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EDITORIAL PREFACE 

 
This is Second Issue of Volume Seven of the Signal Processing: An International Journal (SPIJ). 
SPIJ is an International refereed journal for publication of current research in signal processing 
technologies. SPIJ publishes research papers dealing primarily with the technological aspects of 
signal processing (analogue and digital) in new and emerging technologies. Publications of SPIJ 
are beneficial for researchers, academics, scholars, advanced students, practitioners, and those 
seeking an update on current experience, state of the art research theories and future prospects 
in relation to computer science in general but specific to computer security studies. Some 
important topics covers by SPIJ are Signal Filtering, Signal Processing Systems, Signal 
Processing Technology and Signal Theory etc. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Started with volume 7, 2013, SPIJ appears with more focused issues related to signal processing 
studies. Besides normal publications, SPIJ intend to organized special issues on more focused 
topics. Each special issue will have a designated editor (editors) – either member of the editorial 
board or another recognized specialist in the respective field. 
 
This journal publishes new dissertations and state of the art research to target its readership that 
not only includes researchers, industrialists and scientist but also advanced students and 
practitioners. The aim of SPIJ is to publish research which is not only technically proficient, but 
contains innovation or information for our international readers. In order to position SPIJ as one of 
the top International journal in signal processing, a group of highly valuable and senior 
International scholars are serving its Editorial Board who ensures that each issue must publish 
qualitative research articles from International research communities relevant to signal processing 
fields. 
   
SPIJ editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for SPIJ. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. SPIJ provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts. 
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Abstract 
 
Microelectrode arrays (MEAs) have been applied for in vivo and in vitro recording and stimulation 
of electrogenic cells, namely neurons and cardiac myocytes, for almost four decades. 
Extracellular recordings using the MEA technique inflict minimum adverse effects on cells and 
enable long term applications such as implants in brain or heart tissue.  
 
Hence, MEAs pose a powerful tool for studying the processes of learning and memory, 
investigating the pharmacological impacts of drugs and the fundamentals of the basic electrical 
interface between novel electrode materials and biological tissue. Yet in order to study the areas 
mentioned above, powerful signal processing and data analysis tools are necessary. 
 
In this paper a novel toolbox for the offline analysis of cell signals is presented that allows a 
variety of parameters to be detected and analyzed. We developed an intuitive graphical user 
interface (GUI) that enables users to perform high quality data analysis. The presented 
MATLAB® based toolbox gives the opportunity to examine a multitude of parameters, such as 
spike and neural burst timestamps, network bursts, as well as heart beat frequency and signal 
propagation for cardiomyocytes, signal-to-noise ratio and many more. Additionally a spike-sorting 
tool is included, offering a powerful tool for cases of multiple cell recordings on a single 
microelectrode.  
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For stimulation purposes, artifacts caused by the stimulation signal can be removed from the 
recording, allowing the detection of field potentials as early as 5 ms after the stimulation. 
 
Keywords: MATLAB® Toolbox, Bio Signal Processing, Spike Sorting, Network Analysis, 
Extracellular Recording.

 
 
1. INTRODUCTION 
For all neural or cardiac implants, cell activity is detected by extracellular electrodes in the form of 
field potentials. Since cortical implants might be used someday to control artificial limbs, 
wheelchairs or software [1, 2], improving the living conditions of disabled people, the field of 
neural signal processing is of utmost importance. 
 
Yet signal processing is not only essential for in vivo applications such as implants, but also for in 
vitro studies of neural as well as cardiac networks that require substantial amounts of data 
processing. These systems are a powerful tool for studying learning, memory [3] and 
pharmacologic mechanisms [4]. In addition, the properties of the interface between novel 
electrode materials and biological tissue can be investigated [5], especially as there has been a 
growing community utilizing different kinds of multi-electrode arrays for in vivo and in vitro 
experiments in the recent past. Although the MEAs being used may differ in electrode size, 
substrate and electrode material as well as in number of electrodes, they all share the same 
working principles: (1) extracellular microelectrodes do not penetrate the cell membrane. (2) They 
record field potentials in the vicinity of the cell caused by changes in membrane potential – so 
called action potentials (AP). (3) The cells are either cultured onto the electrode array for in vitro 
studies or the chip is implanted into living tissue for in vivo studies. (4) These electrodes can be 
used to stimulate cells through voltage or current pulses. 
 
There are a couple of software toolboxes for neuronal signal processing available, where only a 
few are specifically designed for extracellular signals recorded by microelectrode arrays. These 
toolboxes include the commercially available MC_Rack (multichannel systems, Reutlingen, 
Germany), NeuroExplorer (Nex Technologies, Littleton, MA, USA), Offline Sorter (Plexon, Dallas, 
TX, USA) or NeuroMAX (R.C. Electronics Inc, Santa Barbara, CA, USA) and, furthermore, the 
open source projects FIND [6] sigTool [7] or nStat [8] to name only a few. Most of these toolboxes 
focus on neural signal processing exclusively, whereas cardio tools have not received as much 
attention. This motivated us to develop an open toolbox including established as well as new 
algorithms like a novel spike sorting algorithm that enable analysis of a variety of parameters for 
neural and cardiac cell signals. 
 
