CLAASSIFICATION  
Data fusion, information fusion, data aggregation, multisensor integration and sensor fusion are 
terms that have been used interchangeably in the literature to refer to the idea and theory of 
fusion. In WSNs data fusion is needed for the following reasons: sensor failure, sensor and 
technology imprecision, limitations in spatial and temporal coverage [84]. Information fusion can 
be classified according to the relationships between the sources as: redundant, cooperative , or 
complementary. It also can be classified according to the abstraction level of the processed data 
as: low-level (raw data), medium-level, high-level (decision fusion), or multi-level fusion. 
 
The main objective of collaboration classification is to extract the most beneficial information from 
the collected data. Because every target has its own signature according to the type of generated 
signal. Deployment of different kinds of sensors, in the same sensor node or in different sensor 
nodes, increases the performance of collaborative signal processing. This stems from the fact 
that every sensor type has a different interference and a measurements noise. Efficient and 
reliable decision making needs data fusion and collaborative signal processing. Distributed 
classification algorithms fuse signal or decisions from multiple sensor nodes, then classify the 
targets based on a priori statistical information [85],[86]. Collaboration could be across the sensor 
nodes, or within a sensor node only when it includes multiple modalities of data. Ref. [67] shows 
the improvement in classification error because of the collaboration. WSNs have two kinds of 
collaboration signal processing models: data fusion and decision fusion. For more information in 
data and decision fusion see [87],[88]. Ref. [89] analyzes both models. Exploiting the 
collaboration among the sensor nodes enhances even the sensing coverage for the network [90]. 
Decision fusion has less accuracy than data fusion. However, data fusion has more computation 
and communication overhead than the data fusion. In decision Fusion, Sensor nodes do some 
processing then send the decision to the manager node as in Fig. 15, where these decisions 
could be hard or soft decisions [91]-[93]. Manager node fuses all the decisions and come up with 
the best decision. Rules of decision fusion could be based on: voting, averaging, Bayesian, 
Dempster-Shafer (DS) sum or other rules as in [94]. An example of decision fusion is the tracking 
system that is proposed in [95], where detection and classification are performed in the sensor 
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node while tracking is performed in the sink node. Data and decision fusion are increasingly 
implemented in sensor network because of hardware improvement, advances in processing 
methods, and advances in sensor technology [96]. Fig 14 shows some of of the data fusion 
applications. Data and decision fusions techniques answer the question of how to combine the 
data and decisions from the sensor nodes in a network to obtain a final decision with optimal 
resource consumption. Sensor nodes make the measurements, then send row measurements, 
processed measurements, or local posterior to the fusion center. Fusion architecture can be 
hierarchical or distributed. In hierarchical fusion, the data or decision is fused from the sensor 
node to the higher level fusion center. While in distributed fusion architecture, the data or decision 
is broadcasted to all other fusion centers. 
 
There are various scenarios of data and decision fusion for single and multiple sensors within the 
sensor node or cross over the network. Ref. [97] has a survey that focuses on the decision fusion. 
Ref. [98] studies a distributed decision fusion, where the local decision makers send the ranking 
of the hypotheses, rather than just the most likely hypothesis. A consensus algorithm which 
weighs the measurements of the neighboring nodes is presented in [99]. 
 
 Data fusion from seismic and acoustic signal improves the classification accuracy [67]. In Ref. 
[43], a decision tree generated by the classification and regression tree algorithm is used to fuse 
the information from heterogeneous sensors. Multi-resolution integration (MRI) algorithm is used 
in [19] as a data fusion algorithm to handle the uncertainty of sensor output. MRI algorithm is 
based on building an overlap function from the outputs of the sensors, where this function is 
resolved at finer scales.  
 
 

5. OPEN REASEARCH 
 For single node processing, researcher use mathematical or statistical tools to extract the 
features that can represent a unique signature for each vehicle or class. Then another tools are 
used to classify any new utterance to one of the predefined classes. The main goals of this kind 
of research is either to increase the performance of the classification or decrease the complexity. 
The relation between performance and complexity is a trade-off relation. Thus the research is 
open in both areas. Optimal classifier is the classifier that increase the performance and decrease 
the complexity. Thus, it will be so beneficial to have a standard metrics that have both measures 
and have a public data base where researcher can evaluate their algorithms based on these 
metrics using a public data base. Single node processing versus collaborative processing is a hot 
area of research. Collaborative processing answers the question of how to combine the data and 
decisions from the sensor nodes in a network to obtain a final decision with optimal resource 
consumption. Collaborative processing is an open area for research. Fusion modeling, where the 
signal to noise ratio for both acoustic and communication channel are considered, is critical to 
find the optimal number of decision makers. Utilization of time and spatial correlation across 
different nodes is crucial in collaborative processing. All of the above is related to the signal 
processing techniques that are used for feature extraction, classification, and data and decision 
fusion. However this is related to the communication protocols that are used in WSN. 
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Figure  14: Data fusion applications. 
 

 

6. CONCLUSIONS 
The recent research related to classification process of ground vehicles in wireless sensor 
network, based on acoustic signals, is reviewed in this paper. Classification process involves 
three main components: feature extraction, classifier design and selection, and information 
fusion. Feature extraction methods are classified based on the extraction domain to time, 
frequency, and time/frequency. Classifiers are also categorized into parametric and non 
parametric classifiers. In wireless sensor networks decision fusion is preferred rather than data 
fusion because of the power constraints. This paper proposed two feature extraction methods. 
One is based on wavelet packet transform and the other is based on spectrum distribution. both 
methods give almost the same separability and classification rate. 

 

 
Figure  15: One cluster of a wireless sensor network. 
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Abstract 

 
It was found in previous works in modeling head-related impulse responses 
(HRIRs) using principal components analysis (PCA), both in frequency and time 
domain, that different sets of measured HRIRs were used, which were obtained 
from measurements by various institutions involving different kinds of subjects of 
human being, anesthetized live cat and acoustic manikin. Groups of researchers 
also applied different number of basis functions resulted from PCA, i.e. 4 – 10 
basis functions. Then, the performance of the models was tested using different 
parameters, i.e. spectral distortion score and mean square error (MSE). Since 
there were varied factors mentioned above, a fair comparison among these 
models is difficult to achieve. Using PCA, we modeled the original HRIRs, 
minimum-phase HRIRs, direct-pulse HRIRs, normalized HRIRs in the time 
domain. However, in frequency domain, the models of magnitude head-related 
transfer functions (HRTFs), log-magnitude HRTFs, standardized log-magnitude 
HRTFs were performed. We performed a comprehensive comparison of various 
types of preprocessing of the previous data types in modeling HRIRs based on 
PCA using ten basis functions, CIPIC HRTF Database, and MSE. Our results 
showed that models of magnitude HRTFs had overall smallest average MSE. On 
the other hand, the best models in time domain were achieved from minimum-
phase HRIRs.  
     
Keywords: HRIR Model, HRTF Model, Principal Components Analysis.  
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1. INTRODUCTION 

Human being can employ two ears to distinguish directions of various sound sources even by 
visually impaired people. There are three primary cues in perceiving the direction of a sound 
source, i.e. interaural time difference (ITD), interaural level difference (ILD), and spectral 
modification caused by pinnae, head, and torso. These primary sound cues are encrypted in 
binaural Head-Related Transfer Functions (HRTFs). HRTF is defined as the transfer function of 
the acoustic filter of human auditory system, in frequency domain, from a sound source to the 
entrance of ear canal. The counterpart of HRTF in time domain is known as head-related impulse 
response (HRIR). By convolving binaural HRIRs with a sound signal, a listener can localize the 
direction of the sound. Spatial sound synthesis has been widely utilized in various fields because 
of the great supports of digital signal processing in headphone system and multichannel speaker 
system. To implement binaural HRTFs in the creation of virtual auditory space, control of ITD, 
ILD, and spectral modification is the most essential part to give information of sound direction. On 
the horizontal plane, ITD and ILD play the main role in perceiving the direction of the sound 
source [1]. Although these two cues are remaining almost the same on the median plane, 
perception of sound direction is much affected by spectral modification mainly due to reflection 
and diffraction of pinnae folds [2].  
 
HRIRs are resulted by reflections and diffractions of sound wave by human body, therefore, 
HRIRs vary significantly from subject to subject [3-4]. Poor vertical effect and front-back reversal 
were observed when non-individualized HRIRs were used to generate spatial sound image [3]. 
Application of individual HRIRs will be the most appropriate approach to create precise 
localization cues. However, measuring individual HRTFs of a listener is a time consuming 
process and economically expensive. Recently researchers have studied many other approaches 
to overcome the individual variability of HRIRs without directly measuring individual HRIRs. One 
effective and simple approach is modeling the HRIRs which includes several parameters that can 
be adapted by anthropometric measurements of a listener to produce his / her individualized 
HRIRs.  
  
Several authors had proposed functional models of HRTFs [5-7]. They sought a mathematical 
equation that represented the HRTF as a function of frequency and direction, such that the 
models could provide explicit mathematical relationship between the HRTF and source location. 
Functional approaches would reduce the storage requirement and represent the HRTF at an 
arbitrary direction. However, attempts to describe the HRTF in a simple mathematical equation 
have been of only limited success. Following the approach as in [6], Algazi et al. proposed a 
structural model of HRTF, which attempted to relate functional HRTF to anthropometric 
measurements [8].  
 
In this research, we concerned on the low-dimensional and orthogonal models for a set of HRIRs 
which have been generated by using the Karhunen-Loeve expansion or Principal Components 
Analysis (PCA). Kistler and Wightman [4] proposed a model based on PCA and minimum-phase 
reconstruction. The set of HRIRs was preprocessed to result in a set of logarithms of HRTF 
magnitudes. Then, PCA was employed to the logarithms of the HRTF magnitudes after the 
removal of direction-independent and subject-dependent spectral features. Middlebrooks and 
Green [9] and Hu et al. [10-11], also applied the same preprocessing to the HRIRs data as in [4]. 
Another research was the spatial feature extraction and regularization model for the HRTFs 
proposed by Chen et  al . [12]. They preprocessed the set of HRIRs to become a set of complex-
valued HRTFs. Using PCA, the models of HRTFs were expressed as weighted combinations of a 
set of complex-valued eigen transfer functions. The sample weights were determined by 
projecting all measured complex-valued HRTFs onto the eigen transfer functions. A functional 
representation for weights was attained by applying a thin plate generalized spline smoothing 
model to regularize the sample weights. This approach maintained the phase of the spectral 
components and model accuracy at a whole upper 3/4 sphere but it dealt with large amounts of 
complex-valued computation in matrix-vector products and two-dimensional splines.  
 