In the following we introduce an offline signal processing toolbox with algorithms for spike and 
burst detection, a sophisticated algorithm for spike sorting, spike overlay and signal propagation 
for cardiac cells and furthermore an analysis of simultaneous neural network activity. 
 
There are several cells that can change their resting potential e.g. neurons and cardiac myocytes. 
Throughout this paper we use the term spike to describe such a voltage peak no matter which 
cell caused it. Since the software tool reported herein is capable of working with any kind of spike 
we do not distinguish between different kinds of cell signals. 
 
This multi domain approach combined with powerful tools for neural and cardiac signals is unique 
in the field of offline analysis of electrophysiological data.  
 
The GUI, provides researchers an easy to use platform to process their signals and test new, 
custom made algorithms. A flow chart of available processing steps is shown in Figure 1. 
Generally the algorithms are designed for microelectrode arrays with 60 electrodes, yet signals 
originating from other set ups such as needle arrays or arrays with a different number of working 
electrodes can be processed as well. 
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The software is distributed under the GNU general public license (GPL) version 3 and is available 
from the authors at www.h-ab.de/drcell. It is based on MATLAB® R2012a including the Curve 
Fitting, Image Processing, Signal Processing, Statistics and Wavelet toolboxes. 
 
 

 
 

FIGURE 1: Flow chart of possible processing steps in the “DrCell” software toolbox. 

 
To test the developed algorithms cell culture experiments were conducted. Data recording was 
done using a multichannel system amplifier stage combined with custom made LabVIEW 

TM
 

based software. Details about cardiac cell cultures can be found in [5] Details about neural cell 
cultures in [9]. In short, cortical rat neurons were purchased cry conserved from Lonza Ltd (Lonza 
Ltd, Basel, Switzerland). Before cultivation, microelectrode arrays were coated with Poly-D-Lysine 
(PDL, 0,1 mg/ml in phosphate buffered saline (PBS), Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany) and Laminin (15 μg/ml in PBS, Sigma-Aldrich Chemie GmbH). Spikes were recorded 
from day 14 in vitro. 
 
Cardiac myocytes were prepared from chick embryos (E8). Hearts were carefully removed, the 
tissue dissociated and the cells cultured onto the MEAs. Here the chips were coated with 
Fibronectin (10 μg/ml in PBS,Sigma-Aldrich Chemie GmbH) prior to cultivation. 

 
2. RESULTS AND DISCUSSION 

The software tool named “DrCell” is subdivided into general preprocessing tools and a specific 
module for cardiomyocytes as well as a module designed for neural signal processing and 
analysis. While the cardiac module includes algorithms to analyze the contraction rate of the 
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tissue and signal propagation across the electrode array, the neural module features algorithms 
developed to analyze bursts and network behavior. 
 
2.1 Preprocessing 
In order to enable or just improve the detectability of signal parameters, it is advantageous to 
apply preprocessing algorithms to the recorded data. This includes digital filtering, spike detection 
and spike sorting for neuronal signals as well as the removal of stimulation artifacts in the case of 
an electrical stimulation. 
 
The graphical user interface of the MATLAB® software tool allows loading of ASCII files, 
containing recorded data, into the workspace for further processing. If the data is not recorded in 
ASCII file format it must first be converted using freely available tools such as the MC_DataTool 
from multichannel systems. 
 
In a first step the signal can be filtered by a bandstop or a bandpass filter. The frequencies for the 
lower and upper stopband edge frequencies can be set manually by the user. If both values are 
identical a notch filter with 1 dB passband ripple is applied at the chosen frequency. For the 
bandfilter an IIR Chebyshev filter with 20 dB stop band attenuation and ripple in the stopband is 
used.  
 
In addition, noisy electrodes can be omitted completely and stimulation artifacts can be removed 
as described in detail later. The next processing steps include the calculation of thresholds, spike 
and burst detection as well as several post processing tools such as spike sorting, analysis of 
network bursts, correlation analysis and spike shape analysis. 
 
2.2 Spike Detection 
The overall quality of the data analysis depends on the reliability of spike detection. Only if spikes 
are detected correctly, bursts, simultaneous bursts (bursts that appear over multiple electrodes at 
the same time), interspike intervals, or shapes of spikes can be detected and analyzed correctly. 
Out of a broad variety of spike detection methods, the first reported and still widely applied 
algorithm uses a negative multiple of the root mean square (rms), or alternately of the standard 
deviation of the base noise, as threshold. If the signal voltage drops below this value, a spike is 
detected [10]. Variations of this very easy, fast and reliable algorithm are also available e.g. 
multiple thresholds [11] or in combination with additional pattern recognition algorithms [12]. 
 
The spike detection algorithm implemented in DrCell works in four steps, which are summarized 
here and explained in detail below: (1) A time frame of two seconds on each electrode containing 
exclusively noise is detected. (2) For this frame the root mean square (rms) value and the 
standard deviation are calculated and (3) multiplied with a negative factor. As default value a 
multiple of the rms is used as threshold; alternatively a multiple of the standard deviation can be 
chosen instead. (4) The absolute minimum of every voltage peak that is lower than the threshold 
is saved as the spike’s timestamp. 
 