Hugeng, Wahidin Wahab & Dadang Gunawan 

Signal Processing: An International Journal (SPIJ), Volume (4) : Issue (4) 203 

Another group of researchers, Inoue et al. [13], attempted to estimate HRTFs using 
anthropometric measurements. They modeled the magnitude HRTFs using PCA and the weights 
were estimated by a regression model using anthropometric measurements. The estimated HRTF 
of the main response was reconstructed as a minimum-phase response. Then, ITDs were 
modeled using multiple regression analysis from anthropometric measurements. The complete 
models of HRTFs for both ears were reconstructed by combining the magnitudes model and ITDs 
model. They evaluated the estimation performance using a spectral distortion (SD) score. Our 
previous work [14] has similar approach as [13] in preprocessing the set of HRIRs. However, we 
evaluated the model performance using mean square error (MSE). Xu et al. [15] also proposed the 
modeling of HRIRs in the frequency domain. They preprocessed the database of HRIRs into a set 
of standardized log-magnitude HRTFs. Because of the variations of HRTFs, it is necessary to 
standardize them before performing PCA. The log-magnitude HRTFs were standardized by 
subtracting the mean and dividing by the standard deviation. This preprocessing was different from 
that of [4] only at the dividing by standard deviation. They developed a method to individualize 
HRTFs using anthropometric measurements. They compared the existing [4],[13] and their 
improved methods by a paired-sample t-test. The performance of the HRTFs models was also 
measured using SD score. Using PCA, Sodnik and Tomazic [16] modeled the linear amplitude 
spectra of HRTF, called magnitude HRTF by other researchers, thus excluding the phase 
spectrum and ITD. They concentrated on the azimuth perception on the horizontal plane. The 
performance of the HRTF models was measured by subjective localization tests from 15 subjects. 

Similar work of modeling HRTF using PCA in the time domain was performed by Wu et al. [17]. 
Each HRIR of the set of all HRIRs used in their model was normalized by its level gain. They 
defined the square root of the energy of HRIR as its level gain. The normalized HRIRs, having 
same energy and onset time, would have different spectral characteristics. The variances of 
HRIRs are decreased by these normalizing procedures. The object for measuring HRIRS was an 
anesthetized live cat. They resulted in that the modeled HRIRs were nearly identical to the 
measured HRIRs. Other works were proposed in [18-19]. Before PCA, they preprocessed the 
median HRIRs to remove the initial time delay and to extract the early response that lasted for 
certain time interval since the arrival of the direct pulse. Shin and Park [18] extracted only the 
response of pinna with length of about 0.23 ms (10 samples with sampling frequency, fs, of 
44,100 Hz). In spite of this, Hwang and Park [19] included also the response of head and torso. 
They employed 1.5 ms of HRIR (67 samples with same fs). They individualized the resulted HRIR 
model subjectively and then tested the individualization method by subjective listening tests. We 
also proposed an individualization method for HRIR model using PCA based on multiple 
regression analysis [20]. We preprocessed the measured HRIRs from CIPIC HRTF Database into 
minimum-phase HRIRs using cepstrum analysis. We tested our individualization method both 
objectively and subjectively. The performance of our HRIRs models was tested objectively using 
MSE as used in [4],[17].  
 
The above mentioned previous works in modeling HRIRs, both in frequency and time domain, 
used different sets of HRIRs, which were obtained from measurements by various institutions 
using subjects of human being, anesthetized live cat and acoustic manikin. In modeling HRIRs 
using PCA, they also used different number of basis functions, 4-10 basis functions. Also the 
performance of the models was tested using different parameters, i.e. SD score and MSE. Due to 
the varied subjects, sets of HRIRs, number of basis functions used in PCA and performance 
parameters used, a fair comparison among these models is difficult to obtain.  
 

2. MODELING HRIRS BASED ON PCA  

This paper presents a comprehensive comparison of various preprocessings of a set of HRIRs in 
modeling HRIRs based on PCA using ten basis functions and CIPIC HRTF Database [21]. The 
goal of our work is to obtain an effective preprocessing in modeling HRIRs based on PCA by 
analyzing this comparison. 
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Types of Preprocessing Used  
In this research, we used the following data types in modeling HRIRs, in the time domain, i.e. 
original HRIRs (directly from database, without preprocessing), direct-pulse HRIRs or HRIRs with 
initial time delay removed [18-19], minimum-phase HRIRs [20], and normalized HRIRs [17]. In 
spite, in the frequency domain, the data types used in modeling HRIRs were magnitude HRTFs 
[13-14],[16], log-magnitude HRTFs [4],[9-11], and standardized log-magnitude HRTFs [15]. We 
defined the above terms of data types to avoid ambiguity of possibly different terms used among 
groups of researchers. Each preprocessing involved in achieving related data type is explained in 
more detail in the given references.  
 
As proposed in [19], direct-pulse HRIRs were obtained before PCA by removing the initial time 
delay and extracting the early samples that lasted for 1.5 ms or 67 samples with fs = 44,100 Hz 
since the arrival of direct pulse. The initial time delay of HRIR indicates the propagation time of 
sound from sound source to eardrum. If it is required later, it can be re-inserted afterwards. The 
response of 1.5 ms includes the effects of pinna, head and torso. As explained in [14], the 
minimum-phase HRIR can be obtained through the calculation of real cepstrum of its original 
HRIR, which has arbitrary phase. It can be said that the minimum-phase HRIR is the removed 
initial time delay version of HRIR, similar with the direct-pulse HRIR. Original HRIR and its 
correspond minimum-phase HRIR have the same magnitude spectrum in the frequency domain. 
We took only 67 first samples out of 200 samples in the minimum-phase HRIR. Thus, in both 
types of preprocessing, the size of dataset to be analyzed in PCA was reduced without loss of 
meaningful information by the preprocessing. 
 
Due to the head shadow effect, each HRIR has different energy which equals to the sum-square 
of samples of that HRIR. The square root of the energy was defined in [17] as the level gain of 
the HRIR. The normalized HRIRs were obtained by normalizing all original HRIRs by their 
correspond level gains. The normalized HRIRs, having the same energy and onset time, would 
have different spectral characteristics. The normalizing procedures decrease the variances of 
HRIRs. We took only 120 samples of the original HRIRs and the normalized HRIRs for modeling 
in PCA because these responses already include responses of pinna, head, and torso, on other 
side, the level of rest samples is very small and not significant. 
 
Complex HRTFs were attained by implementing 256-points fast Fourier transform (FFT) to all 
original HRIRs from the database used. The magnitude HRTFs are then the absolute values of 
these complex HRTFs. Only 128 first frequency components of a magnitude HRTF, |HRTF|, were 
taken into analysis because of the symmetry property of a magnitude spectrum. Then, we defined 
a log-magnitude HRTF as twenty times the base-10 logarithm of its magnitude HRTF (20 log10 
|HRTF|). Finally, a standardized log-magnitude HRTF was obtained by standardizing or 
normalizing a log-magnitude HRTF with its standard deviation.   
 
Principal Components Analysis 
We explain below only the modeling of magnitude HRTFs using PCA with the same number of 
basis functions, subjects, and sound directions used as in the modeling of other data. We took 
also only 128 first frequency components of log-magnitude HRTF and standardized log-
magnitude HRTF for analysis in PCA because of the same reason as before. The variable N 
below is equal 120 in modeling original HRIRs and normalized HRIRs and is replaced by 67 when 
modeling minimum-phase HRIRs and direct-pulse HRIRs. In modeling other data than magnitude 
HRTFs, the data of magnitude HRTFs is simply replaced by the desired data.  
 
The entire magnitude HRTFs were computed from left-ear and right-ear HRIRs of 45 subjects from 
all sound sources with 1250 directions in sphere. There are 25 azimuths and 50 elevations of 
sound sound directions for each ear of a subject, so that a total of 112,500 magnitude HRTFs 
were produced. A matrix composed of DTFs is needed by PCA. The original data matrix, H (NxM), 

is composed of magnitudes of HRTFs, in which, each column vector, hi (i=1,2,…,M), represents a 
magnitude HRTF of an ear of a subject in a direction in sphere. The number of magnitude HRTFs 
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of each subject is 2500 (2 ears x 1250 directions). Hence, the size of H is 128 x 112,500 (N=128, 

M=112,500). The empirical mean vector (µ: Nx1) of all magnitude HRTFs is given by, 

µ = (1/M)∑
=

M

i 1

hi.                                    (1)                    

The DTFs matrix, D, is the mean-subtracted matrix and is given by,  
 

D = H - µ.y,                                       (2)  
 

where y is a 1xM row vector of all 1’s. The next step is to compute a covariance matrix, S, that is 

given by 

S = D.D*/ (M-1)               (3) 

where * indicates the conjugate transpose operator. The basis functions or principal components 

(PCs), vi (i=1,2,…,q), are the q eigenvectors of the covariance matrix, S, corresponding to q 
largest eigenvalues. If q = N, then the DTFs can be fully reconstructed by a linear combination of 
the N PCs. However, q is set smaller than N because the goal of PCA is to reduce the dimension 
of dataset. An estimate of the original dataset is obtained here by only 10 PCs, which account for 
more than 90% (exactly 94.30%) variance in the original data D. By using only 10 PCs to model 

magnitude HRTFs, we expected to obtain satisfactory good results. The PCs matrix, V = [v1 v2 … 
vN], that consisted of complete set of PCs can be obtained by solving the following eigen equation,  

 
S V = Λ V                         (4) 

 
where Λ = diag{ λ1,…,λ128 }, is a diagonal matrix formed by 128 eigen values, where each eigen 
value, λi, represents sample variance of DTFs that was projected onto i-th eigen vektor or PC, vi.    
 
Then, the weights of PCs (PCWs), W(10x112,500), that correspond to all DTFs, D, can be 
obtained as, 

 
W = V*.D,                                                    (5) 

 

where PCs matrix now was reduced to V = [v1 v2 … v10]. PCWs represent the contribution of each 
PC to a DTF. They contain both the spatial features and the inter-individual difference of DTF. 
Thus, the matrix consisted of models of magnitude HRTFs, Ĥ, is given by, 
 

Ĥ = V.W + µ.y.                                                                        (6) 
 

The performance of the models of magnitude HRTFs, resulting from PCA, was evaluated by 
comparing the mean-square error of the disparity between the approximated magnitude HRTFs 
and the original magnitude HRTFs calculated from database, to the mean-square error of the 
original magnitude HRTFs in percentage, which is stated as 

ej(θ,ø) = 100 % x || hj(θ,ø) – ĥj(θ,ø)||
2
 / || hj(θ,ø)||

2
                            (7) 

where hj(θ,ø) is the j-th original magnitude HRTF in the direction with azimuth, θ, and elevation, ø, 
ĥj(θ,ø) is the corresponding approximated or model of magnitude HRTF, hj(θ,ø). As the error 
increases, the performance of the model of magnitude HRTF deteriorates. On the contrary better 

localization results will be achieved with small error, ej(θ,ø), which is called MSE by some 

researchers [4],[17]. 
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3. EXPERIMENTS’ RESULTS AND ANALYSES 

 
Analysis of Percentage Cumulative Variance and Average MSE 
Tabel 1 shows the percentage cumulative variance of DTFs or direct impulse responses (DIRs) of 
each data type in the database explained by PC-1 (v1) until PC-2, PC-5, PC-10, and PC-13 (v2, 
v5, v10, v13) respectively. Percentage cumulative variance is obtained from the percentage of 
cumulative sum of first largest eigen values that correspond to first PC until a particular PC, 
compared to the total cumulative sum of all PCs. As we can see, some cumulative variances of 
PCs from several data types do not exceed 90% for first 10 PCs, especially worse from original 
HRIRs and normalized HRIRs. This fact influences the performance of models of those data 
types. The average MSE across sound directions and subjects of the models of original HRIRs 
was only 48.5% using 10 PCs, similarly that of normalized HRIRs was only 32.0%. These bad 
results due to the time delay and many details included in those data types. It is quite difficult for 
PCA to estimate the time delay and details in those HRIRs.  
 
By using PCA with 10 PCs, the best result for modeling HRIRs in time domain was achieved from 
minimum-phase HRIRs. The cumulative variance and average MSE were 90.40% and 7.26% 
respectively. In the frequency domain, we attained best result from magnitude HRTFs with 
94.30% of cumulative variance and only 3.30% of average MSE. Much smaller average MSEs 
are observed from models in frequency domain since they have smoother spectra than impulse 
responses in time domain. 
 
By using the same setup for PCA, the same database, and the same performance parameter as 
in [18], our models of minimum-phase HRIRs in median plane outperformed the models of direct-
pulse HRIRs in median plane as proposed by Hwang and Park [18]. Using 10 PCs, their models 
had average MSE of about 6.67% [18] compared to the average MSE of our models of 5.31%. 
We had also performed the individualization of magnitude HRTFs in horizontal plane using 
multiple linear regressing (MLR) [14]. Comparable work was done by Hu etal. [10]. However, they 
performed the individualization of log-magnitude HRTFs in the horizontal plane. As we explained 
in [14], by comparing the performance shown in [10], our individualization of magnitude HRTFs 
was much better than that of their individualization of log-magnitude HRTFs. We believed that the 
selection of preprocessing used in our work supported the better results.          
 
The application of more PCs would reduce the modeling error between each data type of HRTF 
in database and its model, however, it costed more computing time and larger memory space. 
The PCs-matrix, V, that at first has 128x128 elements was reduced into a matrix of only 128x10 
elements in the cases of HRTFs modeling since we used only the first 10 PCs out of all 128 PCs. 
Thus, we needed only 10 PCWs to perform the model. One can see obviously the advantage of 
PCA in reducing significantly the memory space needed. 
 

Data Type 
Cumulative Variance (%)  Average MSE (%) 

2PCs 5PCs 10PCs 13PCs 2PCs 5PCs 10PCs 13PCs 

Original HRIRs 27.98 50.90 70.89 79.16 83.41 66.25 48.50 41.49 

Direct pulse HRIRs 47.02 73.07 89.15 92.91 42.02 20.97 8.91 6.24 

Minimum phase HRIRs 56.98 77.89 90.40 93.57 28.97 18.44 7.26 4.82 

Normalized HRIRs 25.97 46.41 67.26 75.18 72.37 52.38 32.00 24.26 

Magnitude HRTFs 72.61 86.94 94.30 96.13 11.35 6.95 3.30 2.35 

Log-magnitude HRTFs 76.46 85.91 92.38 94.24 17.81 10.17 5.17 3.70 

Standardized log-magnitude HRTFs 73.20 81.48 88.69 91.16 18.61 12.46 7.43 5.71 

 
TABLE 1: Percentage Cumulative Variance Explained and Average MSE across Directions and Subjects. 

 
Because of lack of space in this paper, the following results’ analyses were performed only for 
models of minimum-phase HRIRs and of magnitude HRTFs using only 10 PCs and the 
corresponding MSEs in the sphere from Subject-003 of CIPIC HRTF Database. 
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Analysis of Basis Functions of PCA in Modeling Minimum Phase HRIRs  
The modeling method, PCA, of minimum-phase HRIRs was performed as explained in the 
following. At the beginning, all original HRIRs in the database (with total number of 112,500 
HRIRs) were converted into a set of minimum-phase HRIRs using the method explained in [19]. 
Mean of these HRIRs was then calculated. This mean was subtracted from each minimum-phase 
HRIR to give corresponding minimum-phase direct impulse response (DIR). All minimum-phase 
DIRs were applied to compute samples covariance matrix, S, as shown in Eq. 3. By solving the 
eigen equation (Eq. 4) that involving S, we obtained matrix of basis functions, V, that consisted of 
67 complete basis functions, i.e. V = [v1  v2  …  v67]. A perfect modeling of minimum-phase DIRs 
was achieved by employing complete basis functions. But we used only 10 basis functions (PCs) 
which explained 90.4% variance of all minimum-phase DIRs. 
 

 
 

FIGURE 1: The First Ten Basis Functions Extracted from PCA in Modeling Minimum Phase HRIRs 

 
Fig. 1 shows basis functions v1 to v10 that were applied in modeling minimum-phase DIRs. Basis 
functions v1 to v10 correspond to 10 consecutive largest eigen values, from the largest to the 
smallest one (λ1 > λ2> ... > λ67 where λi is the i-th eigen value resulted from PCA). As shown in the 
figure, v1 has the simplest form. When the eigen value become smaller, the correspond basis 
function has a form with more details. Basis functions v1 to v5 have non zero amplitudes from 0.3 
ms, but v6 to v10 have non zero amplitudes from 0.6 ms. The intervals of amplitude levels were in 
general similar for these basis functions.  

 
Analysis of MSEs of Models of Minimum Phase HRIRs in Sphere from Subject-003  
From the observation of experiments’ results, there are similar errors that occur in the models of 
both ears in the particular regions of interest. Hence, we discuss here only the errors of left ear 
models of minimum-phase HRIRs. Fig. 2 shows MSEs of the models of minimum-phase HRIRs 
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from left ear of Subject-003 in sphere of all sound directions. As seen, small MSEs occur in 
center regions around the head, i.e. region near median plane with azimuth 0

0
 and plane above 

head with elevation 90
0
 of sound directions. Left ear average MSE across directions on the 

median plane is 4.23% and that of the plane above head is 2.03%. Across directions on 
horizontal plane (elevation 0

0
), the left ear average MSE is 5.15%. Directions in the ipsilateral 

side provided smallest MSEs. Ipsilateral side of left ear is region with azimuth -90
0
 < θ < 0

0
. Left 

ear average MSE across directions with azimuth -80
0
 is 2.65%.  

 
Less fine left ear models of minimum-phase HRIRs occur at the regions below subject, i.e. planes 
with elevation -45

0
 (front below) and 230.6

0
 (rear below), that have average MSEs 13.18% and 

12.62% respectively. Worst left ear modeling occurs for contralateral plane with azimuth 65
0
, that 

has average MSE of 15.33
0
. However, average MSE on the contralateral plane with azimuth 80

0
 

is only 6.86%. Across all directions in sphere, left ear average MSE was 5.07% and that of right 
ear was 5.39%. 
 

 

FIGURE 2: Percentage Mean Square Errors among Original and Models of Minimum Phase HRIRs  

Analysis of Basis Functions of PCA in Modeling Minimum Phase HRIRs  
It is shown from Fig. 3 that all of the first 10 basis functions can be said to be constant near zero 
at frequencies below 2 – 3 kHz because there are no dependencies between sound directions 
and variations of magnitude HRTFs in this frequency region. The sum of linear combination of 
these ten basis functions will be near zero or in other words that it is independent from the sound 
directions. Above ± 3 kHz, all basis functions posses non-zero magnitudes. Higher frequency 
variations in these basis functions (except in first basis function) represent higher frequency 
peaks and notches that depend on sound directions of all magnitude HRTFs. As happened in 
modeling minimum-phase HRIRs, first basis functions in this modeling has also the simplest form 
of magnitude spectrum. One can said this basis function as the amplification in the region from 
about 3 kHz to 22.05 kHz. More detailed magnitude spectrum is found at the basis function which 
corresponds to smaller eigen value. In general, the magnitudes of the spectrum can be seen to 
be in similar levels interval. 
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FIGURE 3: The First Ten Basis Functions Extracted from PCA in Modeling Magnitude HRTFs 

 
Analysis of MSEs of Models of Magnitude HRTFs in Sphere from Subject-003  
We can see in Fig. 4, a very good performance of models of magnitude HRTFs from Subject-003 
across all directions in sphere with MSE about 5%. Fig. 4 shows MSEs of the models of 
magnitude HRTFs from left ear of Subject-003 of sound sources in sphere. Region with smallest 
MSEs is the region in the center of sphere, i.e. region around median plane. Average MSE across 
directions on median plane is 1.95%, while that on horizontal plane is 2.39%. The average MSE 
of directions on nearest ipsilateral plane with azimuth -80

0
 is 1.47%, while that of directions on 

farthest contralateral plane with azimuth 80
0
 is 2.62%. Smallest average MSE was achieved from 

the directions on the plane above head with elevation 90
0
, i.e. 1.15%. On front below plane with 

elevation -45
0
 and rear below plane with elevation 230.6

0
, the average MSEs are worse, i.e. 

6.30% and 5.05% respectively. The overall left ear average MSE in sphere is 2.44 and that of 
right ear is 2.53%.   
 