(1) To detect the base noise level, a time window is shifted over the signal of each channel 
searching for spike-free periods. The size of the window is set to 50 ms as default value but can 
be adjusted by the user. The detection of spike free windows is achieved by fitting the signal 
histogram with a Gaussian distribution, typical for white noise. A low standard deviation (equal or 
lower than a value defined by the user and set as default to ≤ 5) from this Gaussian distribution is 
interpreted as pure, spike-free noise. In this case the noise data is saved in a separate array and 
the window is shifted forward by one window length. If the standard deviation is higher than the 
defined value spikes are likely to be present in that particular interval and the window is only 
shifted half the window length and conditions are checked again. This process is repeated until a 
time period of 2 seconds is identified as “spike-free”. Sometimes the signal-to-noise ratio is too 
low for any signal to be detected. If half of the total recording time has been swept and no spike-
free window has been found, the algorithm stops and this particular electrode is labeled “noisy”, 
hence being disregarded for any further analysis. 
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As an option, the user can also define the timeframe to be used for calculating the rms value or 
standard deviation of the noise manually.  
 
(2-3) The rms value or, respectively, the standard deviation of these spike free signal arrays is 
multiplied by an empiric factor of -6 (default value) to set the threshold. This factor can also be set 
manually in the range of -3 to -14. 
 
In addition, a refractory time between spikes can be defined, if whished by the user. In this case 
the algorithm works as defined above but, after saving all timestamps, the intervals between the 
spikes are checked for physiological plausibility and, if this is not given, the second spike is 
erased from the array. 
 
The signal-to-noise ratio (SNR) of biological signals is not easily determined. In general the SNR 
is defined as the signal-power divided by the noise-power. Since only field potentials are 
measured, in other words voltage signals, there is no information on the respective power. 
Therefore we define the SNR of each electrode as SNR = (vps/σn)

2
, while vps describes the 

average peak voltage of spikes and σn the standard deviation of the noise [5]. By assuming the 
same impedance for signal and noise amplitudes the power ratio is calculated by squaring the 
fractal expression. 
 
This algorithm provides a very reliable and fast method for spike detection and is also easily 
implementable for online analysis. 
 
 
2.3 Stimulation Artifact Removal 
If cells are stimulated by electrical impulses supplied by a current or a voltage source [3], cell 
responses may be superimposed by undesirable distortions. Here we distinguish between 
crosstalk originating from the stimulation signal itself (about -18 ms to 0 ms in Fig. 3) and artifacts 
that appear shortly after the stimulation (about 0 ms until 80 ms in Fig. 3). Typically, cell reactions 
to the stimulation are expected within the first few milliseconds after the end of stimulation, while 
artifacts last up to 100 ms; therefore the removal of artifacts is desirable [13]. There are several 
approaches to achieve cancellation of artifacts described in the literature: the separation of 
stimulation and recording electrodes [14], the application of sample and hold elements [15], pass 
filters [16] or algorithms to restore the disturbed signal [13, 17]. 
 
The algorithm implemented in the DrCell toolbox reduces the critical time after a stimulus from 
about 100 ms to below 10 ms. For this purpose the beginning and end of the stimulation period is 
detected by a threshold based algorithm. The artifact signal is fitted by two consecutive 9th order 
polynomials, one for the period between 0.5 and 7.5 ms and one for 7.5 to 82.5 ms after 
stimulation. Subtraction of these polynomials from the recorded signal reduces distortions 
significantly (see Figure 2). In case the first couple of milliseconds (1 - 5 ms) are severely 
distorted, this time interval may be completely removed (set to 0 V), just as the stimulation 
interference itself. 
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FIGURE 2: Effect of artifact removal. Stimulation crosstalk (-18 ms to 0 ms) and artifacts (about 0 ms until 

80 ms) are removed from the distorted original signal (black) resulting in an adjusted signal (blue). This step 
clearly facilitates the spike detection immediately after stimulation. 

 
According to Ruaro [16] applying ninth order polynomials will result in robust artifact removal, 
while higher order polynomials would unnecessarily increase the computation cost. The 
application of polynomials of lesser order can still result in corrupted artifact removal.  
 
Cardiac Module 
2.4 Beat Rate 
Regular and synchronous contraction is a key feature of cardiac tissue. Pacemaker cells have the 
ability to initiate action potentials that propagate via gap junctions within a functional syncytium. In 
cardiac myocytes cultured on MEAs, the contraction rate correlates over time with the intrinsic 
field potentials and thus can be analyzed in terms of beat rate or for possible arrhythmias [18]. In 
our experiments, the former is calculated by the reciprocal median of the Interspike intervals 
(ISIs). The regularity is estimated using the median absolute deviation (MAD) of reciprocal ISIs 
[19]. 
 
2.5 Spike Shape and Propagation 
Typically the course of field potentials can be divided into several phases identified by negative or 
positive peaks, respectively. Applying chemical or electrical stimuli to the cells, as well as the 
effects of aging may influence several characteristics of the spike shape, e.g. the general field 
action potential duration, amplitude or the repolarization time. Therefore some domains might be 
prolonged or reduced and might occur either delayed or prematurely, respectively, whereas some 
characteristics of spike shape may become less distinctive or may even disappear. 
 