For models of both minimum-phase HRIRs and magnitude HRTFs, fine performance of models in 
the region near the hearing ear causes from the fact that the HRIRs has generally larger energies 
compared to those of directions far from the hearing ear. One advantage of minimum-phase 
HRIRs is that they have removed time delays. On the other hand, magnitude HRTFs have quite 
smooth spectrum. PCA produced a set of PCs that could approximate well respective data types. 
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FIGURE 4: Percentage Mean Square Errors among Original and Models of Magnitude HRTFs  

4. CONSLUSION 

We proposed, using PCA, the modeling of magnitude HRTFs in frequency domain and the 
modeling of minimum-phase HRIRs in time domain. Using PCA with 10 basis functions from 
CIPIC HRTF Database, we compared the performances of models of 7 data types, i.e. original 
HRIRs, minimum-phase HRIRs, direct-pulse HRIRs, and normalized HRIRs, in time domain; also 
magnitude HRTFs, log-magnitude HRTFs, and standardized log-magnitude HRTFs, in frequency 
domain. Magnitude HRTFs showed the best performance with smallest average MSE across all 
HRIRs in database. On the other hand, the best models in time domain were achieved from 
minimum-phase HRTFs. 
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Abstract 

 
WLAN plays an important role as a complement to the existing or planned 
cellular networks which can offer high speed voice, video and data service up to 
the customer end. The aim of this paper is to analysis the performance of coded 
WLAN system for different digital modulation schemes (BPSK, 16-PSK, QPSK, 
4-QAM and 16-QAM) under AWGN channel. The performance of convolution 
encoder WLAN system is in terms of graph between BER and SNR. We also 
verify the system performance with different code rates (1/2, 1/3, 2/3 and 3/4) 
and different constraint length. 
 
Keywords: OFDM, BER, SNR, WLAN, AWGN, Constraint length (K) and Code rate (r). 

 
 
 

1. INTRODUCTION 

The Wireless Local Area Network (WLAN) technology is defined by the IEEE 802.11 family of 
specifications. The standard defines a medium access control (MAC) sub-layer and three 
physical (PHY) layers. The goal of the IEEE 802.11 protocol is to describe a wireless LAN that 
delivers services commonly found in wired networks, e.g., throughput, reliable data delivery, and 
continuous network connections. Orthogonal Frequency Division Multiplexing (OFDM) is a very 
attractive technique to achieve the high-bit-rate data transmission and is used in WLAN standard. 
The OFDM system divides the wide signal bandwidth into many narrowband sub channels that 
are transmitted in parallel. The subcarriers are orthogonal to each other means that they are 
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mathematical independent. In 1960, Chang [1] postulated the principle of transmitting messages 
simultaneously through a linear band-limited channel without ICI and ISI. The Saltzberg [2] in 
1967 analyzed the performance of such a system. The major contribution to the OFDM technique 
is given by Weinstein and Ebert [3] which demonstrated the use of the discrete Fourier transform 
(DFT) to perform the baseband modulation and demodulation. Peled and Ruiz [4] suggested the 
filling of guard space with the cyclic extension of the OFDM symbol which solves the problem of 
orthogonality over dispersive channel. 
 
A convolutional coding is done by combining the fixed number of input bits. The input bits are 
stored in the fixed length shift register and they are combined with the help of mod-2 adders. This 
operation is equivalent to binary convolutional and hence it is called the convolutional coding. 
Figure 1 shows that for every input message bit two encoded bits V1 and V2 are transmitted one 
after the other. K is the constraint length of the encoder as it is defined as the number of shifts 
over which input message bit can influence the encoder output. The k is the number of message 
bits and n is the number of encoded output bits. Therefore the code rate, r, of the encoder is r = 
k/n. 
 
 

 

 
FIGURE 1: Convolutional encoder with K=4, k=1 and n=2 

 
Commonly k and n parameters range from 1 to 8, K from 2 to 10 and code rate from 1/8 to 7/8, 
except for deep space application where code rate is as low as 1/100 or even longer to be 
employed.  
 

2.  PHYSICAL LAYER STRUCTURE OF WLAN 
The complete channel encoding setup at transmitting side and decoding setup at receiving side of 
the WLAN physical layer is shown in figure 2. In this setup, the input binary data stream is 
ensured against errors with convolution codes and interleaved.The convolutionally encoded bits 
are interleaved further prior to convert into each of the either four complex modulation symbols in 
BPSK, QPSK, 16-PSK, 4-QAM, 16-QAM modulation. The symbols which are digitally modulated 
transmitted in parallel on subcarriers through implementation as an Inverse Fast Fourier 
Transform (IFFT). To mitigate the effects of inter-symbol interference (ISI), each block of IFFT 
coefficients is typically presented by a cyclic prefix [5, 6, 7]. 
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FIGURE 2: Block diagram showing WLAN Physical Layer transceiver 

 

At the receiving side, a reverse process (including deinterleaving and decoding) is performed to 
obtain the original data bits. The degradation of OFDM performance due to frequency offset 
or/and phase noise is much more severe in comparison with single carrier modulation [8, 9]. A 
few techniques to reduce the frequency and phase error of OFDM may be found in [10, 11]. The 
methods to extend IEEE 802.11 to incorporate adaptive antennas, thereby enhancing security is 
given by Carey, J.M. [12]. 
 
 

3. SIMULATION RESULTS 
The WLAN system using different modulation schemes in the presence of AWGN channel was 
simulated using Matlab.The different digital modulation schemes using for the simulation are 
BPSK, QPSK, 16-PSK, 4-QAM and 16-QAM. We are using Convolution encoder with different 
code rates (1/2, 2/3, 1/3, 3/4) and with different constraint length. Figure 3 shows the garph of 
BER vs SNR for BPSK modulation with different code rates and constraint length (K) Whereas 
Figure 4 and Figure 5 shows the performance of system for QPSK and 16-PSK modulation. 
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FIGURE 3: BER Vs SNR of BPSK in AWGN channel 

 

 
 

FIGURE 4: BER Vs SNR of QPSK in AWGN channel 
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FIGURE 5: BER Vs SNR of 16-PSK in AWGN channel 

4. CONSLUSION  

A performance analysis of WLAN system adopting convolutional encoding with block interleaver 
has been carried out. The BER curves were used to compare the performance of different 
modulation techniques. Performance results highlight the impact of modulation scheme and show 
that the implementation of an rated convolutional code under different modulation.It is concluded 
from plots that Convolutional encoder with rate equals to 1/3 perform better in 4-PSK (QPSK) and 
BPSK as compared to other code rate. However the convolution encoder with code rate equals to 
2/3 gives better result compared to other for 16-PSK modulation. It is also concluded that BPSK 
modulation with rate equals to 1/3 gives better result as compared to other modulation i.e QPSK 
and 16-PSK.   
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Abstract 

 

The aim of digital sample rate conversion is to bring a digital audio signal from 
one sample frequency to another. The distortion of the audio signal introduced by 
the sample rate converter should be as low as possible. The generation of the 
output samples from the input samples may be performed by the application of 
various methods. In this paper, a new technique of digital sample-rate converter 
is proposed. We perform the spectral analysis of  proposed digital sample rate 
converter. 
 
Keywords: Sample Rate Converter, Spectral Analysis, Upsample-Downsample Filter, Sigma-Delta 
Modulator, Frequency Detector. 

 
 

 

1.  INTRODUCTION 
Sample Rate Conversion (SRC) is a process by which the audio sample rate gets changed 
without affecting the pitch of the audio [1]. This process is necessary in different situations: Digital 
Audio Workstation (DAW) users often record and edit at a high sample rate, and then down-
sample the audio to get it onto various media. This sample rate conversion can either be done by 
the DAW during or after the bounce, or in a separate application after bouncing. In another 
scenario, sample rate conversion is necessary when audio material recorded for a specific media 
(e.g. CD) gets transferred to a different media (e.g. DVD, DAT or Digital Video). For example, a 
DVD audio project requires sample rate conversion from 96 kHz to 44.1kHz in order to be 
transferred to CD, and a CD audio project requires conversion from 44.1 kHz to 48 kHz to be 
transferred to Digital Video format. 
 
It is very important for the sample rate conversion to be as transparent as possible. Ideally, when 
converting from an original into a new sample rate, we would like the converted signal fidelity to 
be as high as if we had directly sampled it from the original analog signal. This degree of perfect 
transparency is possible only in theory, since we would need a computer with infinite memory and 
infinite processing power to achieve it. In practice, however, a very high degree of transparency 
can be achieved with a high-quality sample rate converter.  
 
In this paper, analysis results are shown for a new method of digital sample rate converter [2]. 
The operation principle of the new method of sample rate conversion is very simple. An input 
sample is directly transferred to the output, while per unit of time, a certain amount of these 
samples is omitted or repeated, depending on the difference in input and output sample 
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frequencies. The omission, acceptance or repetition of a sample is called  ‘validation’. In order to 
get the simplest hardware implementation, the choice has been made to use only the take-over 
operation and the repetition operation in the current system solution. This means that the output 
sampling frequency of the sample rate converter is always larger than the input sample 
frequency. 
 
The process of repeating samples inevitably introduces errors. The resulting output samples will 
have correct values, but as a result of the validation operation, they are placed on the output time 
grid with a variable time delay with respect to the input time grid. As a consequence, the output 
sequence should be viewed as the input sequence, having the correct signal amplitude, which is 
sampled at wrong time moments. The effect is the same as sampling the input signal by a jittered 
clock [3]. As a result, it can be stated that the time error mechanism introduced by the validation 
algorithm is time jitter. 
 
If all input samples would be transferred to the output grid without the repetition or omission of a 
certain amount of them, then the output signal would be just a delayed version of the input signal, 
exhibiting the same shape. It is the repetition and omission (in the current system setup only the 
repetition ) of input samples that give rise to a variation in time delay for each individual output 
sample. This variation in individual time delays introduces phase errors. As a result of this, the 
shape of the output signal will be distorted [4]. 
 
The time errors introduced by the conversion process can be reduced considerably by applying 
upsampling and downsampling techniques. The input sample rate of the converter will be higher 
so that the conversion errors are smaller, resulting in smaller time jitter. These techniques do not 
suffice when we want to achieve the very high analog audio performance required for 
professional applications [5]. By using a sigma-delta modulator (noise shaper) as control source 
for the conversion process, the time errors will be shaped to the higher frequency region. As a 
result, the audio quality ( in the baseband) of the signal will be preserved, provided that enough 
bandwidth is created by upsampling of the input signal. The high frequency (out of base band) 
phase modulation terms can be filtered by a decimation filter or an analog low-pass filter which is 
directly placed after the sample-rate converter [6]. Figure 1 shows the block diagram of the 
complete sample-rate converter. 

 

 

FIGURE 1: Block diagram of the sample-rate converter. 

 
As has already been mentioned, only the input sample take over operation will be employed here 
in order to get the simplest hardware. This means that the input sample frequency of the 
converter must be always be smaller than the output sample frequency. With this restriction 
imposed, it is assured that all input samples are used in the output sequence, none of them being 
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omitted. The extra output samples per unit of time are inserted in the output sequence by 
repetition of their previous output samples. 