In cultures of cardiac tissue, the signal generated by pacemaker cells spreads throughout the 
whole network. As a consequence it is interesting to investigate the origin, direction and 
propagation speed of the specific signal. For this purpose an algorithm is implemented that maps 
almost synchronous spikes in a false color map by applying a time scale in the two dimensions of 
the electrode array (Figure 3 top). Noisy electrodes without discernible spikes or electrodes 
manually omitted from the analysis are highlighted in black. To further facilitate propagation 
pathway identification, arrows may be superimposed indicating propagation direction and speed 
(length of the arrows), not shown. 
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FIGURE 3: Propagation and spike overlay. The propagation of one heartbeat over the electrode array is 
shown (top). A spike overlay is displayed, where two different spike forms can clearly be distinguished 

(bottom). 
 

The propagation algorithm is based on the detection of the first spike appearing on the MEA. 
Delayed spikes within the next 200 ms are identified and their retard and electrode position are 
used to calculate speed and propagation pathways which are visualized on a virtual MEA layout. 
 
To address the issue of varying spike shapes, the DrCell algorithm determines characteristic 
peaks of each spike and the interval between these peaks. In addition, these data are not only 
calculated for just one spike, but may either be assessed for all spikes recorded by a single 
electrode or as mean values of the spikes recorded by all electrodes, further including information 
about their standard deviation and median. A graphic panel depicts an overlay of all spikes 
recorded on a single electrode (Figure 3 bottom), allowing an easy assessment of continued 
conformity of the spike shapes. The algorithm uses detected spikes and displays a time frame 
[spike time - x; spike time + y] of each selected spike. 
 
This panel proves especially valuable when working with cardiac tissues, as comparison of the 
duration of the field action potentials presents a valid method to evaluate the risk of diverse heart 
diseases. Of course, observation of single spikes is an option as well. In this case, the user may 
switch from one recorded spike to the next receiving single spike data, also allowing manual 
query of time points during the measurement. 
 
With these tools at hand the electrophysiological effects of aging, electrical or pharmacologic 
stimuli can be easily detected and tracked throughout the course of experiment. 

 
Neural Module 
2.6 Spike Sorting 
With a typical electrode diameter of 20 - 30 µm, each electrode is capable of recording signals 
from several cells at once. Especially for neural cell cultures it is crucial to identify the network 
activity on a single cell level, as subsequent analysis, such as burst or network burst detection, is 
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primarily based on this information. Under the assumption that the coupling between an individual 
cell and its respective electrode creates a unique spike shape characteristic, several pattern-
matching methods, called spike-sorting algorithms, have been developed in order to address this 
task. The DrCell framework provides a unique spike-sorting algorithm for this purpose, which is 
described in detail in [20].  
 
Unlike other spike sorting algorithms that exclusively use a specific type of feature, such as 
principal components [21, 22] or certain Wavelet based coefficients [23], the implemented 
algorithm calculates a variety of features and chooses the most suitable in a subsequent step. In 
order to distinguish the features most suitable for discriminating the spike shapes present in the 
recorded signal, the probability distribution of each derived feature is calculated over all detected 
spikes. The distributions are then evaluated with the expectation maximization algorithm (EM) 
that approximates the derived probability functions with a mixture of Gaussians. This allows an 
identification of multimodal distributed features that have the potential of discriminating different 
spike shapes. The features with the most distinguishable multimodal character are chosen for the 
final clustering step, with the correlation between the particular features serving as an additional 
criterion. In the last step the spikes are clustered into distinct groups on the basis of the 
determined set of features. Many sorting algorithms differ not only in the chosen set of features 
but also in their classification methods, and either use simple clustering, e.g. k-means [20], fuzzy 
c-means [22] or superparamagnetic clustering [23] or favor more complex classification 
algorithms using artificial neural networks [24] or support vector machines [25]. Since the latter 
classification algorithms usually require extensive and difficult training with specifically designed 
data, an expectation maximization clustering method was chosen in this context, as this approach 
fits best into the overall spike sorting algorithm. As shown in Figure 4, the described spike sorting 
process allows the discrimination of different spike shapes, in other words different cell signals, 
from each other. 
 

 
FIGURE 4: Sorting result for two spiking neurons recorded by one electrode. Two different spike shapes can 

clearly be distinguished. 

 
Thus, the results of any following analysis of network activity or network information processing 
can be significantly enhanced and more detailed interpretation is possible. 
 
2.7 Burst Detection 
The definition of a burst varies in the literature, but most sources use already detected spikes to 
find possible burst events. Since there is no commonly accepted definition, we describe some 
definitions from the literature and then explain the implemented algorithms in detail. It should be 
mentioned that each definition has consequences with regard to the number and time of detected 
bursts and thus may alter the results. 
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One of the oldest methods to detect a burst is based on purely statistical means. A burst is found 
in this case by analyzing the interspike intervals (ISIs). An unexpected series of short ISIs is then 
defined as a burst [26]. 
 
In contrast to this approach, there are several definitions stating that a burst consists of a certain 
number of spikes within a specific timeframe. Turnbull defines a burst as a series of 2–5 spikes 
with a maximum interspike interval of 12-50 ms, with the exact value of these parameters being 
adjustable according to individual needs [27]. Chagnac-Amital defines a burst as a series of at 
least three spikes, with no interspike interval being set [28]. Martinoia and Chiappalone both 
define a burst as a series of at least 10 spikes, with the interval between two spikes not 
exceeding 100 ms [10, 29]. Corner defines several kinds of bursts. A mini-burst is a series of at 
least three spikes with a maximum interspike interval of 100 ms, with only the spikes of a specific 
electrode being considered. A midi-burst is a series of at least three spikes with a maximum 
interspike interval of 1000 ms on more than one electrode [30]. Baker adds another burst-species 
– a micro burst. This kind of burst is a series of at least three spikes with a maximum interspike 
interval of 10 ms [31].  
 

 
FIGURE 5: Raster plot of all recorded electrodes. Each spike is represented by one dot. Simultaneous burst 

events are marked by a green line. 

 
According to Wagenaar, a burst is a group of spikes with a certain interspike interval [32]. The 
limit for the interspike interval is either 100 ms or (4 times the average spike rate 
(spikes/second))-1, whichever is less. After four spikes with these parameters are found, the 
interspike interval is set to the minimum of (3 times the average spike rate)-1 and 200 ms and 
more spikes that meet these criteria are searched before and after this core group.  
 
Jungblut defines a burst based on definitions by [10, 32] as a series of at least 3 spikes with the 
interspike interval of the first two spikes not exceeding 10 ms and with the ISI of the following 
spikes no longer than 20 ms [34]. 
 
Several of the algorithms mentioned above are implemented in the DrCell software. As default 
parameters we set a definition that is equivalent to Jungblut´s burst. The settings can be manually 
changed so that other definitions of bursts can also be used, e.g. the algorithm for Corner´s mini-
burst or the definition of Wagenaar with at least 3 or 4 spikes per burst. For analyzing cardiac 
cells there is no burst and the ISI interval can be set to either 100 ms or 200 ms. All definitions 
are only default values and can be adjusted as the operator wishes. 
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The first spike of the burst is taken as the burst timestamp and the time difference between the 
first and last spike is saved as the burst duration. The interburst interval is calculated between the 
last spike of the nth burst and the first spike of the (n+1)th burst. These values are calculated and 
saved as averages with standard deviation for each channel and for all channels. Furthermore, 
the average number of spikes per burst is saved for each electrode as well as for the whole 
electrode array. The detected spikes and bursts are marked in the signal and can be viewed 
additionally as a spike train or as a raster plot (Figure 5). 
 
2.8 Network Behavior 
The occurrence of simultaneous burst events (SBEs) as shown in Figure 6 can be seen as an 
indicator of the connections and communication within the neural network. 
 
A burst is typically generated in a certain area of the network and then spreads across the whole 
array, which leads to nearly simultaneous bursts at multiple electrodes. Depending on how well a 
neural network is connected, these synchronous events occur rarely to frequently (1 – 30 per 
minute) and show different speeds of propagation [35]. 
 
Because of the large number of possible connections (each cell on the chip can form up to 
10,000 synapses) between the neurons and thus the possible paths the signal can propagate, it 
is impossible to determine the exact pathway by evaluating the burst timestamps on the various 
electrodes. 
 
However, by evaluating the direction of signal propagation, it can be determined whether network 
bursts consistently start from the same region and if they are propagated along similar pathways 
[36]. Further, the number of electrodes that are involved in a network burst and the time between 
the first and the last burst (propagation speed) can be evaluated. 
 
Similar to regular bursts, there are different definitions of network bursts. Van Pelt assumes that 
the number of active electrodes and the spike rate of each electrode are increased if a network 
burst occurs. Thus, the product of the number of active electrodes and the total spike rate can 
serve as a detection criterion [37]. Other definitions use the already detected spikes and bursts 
instead, yet differ in the required number of electrodes that take part in the network event. 
 
In the algorithm by Segev, at least 80% of all active electrodes must show activity within a 100 ms 
time window [38]. This algorithm proves to be reliable in general although we found that the 
criterion of at least 80% of all active electrodes being active simultaneously is very strict. Thus in 
DrCell the number of simultaneous active electrodes is set to five. After a burst has been 
detected, the algorithm checks for other active electrodes exhibiting a burst-event between 40 ms 
before and after the initially detected burst. If at least five such electrodes are found, the 
maximum of the resulting histogram of timestamps is called the network burst. 
 
The histogram is then smoothened by a filter and the timestamps at 20% and 80% of the 
maximum before and after each network burst are saved. Based on these timestamps the rising 
time (20% - 80% before peak), the falling time (80% - 20% after peak) and the duration (20% 
before - 20% after) are calculated and saved. For the entire array all values are given with their 
minimum, maximum and average value including the standard deviation. Furthermore, the 
number of the participating electrodes is also stored, making a comparison between experiments 
straightforward. 
 