 
For practical problems in which only a finite number of samples of the analog signal are available, 
say x ( n T ) , n = 0, 1, . . . , N - 1, the band-limited analog signal and transform often are still 
modeled by the sampling representations but with the unobserved samples set equal to zero, i.e., 
x(nT) = 0 for n < 0 or n > N -1. With this model the Fourier transform in the band Mod(ω) < п / T is 
represented by the discrete Fourier transform (DFT). In either case, the problem of resampling 
with a different sample interval is in principle solved, because one can reconstruct the original 
analog signal, or an acceptable model of it, and then resample at will  (Crochiere and Rabiner [1], 
[7], Pridham and Mucci [8], [9], Shaefer and Rabiner [10] ) . 
 
In spite of the availability and utility of the Fourier and sampling theorem representations it is 
sometimes preferable to employ a simpler interpolation scheme than that involving the sin x/x 
kernel in order to reduce the computational load. In such cases it is important to consider the 
approximation error and its influence on the ability of the new sample set adequately to represent 
the original signal. 

 

 

2.  THEORETICAL GUIDELINES FOR SPECTRAL ANALYSIS 
In this part, the properties of the proposed sample-rate converter in the frequency domain will be 
investigated. It is observed that the first order approximation of the amplitude error is accurate 
enough, even for the worst case situation. The continuous-time description of the first-order 
model is: 
 

)().()()(
.

tttxtxty ∆−=                                                                                                                               

 
(1)  
 
Figure 2 gives a block diagram of this first-order model. 
 

 
 

FIGURE 2: Block diagram of the first-order model. 

 
When we want to convert (1) to discrete-time, we have to keep in mind that the output samples 
have a different sample time than the input samples. We will therefore enter two discrete-time 
variables; k.TS,out for the output samples and time delays, and l.TS,in for the input samples (shortly 
denoted by k and l). The discrete-time model now becomes: 
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Normally the derivative of a discrete-time signal is determined by the amplitude difference of the 
current sample and its previous sample, divided by the sample time. In our case it is more correct 
to use the difference between the next input sample and the present input sample, because the 
position in time of the present output sample is between the time moments of those two input 
samples. For the time derivative of the input signal x(l) we obtain: 
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Substituting this into (2), we get 
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(4) 
 
In order to become known with the spectral density of the output signal y(k), we must firstly 
determine the correlation function: 
 

 )}().({)( nkykyEnRyy +=                                                                                                                     

 
(5) 
 
This correlation function describes the correlation between the present output sample (k0) and the 
(k0+n)-th output sample and is therefore dependent on the output sample time TS,out. Note that n 
must be an integer. 
 
The problem arises that for a time step of n samples (=n.TS,out) in the output signal we must know 
the corresponding time step in the input signal. Assume that this time step is equal to m.TS,in, that 
is, y(k+n) corresponds to x(l+m). The relation between m and n then becomes: 
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(6) 
 
The conversion factor for the sample-rate conversion process is not necessarily a rational 
number, which implies that m is not necessarily an integer. For the calculation of the discrete-time 
correlation function we need both n and m, as we have two discrete-time variables. The problem 
is that the discrete-time input signal x(l+m) is not defined when m is not an integer. We must 
therefore conclude that the correlation function Ryy(n) of the discrete-time output signal can not be 
solved analytically. 
 
Consider the discrete-time description of the first-order model (2). For the calculation of an output 
sample on time moment k (somewhere between l and l+1) the discrete-time derivative of the input 
signal x(l) on time moment k is needed. This derivative is determined using the two adjacent input 
samples (4). Suppose x(t) is the continuous-time signal constructed out of the input samples x(l) 
using linear interpolation. The continuous-time derivative of this input signal is in fact similar to the 
discrete-time derivative given by (3). In fact we deduce our discrete-time analysis from the 
continuous-time analysis. In order to find out the spectral properties of the sample-rate converter, 
it is therefore allowed that we use the continous-time description given by (1). 
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3.  SIMULATION AND PERFORMANCE ANALYSIS 
In this part, the properties of the sample-rate converter will be demonstrated and compared to the 
theoretical results. Firstly, the time domain simulations will be shown for a certain conversion 
factor. Next, the Fourier transformations of these time domain signals will give the frequency 
domain presentation of the sample-rate conversion process. 
 
3.1 Time Domain Simulations 
In this subsection the results of a time domain simulation are presented. The results have been 
obtained by simulating the sample-rate converter using a third-order sigma-delta modulator. The 
input signal consists of a single sinewave with a frequency Fin of 20kHz and an amplitude A of 
1[Volt]. The output sampling frequency equals 128Fs=5.6448MHz while the input sampling 
frequency is chosen to be 30.13579Fs=1.328988MHz. The latter is chosen much smaller than 
128Fs so that the distortion in the output signal due to much repetitions will be clearly visible. The 
DC input of the sigma-delta modulator can be calculated as 0.52912828125. The average 
number of repetitions will be 3.25. Figure 3 shows a plot of the three most important signals 
involved in the conversion process. The upper trace is the sigma-delta control signal, the signal in 
the middle is the output signal of the sample-rate converter and the lower trace shows the 
corresponding time error for each output sample. 

 
It can be seen that the output signal of the converter is fairly distorted due to the large number of 
repetition samples. The plot style of the corresponding time error signal is staircase, because with 
this plot style the stepwise behaviour of this signal is illustrated best. 
 

 
 

FIGURE 3: Time domain signals of the sample-rate conversion process: sigma-delta control, output 
sinewave, time error signal. FS,in=30.13579Fs, FS,out=128Fs. 

 
3.2 Frequency Domain Results 
The frequency spectra of the signals in figure 3 are obtained by taking the Fourier transform of 
these signals. Figure 4 shows the spectra of the sigma-delta output signal and the time error 
signal, while figure 5 shows the frequency spectrum of the output signal. The plots have a 
logarithmic frequency-axis. 
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FIGURE 4: Sigma-delta spectrum (higher trace) and time error spectrum (lower trace) for FS,in=30.13579Fs, 
FS,out=128Fs and Fin=20kHz. 

 

 
 

FIGURE 5: Frequency spectrum of the output signal for FS,in=30.13579Fs, FS,out=128Fs and Fin=20kHz. 

 
In figures 6 and 7 a zoom-in is given of the figures 4 and 5 respectively, around the “first” spectral 
peak in the output spectrum of the sigma-delta modulator. The plots have a linear frequency-axis. 
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FIGURE 6: A zoom-in of figure 4 

 

 
FIGURE 7: A zoom-in of figure 5. 

 
From the figures 4 to 7, we can make the following observations: 

• The slope in the sigma-delta spectrum is +60 dB per decade, which corresponds to a 
third order sigma-delta modulator, while the time error spectrum shows a slope of +40 dB 
per decade. The additional roll-off in the time error spectrum amounts 20 dB in 
comparison with the sigma delta spectrum, as was expected. The shaping of the time 
error is indeed one order lower than the shaping of quantization noise to the high 
frequency region, second order in this case. 
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• The time error spectrum indeed  contains the same spectral components as the sigma-
delta spectrum (figures 4 and 6), which was expected. The sigma-delta spectrum always 
contains a spectral peak at the input sampling frequency FS,in, which is for this case 
1.328988 MHz and at multiples of this frequency. These peaks can also be observed in 
the time error spectrum (having a different amplitude). 

 

• The spectrum of the output signal of the sample-rate converter (figure 5) contains 
spectral peaks at FS,in-Fin and FS,in+Fin with Fin=20 kHz (figure 7). This corresponds to the 
theoretical considerations. The spectral peaks of the sigma-delta modulator are 
frequency shifted over a frequency fin to the right and to the left. 

 

• For frequencies between 20 kHz and 200 kHz, the output spectrum shows a slope of 
about +40 dB per decade (figure  5). For frequencies above 200 kHz, the spectrum is flat. 
In the audio base band (0-20kHz), the spectrum is also fairly flat. It should be noticed that 
the negative frequncies must be taken into account when we look at frequency-shifted 
spectra [7]. 

 

 

4.  CONCLUSION 
It is concluded that the frequency domain results obtained in this paper correspond to the 
theoretical dependencies. It appears that due to the frequency-shift of the time error spectrum, 
the spectrum of the output signal of the sample-rate converter is fairly flat in the audio base band. 
The addition of the two frequency-shifted spectra causes more quantization noise to fall into this 
base band. As a result, the signal-to-noise ratio of the output signal will be smaller: the 
performance of the output sinewave is degraded. 
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Abstract 

 
In this paper, a voice activity detector is proposed on the basis of Gaussian 
modeling of noise in the spectro-temporal space. Spectro-temporal space is 
obtained from auditory cortical processing. The auditory model that offers a multi-
dimensional picture of the sound includes two stages: the initial stage is a model 
of inner ear and the second stage is the auditory central cortical modeling in the 
brain. In this paper, the speech noise in this picture has been modeled by a 3-D 
mono Gaussian cluster. At the start of suggested VAD process, the noise is 
modeled by a Gaussian shaped cluster. The average noise behavior is obtained 
in different spectrotemporal space in various points for each frame. In the stage 
of separation of speech from noise, the criterion is the difference between the 
average noise behavior and the speech signal amplitude in spectrotemporal 
domain. This was measured for each frame and was used as the criterion of 
classification. Using Noisex92, this method is tested in different noise models 
such as White, exhibition, Street, Office and Train noises. The results are 
compared to both auditory model and multifeature method. It is observed that the 
performance of this method in low signal-to-noise ratios (SNRs) conditions is 
better than other current methods.  
 
Keywords: Voice activity detector, Spectro-temporal Domain, Gaussian modeling, Auditory model. 
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1. INTRODUCTION 

In general, sound signal is composed of two parts, speech and non-speech. The latter is either 
silence or background noise. Accordingly, detection of speech signal from non-speech signal, 
known as voice activity detection (VAD), is one of the most important issues in the speech 
processing systems. In particular, the complexities increases in low SNRs where there are 
challenging in VAD design. One of the applications of VAD is in speech enhancement systems 
[1], where VAD is used to estimate noise characteristics from the silence parts of the signal. 
Robust speech recognition [2], speech coding [3] and echo cancellation are among the other 
applications of VAD. 
 