Finally, in order to evaluate the similarity between two electrodes, the cross correlation can be 
calculated. The correlation is quantified by Cohen´s Kappa, with a general value range  
between 0, meaning no correlation at all, and 1 meaning complete equality [39]. Additionally, the 
auto correlation can be calculated to evaluate the regularity of spikes or bursts. 
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3. CONCLUSION AND OUTLOOK 

In this paper we present a software toolbox for the analysis of cell signals, regarding both 
neurons and cardiac cells that are recorded with microelectrode arrays. This toolbox thereby 
covers not only all basic processing algorithms such as spike detection, but also features a 
multitude of advanced algorithms for both neural and cardiac signals. It allows, for instance, the 
investigation of spike propagation behavior and, furthermore, the identification of single or 
multiple pacemaker centers in cardiomyocyte cultures. When faced with neuronal data, the 
toolbox provides a wide range of spike and burst analysis methods, such as spike sorting, burst 
and network burst analysis and even facilitates the handling of datasets recorded in stimulation 
experiments. Unlike many commercially available tools, the presented framework furthermore 
enables the user to customize or even add specific methods or features. This allows the user to 
alter, for example, the display of results according to individual needs or desires. It further permits 
the user to implement, for instance, new spike or burst criteria or even completely new processing 
methods in addition to the existing algorithms. New algorithms or functions can be called by 
prepared empty menu-buttons. Here Matlab, which is available at most research institutions, 
provides a very powerful environment to develop novel algorithms.  
 
In the near future we will implement parts of this toolbox into our recording system for online 
analysis of cultured networks. Especially an online spikesorting algorithm will be very helpful for 
online analysis. We also plan to add more algorithms that will support the user in automatically 
analyzing sets of data and comparing their results. Further advancement of the algorithms include 
the propagation of signals over the array or analyzing network behavior by simulating neural 
networks with known mathematically models. 
 
Furthermore the toolbox will serve as analytical tool for future cell culture tests, where the effects 
of radiation on the biological tissue are studied. In addition, recently developed Matlab® 
toolboxes such as the parallel computing toolbox allow various adaptations to Dr. Cell. As the 
presented software can be changed freely, this toolbox can be used to transform the Dr. Cell 
software into a GPU environment, processing individual electrodes independently and in parallel, 
hence speeding up the data analysis significantly. 
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Abstract 
 
In this paper we will try to develop a method that will let us construct up to any frequency by some 
additional work we propose. With this method we can construct up to any frequency by adding 
more hardware to the system with the same sampling rate. By increasing the hardware 
complexity and keeping the same sampling rate we can reduce the information loss in a 
proportional manner. 
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1. INTRODUCTION      
Technically, we are proposing to decompose a signal into several separate signals by band 
passing the original signal. We then propose to process each signal and then to recombine the 
several processed signals. All this processing is being done in order to use a smaller sampling 
rate. There are several problems associated with this procedure that must be discussed in a 
paper on the procedure. First, practical band pass filters are only approximations of ideal band 
pass filters. We must discuss the effect of this approximation.  Second, there is a lot of 
processing in the proposed method. We then must compare this method with others.  

2.  METHODOLOGY 
In this method the input signal x(t) is applied to many channels . The first channel with a pre-pass 
(low pass) filter with a frequency band from 0 to Fs/2 Hz. the second channel with a second pre-
pass (band pass) filter with a frequency band from Fs/2 to Fs . The third channel with a pre-pass 
(band pass) and a frequency band from; Fs to 3*Fs/2, and so on up to n-channels; where the 
number of channels n is choose to satisfy the maximum frequency component of the output for 
the reconstructed signal.  In this way we can divide the spectrum of the signal into intervals each 
with Fs/2 band starting from 0. Now if we sample the output of each filter at Fs then taking the 
DFT for each channel samples we will get a spectrum from 0 to Fs/2 for each channel output. At 
this point if the spectrum of odd channels i.e. the frequency band that lies in range [m*Fs <f< 
(m+1/2)*Fs] is placed into the interval band of the pre pass filter for that channel. And the mirror 
image of the spectrum around the (Fs/2) axis for even channels i.e. (m-1/2)*Fs<f<m*Fs is placed 
into the interval band of the pre pass for that channel. We will get the spectrum for x(t) 
constructed up to any frequency if the channels cover that frequency . As we can see by some 
additional work developed, we can increase frequency limit for reconstruction of signals without 
increasing the sampling frequency Fs. 
 
In this approach to the solution I tried to follow the guidelines. I divided the problem into two parts. 
One part is to try to solve the problem in the frequency domain the second is to try to solve it in 
the time domain. 
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FIGURE 1: The System Block Diagram. 

 
Because it is very hard, in practice, to build those ideal band pass filters.  We suggest solving this 
problem by super heterodyning. By that I mean we build a high quality low pass filter with sharp 
transition with pass band from 0 to Fs/2 Hz. For the second channel we project the spectrum in 
the band Fs/2 to Fs into the band of the low pass filter. For the third channel we project the 
spectrum in the band Fs to 3*Fs/2 into the band of the low pass filter. And so on. I hope this will 
make us avoid the problem of having too many band pass filters which are difficult to have them 
ideal in practice. 

              
let us suggest another method. Say we sample the original signal at a given rate, say Fs. Then 
shift the signal in time by a given amount and sample again at Fs. Again shift the signal in time 
and sample again at Fs. The samples from the various samplings of the original signal can then 
be combined by interlacing them to form a sample sequence equivalent to several times Fs. Note 
that the several samplings of the original signal can be done in parallel. My proposed technique 
would thus take no more time than sampling the original signal at the several times Fs. If this 
were done, my proposed technique is equivalent to replacing a sampler with a high sampling rate 
with several at a lower sampling rate. This procedure would thus avoid the problems involved with 
the other proposed procedure that I mentioned above.  
 