The first, but of course the most, usual VAD algorithm has been presented in [4]. There are other 
VAD algorithms as well. In [5], a VAD has presented on the basis of MFCC features and SVM, as 
MFCC coefficients provide good information of the speech signal. Sohn in [6] has used a 
Gaussian statistical model for VAD. As another work, has obtained a VAD based on Taylor series 
[7]. Chang has performed a class from VAD algorithm using different statistical models. 
Moreover, he has combined Gaussian model, complex laplacian and gamma probability density 
equations to analytically characterize statistical properties of noise and speech parts [8]. Another 
VAD has been obtained based on the generalized Gamma distribution [9], where a distribution of 
noise spectra and noisy speech spectra has been obtained based on inactive speech intervals. In 
all these algorithms, the results are not promising in low signal to noise ratios (SNR) and VAD 
performance in low SNRs has remained as a challenging issue. 
In this research, our proposed VAD algorithm is based on spectro-temporal representation of the 
speech. The idea is based on neuro-physiological and psycho acoustical investigations in various 
stages of auditory system. This model consists of two main stages. The first one is the auditory 
system which represents the acoustic signal as an auditory spectrogram. The second stage, 
which is the central cortical stage, is the stage of analyzing the spectrogram by using a set of 2D 
filters. The new successful achievements in the spectro-temporal studies reveal a significant 
improvement of the performance for enhancement systems [1], Speech Recognition [10] and also 
robust pitch extraction [11]. 
In this work, a VAD algorithm is proposed on the basis of noise Gaussian model in the spectro-
temporal domain. Evaluating the efficiency, it is shown that the spectro-temporal domain is a 
suitable space for this separation. The rest of the paper is organized as follows. In section 2, the 
auditory model and spectro-temporal model are briefly reviewed. In section 3, the proposed VAD 
method is presented and analyzed in the spectro-temporal domain. In section 4, the method is 
evaluated and compared to other methods. Finally, the paper is briefly concluded in Section 5. 
 

2. SPECTRO-TEMPORAL MODEL 

 
Auditory Model 
The auditory model has been obtained on the basis of neuroscience and biology researches. 
They are achieved based on two different sections of the auditory systems, mammals and, in 
particular, humans [12]. The model has two main parts [13-14]. In the first part of this model, the 
acoustic signal is represented by an auditory spectrogram [14]. While in the next part, the 
auditory spectrogram is analyzed using a set of 2D filters [15]. 
 
calculation of auditory spectrogram 
In first part of auditory model, the auditory spectrogram of input signal is calculated by passing 
various through stages. The stages are shown in figure 1 [12-15]. 
As shown in figure 1, the input signal, enters a hair cell stage after passing through a filter bank 
which makes a 2D representation of the input signal. This part consists of three stages: a high-
pass time domain filter, a nonlinear compression stage, and a low-pass time domain filter. The 
output of this stage is applied to a lateral inhibitory network which is in fact a first-order frequency 
domain derivative, followed by a half-wave rectifier and a low pass time domain integrator. At the 
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final stage, the auditory spectrogram of the signal is calculated. The analytical characterization of 
sequential stages for the first section of the auditory model is given as follow [1]. 
 

                                                                                         (1)  

                                                                       (2) 

                                                                            (3)  

                                                                                   (4)  
 
In the above relations, the operator  shows the convolution in time domain. 
 
 
The central auditory section 
In this section, the auditory spectrogram is analyzed to extract the spectro-temporal features[16]. 
The signal is applied through a bank of 2-D filters. The contents of spectro-temporal modulation 
of the auditory spectrogram are determined using selected filter banks, centered along tonotopic 
axis [17]. The spectrotemporal impulse response of these filters is called the spectro-temporal 
response field (STRF). STRFs are 2-D Gabor wavelets. 
 

                                                                 (5)  

                                                                    (6) 
  
where  is the real part,* is complex conjugate,  is speed and  is scale.  and  are a phase of 
asymmetry along time and frequency domain respectively. In addition,  and  may be 
analytically extracted from  and  [1]. 
 

                                                                         (7) 

                                                                     (8)  

 
where ^ shows the Hilbert transformation.  and  are respectively the temporal and 
spectral impulse responses [1]. 
  

                                                                          (9) 

                                                                       (10)  
 

 
 

FIGURE 1: Different stages of first part of the auditory model 
The impulse responses are obtained as hereunder for various frequencies and times [1] 
 
 

                                                                                                               (11) 
                                                                                                               (12) 
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The auditory spectrum, after passing through STRFs is transformed into a 4-D cortical picture. 
These four dimensions are frequency, time, speed and scale [1]. 
                        
 

                                                                (13) 
 

                                                                (14)  
 
where *t,f is the 2D convolution with respect to time and frequency. r+ and r- are respectively the 
spectro-temporal responses of downward (+) and upward (-) STRFs. The wavelet transformation 
is obtained from the filters hrate and hscale as below:   
 

 

                                                                                              (15)                                                                                                  
 

                                                                                            (16)  
 
The complex response of downward and upward selective filters is as follows: 
 

 

                                                                      (17) 
 

                                                                      (18) 
 
Finally, for each speech frame, two 3-D complex valued matrices are obtained for downward and 
upward filters respectively. 
 

3. VAD METHOD IN SPECTRO-TEMPORAL DOMAIN 

In the proposed VAD method, a Gaussian model is applied to model the noise cluster shape in 
spectro-temporal domain. In this method, it is attempted to estimate the cluster shape of 3-D 
spectro-temporal representation of noise (silent) using a Gaussian function. The concept originates 
from the fact that the shape of the noise cluster, created by large amplitude points in spectro-
temporal domain is similar to a 3-D Gaussian hyper-surface. Therefore, the parameters of this 
function should be corresponded to the average of spectro-temporal representation of noise 
frames. The block diagram of such the noise modeling is shown in figure 2. 
As shown in figure 2, the cortical picture of input noise is calculated for each frame with three 
dimensions of frequency, speed and scale. It is divided into two separate downward and upward 
representations. In the proposed method, in order to model noise samples in spectro-temporal 
space, we calculate the parameters of Gaussian model for downward and upward magnitude, 
separately. 
 

 
 FIGURE 2: Noise Gaussian modeling in the spectro-temporal domain 
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The parameters include mean, covariance and gain respectively: 
 

                                                                                (19) 

                                                                 (20) 
 

                                                                                                                    (21) 
 

After estimating the parameters of the Gaussian model for the noise, the reproduced cluster 
demonstrates the average behavior of the noise in sampling points of the spectro-temporal space 
for each frame. The reproduced cluster may be formulated as: 
 

                                                                     (22) 
 

The distance of each frame of input signals with this pattern represents the similarity measure of 
the frame behavior to the noise. Therefore, a distance measure is proposed to calculate the 
similarity of the modeled cluster and the input frame. For each frame, after spectro-temporal 
representation, the magnitude of downward and upward representation is calculated: 
 

                                                                                           (23) 
 
Our tests have shown that the phase of cortical space is not an acceptable criterion for 
determining speech and noise sections. Therefore, only the magnitude section of this signal has 
been used. The distance measure of the input frame and the modeled cluster is proposed as: 
 

                                                (24) 
 

 
  
 
 

FIGURE 3: Decision making procedure for a frame in the proposed VAD system 
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In fact, the above relation is the weighted mean of two 3-D hyper-surfaces resulting from present 
frame and the average statistical behavior of the noise. The weight of this averaging has been 
determined in such a way that full-energy points would be more effective in this averaging. In 
figure 3, the block diagram shows the decision making procedure for a frame in the proposed VAD 
system. 
Our VAD method is based on thresholding the resulted difference with an empirically set threshold. 
 

                                                                                                  (25) 
Determining the suitable threshold has been performed by testing in various noisy conditions 
which optimization results are given in section 4. 
 

4. TESTS AND RESULTS 

 
Evaluation  framework 
In the conducted tests, the speech signals are sampled in 16 KHz sampling frequency, 16 bit 
resolution. The length of each frame was assumed to be 4 ms. To build noisy signals; we took 
noises from NOISEX92 database [18] and added them to the clean signal. NOISEX database 
includes airport, babble, car, exhibition, office, restaurant, train, subway, street and white noises. 
Exhibition noise as representative of the human uproar, street noise representing open space, 
office noise representing office environment, Train noise representing industrial environment and 
white noise as the worst noise were selected. In addition, the noise was added to the clean signal 
in different SNRs with amounts -15, -10, -5, 0, 5, 10, 15, 20, 30, 40 dbs. 
The proposed VAD system accuracy was measured by PS2S and PN2N probabilities. The 
measured parameters are defined as: 

                                                                                                            (26) 

                                                                                                             (27)  

In the above relation, PS2S is the probability of correct classification of speech frames in percents 
and PN2N is the probability of correct classification of silence frames in percents. also, NS is the 
total number of speech frames, NN is the total number of silence frames, NS2S, is the number of 
correctly classified speech frames and NN2N is number of correctly classified silence frames. 

 
4.2. evaluation of results 
 

FIGURE 4: The histogram of noise behavior and speech. (a): The histogram of upward magnitude of noise 
behavior and speech. (b): The histogram of downward magnitude of noise behavior and speech  
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Histogram test 
In figure (4-a) and (4-b), the histogram of upward magnitude of noise behavior and speech, and 
downward magnitude of noise behavior and speech have been shown in white and train noises 
respectively. The aim of this test is to show that Gaussian model is suitable for the noise. As seen 
in figures (4-a) and (4-b), we have shown that noise and speech have completely a separate 
behavior on the D axis. 
 
Effect of different noises on proposed VAD 
In the next experiment, the behavior of proposed VAD system was studied in different noises 
environments and various SNRs. In tables 1 and 2, the trend of changes in speech and non 
speech signal classification rates is given for various SNRs and in 5 different types of noise. As it 
is seen in table 1, street noise had a better behavior comparing to other noises. The system is well 
behaved in white, street and train noises in zero SNR. In addition, exhibition noise had worse 
behavior comparing to other 4 noises. In table 2, it may be observed that the classification rate of 
non-speech signals is equal to 100 percent for all noises and all SNRs. 
Also, the figures (5-a) and (5-b) show the effect of various noises in various SNRs on a correct 
percentage of downward and upward magnitude of speech signal respectively. As it can be 
observed in both figures, a correct percentage of upward and downward magnitude of speech 
signal is in the Exhibition noise in zero SNR is around 59 and 69 percent and in SNR -5, is around 
0 and 3 percents respectively. This may be explained by the fact that exhibition noise is human 
uproar and it provided the worst behavior comparing to other noises. As it may be observed in the 
figure, Street noise provides a better behavior comparing to other noises. Actually, this noise is 
produced by cars and is typically independent on the speech signal. Therefore, it is easily 
separable from speech signal in spectro-temporal domain. 
 
 

PS2S 

Office PS2S 

Train 

PS2S 

Street 

PS2S 

Exhibition 

PS2S 

White 

z 

         
SNR 

28.64 0 51.17 0 24.88 Z_up 
-15 

32.86 0 58.68 0 5.16 Z_down 

38.03 51.17 56.81 0 53.52 Z_up 
-10 

38.02 3.28 73.71 0 69.01 Z_down 

52.11 57.74 78.87 0 59.15 Z_up 
-5 

64.79 82.63 91.55 3.28 92.96 Z_down 

58.69 91.08 93.90 54.93 92.96 Z_up 
0 

91.55 93.90 94.37 62.44 95.77 Z_down 

92.02 94.8 96.24 68.07 97.18 Z_up 
5 

94.37 95.31 95.77 91.55 97.18 Z_down 

95.30 96.71 99.53 92.49 100 Z_up 
10 

96.24 97.18 97.65 94.37 99.53 Z_down 

97.65 100 100 95.77 100 Z_up 
15 

98.12 98.59 99.06 96.24 100 Z_down 

100 100 100 98.12 100 Z_up 
20 

100 100 100 98.12 100 Z_down 

100 100 100 100 100 Z_up 
30 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 
40 

100 100 100 100 100 Z_down 

TABLE 1: Speech signal diagnosis correctness percentage in different 
noises and various SNRs. 
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PN2N 

Office 

PN2N 

Train 

PN2N 

Street 

PN2N 

Exhibition 

PN2N 

White 

z 

         

SNR 

100 100 100 100 100 Z_up -15 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up -10 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up -5 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 0 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 5 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 10 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 15 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 20 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 30 

100 100 100 100 100 Z_down 

100 100 100 100 100 Z_up 40 

100 100 100 100 100 Z_down 

 
 
 
The figures (6-a) and (6-b) show the effect of various noises in different SNRs on a correctly 
classified non-speech signals using downward and upward magnitude for all 5 noises and all 
tested SNRs is equal to 100 percents. 
 
Comparison of proposed VAD system behavior with other methods 
In this section, the proposed VAD was compared to auditory model [19] and multifeature method 
[20]. The results of the three systems were shown in figures (7-a) and (7-b).In fact, the obtained 
results have been reported in white noise on other systems, therefore the systems are compared 
in these situations. 
 

 TABLE 2: Non- Speech signal diagnosis correctness percentage in different noises and 
various SNRs. 

 

FIGURE 5: Effect of various noises in various SNRs on a correct percentage of magnitude of speech signal. (a): 
Effect of various noises in various SNRs on a correct percentage of upward magnitude of speech signal. (b): 
Effect of various noises in various SNRs on a correct percentage of downward magnitude of speech signal.    
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In figure (7-a) it can be observed that the proposed method had a much better behavior 
comparing to multi-feature method. However in comparison with auditory model, it is observed 
that the proposed method performance was better in low SNRs. In addition, figure (7-b) which is 
the effect of white noise on the correctness percentage of non-speech signal, comparing three 
systems show that the proposed VAD had a good behavior. 
 
Behavior of correctness change with change in threshold  
It is worthy to note that with a very subtle change in threshold, the rate of speech and non-speech 
signal classification is reduced. In figure (8-a) and (8-b) the classification rate variations in z-up 
and z-down versus threshold has been analyzed respectively. As seen in the figures (8-a) and (8-
b), by increasing the threshold PS2N decreases and PN2S increases.              
 
 

 
 
 
 
 
 

FIGURE 6: Effect of various noises in various SNRs on a correct percentage of magnitude of non-speech signal. 
(a): Effect of various noises in various SNRs on a correct percentage of upward magnitude of non-speech signal. 

(b): Effect of various noises in various SNRs on a correct percentage of downward magnitude of non-speech signal. 

FIGURE 7: Effect of white noise on the correctness percentage for suggested method, auditory model [17] and 
multifeature method [18].  (a): Effect of white noise on the correctness percentage of speech signal. (b): Effect of 

white noise on the correctness percentage of non-speech signal 
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5. CONSLUSION & FUTURE WORK 

In this paper, a new VAD algorithm was presented on the basis of Gaussian modeling in spectro-
temporal domain. The extracted features of this model in 4-D has been used in the proposed VAD. 
To provide the Gaussian modeling, the noise effectively passes through this space. Then a 
distance measurement was proposed. and applied to distinguish between noise and speech 
frames. Finally, the distance was compared to a given threshold for speech-silence classification. 
In our method, miss-classification rates were used for evaluation purposes. To provide a 
comparison, it was observed that the proposed method demonstrates better behavior in low SNRs. 
The proposed VAD algorithm can be applied to speech enhancement systems in spectro-temporal 
domain. 
 

6. REFERENCES 

1. N. Mesgarani, S. A Shamma, “Speech enhancement based on filtering the spectrotemporal 
modulations”, IEEE International Conference on Acoustic, Speech and Signal Processing 
(ICASSP), Philadelphia, March 2005. 

2. N. R. Garner, P. A. Barrett, D. M. Howard, and A. M. Tyrrell, “Robust noise detection for 
speech detection and enhancement”, Electron. Lett., Vol. 33, no. 4, pp. 270-271, Feb. 1997. 

3. J.Sohn, N. S. Kim, and W.Sung, “A statistical model-based voice activity detection”, IEEE 
Signal Process. Lett., Vol. 6, no. 1, pp. 1-3, Jan 1999. 

4. L.F. Lamel, L. R. Rabiner, A. E. Rosenberg, and J. G. Wilpon, “An improved endpoint 
detector for isolated word recognition”, IEEE Transactions on Acoustics, Speech, and Signal 
Processing, vol. 29, pp. 777-758, 1981. 

5. T. Kinnunen, E. Chernenko, M.Tuononen, P. Fränti, and H.Li, “Voice activity detection using 
MFCC features and support vector machine”, Int. Conf. on Speech and Computer 
(SPECOM07), Moscow, Russia, Vol. 2, 556-561, Oct 2007. 

6. J.Sohn, W.Sung, “A voice activity detector employing soft decision based noise spectrum 
adaptation”, IEEE International Conference on Acoustic, Speech and Signal Processing 
(ICASSP), pp. 365-368, 1998. 

7. Ángel de la Torre, Javier Ramírez, Carmen Benítez, Jose C.Segura, Luz García, Antonio 
J.Rubio, “Noise robust model-based voice activity detection”, INTERSPEECH2006, pp. 1954-
1957, Pittsburgh, 2006. 

8. J. –H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity detection based on multiple statistical 
models”, IEEE Trans. Signal Processing, Vol. 56, no. 6, pp. 1965-1976, June, 2006. 

FIGURE 8: The classification rate variations in z-up (a) and z-down (b) versus threshold 



Sara Valipour, Farbod Razzazi, Azim Fard & Nafiseh Esfandian 

Signal Processing-An International Journal (SPIJ), Volume (4): Issue (4)                                      238 

9. J.W.Shin, J. -H. Chang, H. S. Yun, and N. S. Kim, “Voice Activity detection based on 
generalized gamma distribution”, IEEE International Conference on Acoustic, Speech and 
Signal Processing (ICASSP), Vol. 1, pp. 781-784, March 2005. 

10. B. Meyer and M. Kleinschmidt, “Robust speech recognition based on localized spectro-
temporal features”, in Proceedings of the Elektronische Sprach-und Signalverarbeitung 
(ESSV), Karlsruhe, 2003. 

11. C.Shahnaz, W.-P.Zhu and M.O.Ahmad, “Aspectro-temporal algorithm for pitch frequency 
estimation from noisy observations”, in Proc. 2008 IEEE ISCAS,  pp. 1704-1707, May 18-21, 
2008, Seattle, USA. 

12. T. Chi, P. Ru, and S. A. Shamma, “Multiresolution spectrotemporal analysis of complex 
sounds”, Journal of the Acoustical Society of America, Vol. 118, no. 2, pp. 887-906, 2005. 

13. N. Kowalski, D. A. Depireux, and S. Shamma, “Analysis of dynamic spectra in ferret primary 
auditory cortex I. Characteristics of signal-unit response to moving ripple spectra”,  
J.Neurophsiology, Vol. 76, no. 5, pp.3503-3523, 1996. 

14. K.Wang and S. A. Shamma, “Spectral shape analysis in the central system”,  IEEE Trans. 
Speech Process. , Vol. 3, no. 5, pp. 382-395, Sep. 1995. 

15. K. Wang and S. A. Shamma, ” Self-normalization and noise-robustness in early auditory 
representations”, IEEE Trans. Speech and Audio Proc, pp: 421–435, 1994. 

16. S. A. Shamma, “Speech processing in the auditory system II: Lateral inhibition and the 
central processing of speech evoked activity in the auditory nerve”, J. Acoust. Soc. Am., 
pp:1622–1632, 1985 

17. S. Shamma, “Methods of neuronal modeling”, in Spatial and Temporal Processing in the 
Auditory System, pp. 411-460, MIT press, Cambridge, Mass, USA, 2nd edition, 1998.  

18. A. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, “The NOISEX-92 study the effect 
of additive noise on automatic speech recognition ”, Documentation included in the NOISEX-
92 CD-ROMs, 1992. 

19. N. Mesgarani, S. Shamma, and M. Slaney, “Speech discrimination based on multiscale 
spectro-temporal modulations”, IEEE International Conference on Acoustic, Speech and 
Signal Processing (ICASSP ’04), Vol. 1, pp. 601-604, Montreal, Canada, May 2004.   

20. E. Scheirer, and M. Slaney, “Construction and evaluation of a robust multifeature 
speech/music discriminator”, in Int. Conf. Acoustic, Speech and Signal Processing, Vol. 2, 
Munich, Germany, 1997, p. 1331. 

 



Neetu Sood, Ajay K Sharma & Moin Uddin 
 

 

 
Signal Processing : An International Journal (SPIJ), Volume (4): Issue (4) 239 

 

On Channel Estimation of OFDM-BPSK and -QPSK over 
Nakagami-m Fading Channels 

 
 

Neetu Sood             soodn@nitj.ac.in 
Department of Electronics and Communication Engineering 
National Institute of Technology, Jalandhar, India 

 
Ajay K Sharma             sharmaajayk@nitj.ac.in 
Department of Computer Science Engineering  
National institute of Technology, Jalandhar, India  
 

Moin Uddin              prof_moin@yahoo.com 
National institute of Technology, Jalandhar, India  

 
Abstract 

 

This paper evaluates the performance of OFDM - BPSK & -QPSK based system 
with and without channel estimation over Nakagami-m fading channels. 
Nakagami-m variants are generated by decomposition of Nakagami random 
variable into orthogonal random variables with Gaussian distribution envelopes. 
Performance of OFDM system in Nakagami channel has been reported here. 
The results yield the optimum value of m based on BER and SNR. Using this 
optimum value of m, Channel estimation over flat fading has been reported here. 
It has been depicted clearly from simulated graphs that channel estimation has 
further reduced the BER. However, threshold value of m has played a vital role 
during channel estimation. 
 