I feel the time delay has to be logarithmic. The first channel is sampled every Ts. The second 
channel we delay by Ts/2 and sample again at Fs. For the third channel we have to delay now by 
+Ts/4 and –Ts/4 and sample each delayed wave at Fs. The two delays for the third channel is 
important to keep the sampling rate fixed and to be able to reconstruct the original signal by 
having equidistance samples, and so on. 
 
 
Let me propose an alternative to this technique. Which does not require ideal band pass filters 
and reconstruction of the samplings of each band passed and frequency shifted waveform?  I 
suggest just sampling the original waveform at a rate above Fn, the Nyquist rate, in the following 
manner: Call some time instant of the waveform t = 0. Then                                         ;       
 
1. Sample at the rate Fn with the first sample at t = 0. 
 
2. Sample at the rate Fn with the first sample at t = 1/(k)(Fn). 
 
3. Sample at the rate Fn with the first sample at t = 2/(k)(Fn). 
 
4. Sample at the rate Fn with the first sample at t = 3/(k)(Fn) 
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and so forth until  
 
k-1. Sample at the rate Fn with the first sample at t = (k-1)/(k)(Fn). 
 
Then concatenate the various sample sequences. Note that the resulting sequence obtained is 
the sequence that would be obtained by sampling the waveform at the rate (k)(Fn).Note that this 
proposed technique does not require any filters, band shifting or time shifting of the waveform. 

Also, all the k samplings can be done at the same time if k samplers were used.   
 
3. THEORY PROOF 
To proof this proposed method we will take a cosine wave on the input of each interval band 
channel, as follows; 
 
Channel 1 
 
For an input; X1(t) = cos (2*pi*f1*t)              
                                  
Where, 0< f1 <Fs/2 and Fs is the sampling frequency 
 
If the channel output is sampled at Fs rate then the output sampled signal will be 
 
X1(n) = cos (2*pi*f1*(n/Fs)) and the reconstructed signal is the same as the input signal i.e.  
 

X1(t) = cos (2*pi*f1*t) 
 
 
 
 
 

 
 
 
 
 

        
 
        

FIGURE 2: Digital Frequency (f1/Fs)=.4. 

 
Channel 2 
 
For the input ; X2(t) =cos(2*pi*f2*t)                
                               
Where  Fs/2<f2<Fs and Fs is the sampling frequency 
 
The sampled signal will be  
 
X2(n) =cos(2*pi*(f2/Fs)*n) 
 
X2(n) =cos(2*pi*((f2/Fs)-1)*n) 
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Reconstruction 
 
X2 (t) = cos (2*pi*(f2-Fs)*t) 
 
Which is the mirror image of the input around Fs/2 
 
We can get the input using the developed  algorithm  
 
X2(t)=cos((2*pi*(Fs/2+(Fs/2-(f2-Fs)*t)) 
 
X2(t)=cos(2*pi*f2*t) 
 
Example : for f2 =70 Hz                  
 
 
 
 
 
                        
 
 
 
 
 
 

                
 

FIGURE 3: Digital frequency (f2/Fs) = .7 

 
Channel 3 
 
For the input ;X3(t)=cos(2*pi*f3*t)       
                                 
Where        Fs<f3<3*Fs/2  and Fs is the sampling rate 
 
The sampled signal is  
 
X3(n)=cos(2*pi*(f3/Fs)*n) 
 
X3(n)=cos(2*pi*((f3/Fs)-1)*n) 
 
The reconstructed signal is 
 
X3(t)=cos(2*pi*(f3-Fs)*t) 
 
Using our methodology and Shifting by Fs to place it in ch3 interval 
 
X3(t)=cos(2*pi*f3*t) which is the  input 
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Example : For F3 = 130 Hz 
 
 
 
 
 
 
 
 
 
       
 
 
 
 

FIGURE 4: Digital Frequency (f3/Fs) = 1.3. 

 
Channel 4 
 
For the input X4(t)=cos(2*pi*f4*t)       
                                       
where 3*Fs/2<f4<2*Fs  and the sampling rate is Fs 
 
The digital signal after sampling is 
 
X4(n)=cos(2*pi*(f4/Fs)*n) 
 
X4(n)=cos(2*pi*(2-(f4/Fs)*n) 
 
 
Reconstruction 
 
X4(t)=cos(2*pi*(2Fs-f4)*t) 
 
Using our methodology For ch4 we have to take the mirror image around Fs 
 
X4(t)=cos(2*pi*f4*t) which is the same as the input 
 
Example : for f4=190Hz 
 
 
 
 
 
 
 
 
 
 

   
 
 
 

FIGURE 5:   Digital Frequency (f4/Fs) = 1.9. 