Keywords-OFDM, Fading distribution, Nakagami-m channel, Rayleigh fading, Channel estimation, Trained 
Symbol. 

 
 

 

 

1. INTRODUCTION  

OFDM technique is a multi-carrier transmission technique, which is being recognized as an 
excellent method for high-speed bi-directional wireless data communication. The prime idea is 
that all queuing data in buffer are uniformly allocated on small sub-carriers. OFDM efficiently 
squeezes multiple modulated carriers tightly together reducing the required bandwidth but 
keeping the modulated signals orthogonal so that they do not interfere with each other. OFDM 
that is highly efficient technique shows favorable properties such as robustness to channel fading 
and inter symbol interference (ISI) and is more immune to noise. OFDM system is capable of 
mitigating a frequency selective fading channel to a set of parallel flat fading channels, which 
need relatively simple processes for channel equalization.  
Rayleigh and Rician fading channels have already been deployed and studied in depth for OFDM 
systems. OFDM Rayleigh channel simulator for OFDM has been reported in [1]. Modification to 
existing model of simulator was proposed by considering the correlation between the sub 
channels of an OFDM system resulting into reduced computational complexity. BER performance 
in frequency selective Rician fading channel is studied in [2]. Estimation of OFDM system in 
Rayleigh faded channel is provided by many techniques, in [3], used the pilot symbol along with 
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the previously known channel coefficients for fast Rayleigh faded channels. In [4], Timing phase 
estimator for OFDM system in Rayleigh faded environment is proposed with low complexity. 
Nakagami-m fading distribution is another useful and important model to characterize the fading 
channel [5]. Kang et al. [6] modeled the OFDM- BPSK system with frequency selective fading 
channel. The work was further enhanced by Zheng et al. [7] by presenting asymptotic BER 
performance of OFDM system in frequency selective Nakagami-m channel. In [8], accurate error 
performance of OFDM systems was provided on basis of number of channel taps in Nakagami-m 
fading environment. 
OFDM systems have gained an equivalent attention with flat fading environment. In [9], present 
the method of Channel estimation and Carrier frequency offset to design an OFDM receiver in flat 
fading environment. However, BER performance of OFDM system in flat fading channel using 
DBPSK modulation technique is studied by Lijun et al. [10]. Since, the frequency selective model 
of Nakagami-m channel is already presented in literature, so our motivation behind this paper is 
to study the performance of OFDM system using flat fading channel of Nakagami-m distribution 
and further to improve the BER by applying channel estimation. 
This paper is organized as follows: In section 2, OFDM system model is described. In section 3, 
the mathematical model to generate the Nakagami-m fading channel is explained along with the 
OFDM transmitting signal. In section 4, channel estimation technique is discussed. The analysis 
of simulated results of performance of OFDM system without estimation is done in section 5, 
while results with estimation have been presented in section 6.  Finally section 7, concludes the 
paper. 
 

2. MODEL DESCRIPTION 

A Complex base band OFDM signal with N subcarriers, is expressed as [11]:   

∑
−

=

=
1

0

2 0)(
N

k

tkfj

ieDts
π

       Tt ≤≤0                                      (1)  

For each OFDM symbol, the modulated data sequences are denoted by 

( ) ( ) ( )1,.....1,0 −NDDD  . Here, 
o

f  denote the sub-carriers spacing and is set to 
T

f
o

1=  

the condition of orthogonality. After IFFT, the time-domain OFDM signal can be expressed as 
[11]: 

                                                                                                                                                                                       

                                                     
                      (2) 

 

After IFFT, the modulated signal is up-converted to carrier frequency 
C

f  and then the following 

signal is produced and transmitted through channel [11]: 
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)(tx  represents the final OFDM signal in which sub-carriers shall undergo a flat fading 

channel. 

 

3. CHANNEL MODEL 

In this paper, the sub-channel spacing ( )
T

f 1
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=  is chosen so that the produced parallel fading 

sub-channels have flat fading characteristics. So, we have chosen Nakagami-m flat fading 
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channel with additive white Gaussian noise. In flat fading environment, the base-band signal at 
the input of receiver ( )ty  is as described as follows [11]: 

)()(*)()( tntrtxty +=                          (4) 

where, ( )tx  denotes the base-band transmitted signal, ( )tr is the Nakagami-m distributed 

channel envelope and ( )tn is the additive white Gaussian noise with zero mean. 

Nakagami- m fading distribution function is given by [5] 

( )
2 1 22

exp , 0
( )

m m

R m

m r mr
p r r

m

−  
= − ≥ 

Γ Ω Ω                                           (5) 

Where, Г(.) is the Gamma function, 2
r=Ω  is the average power, m  is fading parameter 

and r  is Nakagami distribution envelope. 

Since, Nakagami distribution encompasses Scattered, reflected and direct components of the 
original transmitted signal [12], it can be generated using the envelope of the both random signal 
processes  ( )tr

nlos
 for non line- of- sight envelope i.e. Rician and ( )tr

los
 for line-of-sight i.e. 

Rayleigh as per the following expression[12]  

))1exp(1.()()1exp()()( mtrmtrtr losnlos −−+−=
                                                     (6) 

So, this value of ( )tr  is used as envelope of Nakagami-m distributed channel.  

4. CHANNEL ESTIMATION 

Channel estimation in frequency selective has different approach then compared with flat fading 
environment. A comparative study using Minimum Mean Squared Error (MMSE) and Least 
square (LS) estimator in frequency selective fading environment has been presented in [13]. The 
channel estimation based on comb type pilot arrangement is studied using different algorithms by 
bahai et. al.[14]. Semi-analytical method to evaluate BER of a quadrature phase shift keying 
(QPSK)-OFDM system in Nakagami, m < 1 fading and additive noise where pilot-assisted linear 
channel estimation and channel equalization is described in [15]. A novel channel estimation 
scheme for OFDMA uplink packet transmissions over doubly selective channels was suggested 
in [16]. The proposed method uses irregular sampling techniques in order to allow flexible 
resource allocation and pilot arrangement. In flat fading environment, estimation of the channel 
using trained sequence of data has been studied and implemented in [17]. Channel phase was 
estimated during each coherence time. Then pilot data of some required percentage of data 
length (referred as training percentage in simulation) is inserted into the source data. It is used to 
estimate the random phase shift of the fading channel and train the decision to adjust the 
received signal with phase recover. So, finally phase estimation using training symbol is 
implemented in flat fading environment. 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1: Simulation flow chart for Channel estimation [16]. 
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In this paper, after simulating the OFDM system in Nakagami-m faded environment, OFDM 
system has been simulated with channel estimation scheme to obtain the improved results. The 
results obtained showed the significant variation in BER for with and without estimation curves. 

 

5. RESULTS   WITHOUT ESTIMATION  

To analyze the performance of OFDM-BPSK and -QPSK systems over Nakagami-m fading 
channel, we consider the total number of sub-carriers 400, the IFFT /FFT length is chosen to be 
1024 by using Guard interval of length 256. 
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FIGURE 2: BER Vs. SNR for OFDM-BPSK system 
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FIGURE 3: BER Vs. SNR for OFDM-QPSK System 

In this section, we have presented the simulation results using MATLABTM by implementing two 
modulation formats for OFDM to get threshold  value of fading parameter m. Figure 2 indicates 
the BER Versus SNR for OFDM-BPSK with different values of fading parameter m. It is well 
known, that at m = 1, Nakagami-m fading corresponds to Rayleigh fading. So, the results for the 
same have been achieved through simulations. When value of m is increased, the BER starts 
reducing and value of 10-4 is reported at m = 1.4, 1.5 and 2. Further, if we increase m, no 
reduction in BER has been reported rather it starts increasing. So threshold value of m is 
achieved to be 1.4, to estimate the fading channel. This interesting fact about Nakagami-m 
channel has also been reported by Zheng et al. [6].  We have further analyzed OFDM system 
using QPSK shown in Figure 3. Results obtained for OFDM-QPSK systems are similar in nature 
to that of OFDM-BPSK system. BER starts decreasing with increasing value of m. It is very well 
depicted from graph the threshold value of m = 1.4 is achieved with BER value of 10-2. If value of 
m is further increased, BER starts increasing. Here, the value of m = 1 gives the Rayleigh fading 
curve for OFDM systems. 

Finally, BER performance of OFDM system in Nakagami channel degrades if we increase m 
beyond the certain threshold value [18]. 

 

6. RESULTS WITH ESTIMATION 

Trained symbols are added to source signal as discussed in section 4. The percentage of such 
symbol may be varied depending upon the system response to the trained sequence. We have 
analyzed the results for various percentage values of trained sequence. In this paper, improved 
results with channel estimation and OFDM implementation has been reported with threshold 
value of 4.1=m  and varying value of training sequence over the range from 10% to 50%. 
Results for OFDM-BPSK and –QPSK have been indicated in Fig. 4 and 5 respectively.  
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FIGURE 4: BER Vs. SNR for OFDM-BPSK System 

In depth analysis of these graphs show that by increasing the amount of trained symbols BER 
decreases. In Figure 4, BER value at SNR of 10db has decreased from 0.017885 to 0.00022 for 
training percentage of 10 to 50. The final value of BER in Figure 2 has been reported to be 10-4, 
whereas with estimation it has been reported to be 10-5, Hence, there is a significant improvement 
over BER in the modified implementation. 
However, results obtained in Figure 5 are indicating curves as compared to those obtained in 
Figure 4 but the value of BER for OFDM- QPSK is higher than –BPSK system. Final value of 
BER in Figure 4 & Figure 5 has been reported to be 10-2. Channel estimation has same effect on 
this system, BER at SNR of 10db has decreased from 0.06587 to 0.03912 because of increased 
value of training symbol. 
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FIGURE 5: BER Vs. SNR for OFDM-QPSK System 
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7. CONCLUSIONS 

In this paper, we have evaluated the performance of OFDM system using BPSK and QPSK with 
OFDM using Nakagami-m fading channel. Further the enhanced system performance has been 
implemented by phase estimation of channel. Threshold value of m has played a significant role 
in channel estimation as it provided the minimum value of BER.  
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