 
 
X(t)=X1(t)+X2(t)+X3(t)+X4(t), constructed up to 2*Fs with Fs fixed 
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Using the same method we can construct up to any frequency as long as we cover the band with 
enough channels. 

 
4. DISCUSSION 
To have a feeling for this method think of a register were increasing the number of bits is like 
increasing the number of channels. Imagine that we are counting in the decimal system . This 
method is like inventing the zero. In this system each digit can take ten values. This is smeller to 
the sampling rate Fs . Increasing the hardware complexity by increasing the number of channels 
(i.e. increasing the number of bits (or digits) in a register) will enable us to construct up to higher 
frequency (more numbers or more accuracy)   

 
5.  IMPACT OF PROPOSED RESEARCH WORK 
This work support real time DSP. I will give a simple example. Let as say we have a sampler at 
5kHz and we want to process 20 kHz signal in real time. We can make four channels each one 
5kHz band and proceed as explained above. This like replacing the sampler by 20 kHz sampler. 
The result of the simulation is given in figure 6 were we have two frequencies 4kHz and 16kHz 
sampled at 5kHz and reconstructed using our method at real time with no loss of information.      

 
 
 
 
 
 
 
                                                               
 
 

FIGURE 6: Test Using Two Frequencies. 

 
6.  COMPARATIVE EVALUATION 
This idea was developed from Proakis Digital Communication book and the chapter on 
Multichannel and Multicarrier systems. There is a large amount of literature on multicarrier digital 
communication systems. Such systems have been implemented and used for over 35 years. One 
of the earliest systems, described by Doeltz et al. (1957) and called Kineplex, was used for digital 
transmission in the HF band. Other early work on multicarrier system design have been reported 
in the paper by Chang (1966). The use of DFT of multicarrier systems was proposed by 
Weinstein and Ebert (1971).   
 

7. CONCLUSION 
In this paper we were able to develop a procedure that will make us able to construct up to any 
frequency keeping the sampling frequency fixed. This is done by some additional steps we 
propose. We provide the proof for this method. A block diagram was given to the final system. 

 
8. REFERENCES 
 
[1] A. Papoulis , Probability , Random Variables, and Stochastic Process,2002. 

[2] J. G. Proakis , Digital Communications, 2001. 

[3] R. J. Schilling , Engineering Analysis ,1988. 

[4] H. L. Van Trees , Detection, Estimation, and Modulation Theory,1968. 



Dr. Ziad A Sobih & Prof Martin Schetzen 

 

Signal Processing International Journal (SPIJ), Volume (7) : Issue (2) : 2013 116 

 

[5] J. G, Proakis , Inroduction to Digital Signal Processing ,1988. 

[6] C. Chen , Linear System Theory and Design , 1984.  

[7] S. Haykin , Communication System ,1983. 

[8] T. H. Glisson , Introduction to System Analysis , 1985. 

[9] Martin Schetzen, Airborne Doppler Radar, 2006. 

[10] Martin Schetzen, The Volterra & Wiener Theories of Nonlinear Systems, 2006. 

[11] Martin Schetzen, Discrete System using Matlab, 2004. 

 
 



K. Sharmila, E. Hari Krishna & K. Ashoka Reddy 

Signal Processing: An International Journal (SPIJ), Volume (7) : Issue (2) : 2013 117 

Rule Based Identification of Cardiac Arrhythmias from Enhanced 
ECG Signals Using Multi-Scale PCA 

 
 

K. Sharmila                         kothashama@yahoo.co.in 
Department of ECE 
KITS Huzurabad 
Karimnagar, India 

 
E. Hari Krishna                 hari_etta@yahoo.co.in 
Department of ECE 
Kakatiya University 
Warangal, India 
 

K. Ashoka Reddy                       reddy.ashok@yahoo.com 
Department of E&I Engineering 
KITS Warangal 
Warangal, India 

 
 

Abstract 
 
The detection of abnormal cardiac rhythms, automatic discrimination from rhythmic heart activity, 
became a thrust area in clinical research. Arrhythmia detection is possible by analyzing the 
electrocardiogram (ECG) signal features. The presence of interference signals, like power line 
interference (PLI), Electromyogram (EMG) and baseline drift interferences, could cause serious 
problems during the recording of ECG signals. Many a time, they pose problem in modern control 
and signal processing applications by being narrow in-band interference near the frequencies 
carrying crucial information. This paper presents an approach for ECG signal enhancement by 
combining the attractive properties of principal component analysis (PCA) and wavelets, resulting 
in multi-scale PCA. In Multi-Scale Principal Component Analysis (MSPCA), the PCA’s ability to 
decorrelate the variables by extracting a linear relationship and wavelet analysis are utilized. 
MSPCA method effectively processed the noisy ECG signal and enhanced signal features are 
used for clear identification of arrhythmias. In MSPCA, the principal components of the wavelet 
coefficients of the ECG data at each scale are computed first and are then combined at relevant 
scales. Statistical measures computed in terms of  root mean square deviation (RMSD), root 
mean square error (RMSE), root mean square variation (RMSV) and improvement in signal to 
noise ratio (SNRI) revealed that the Daubechies based MSPCA outperformed the basic wavelet 
based processing for ECG signal enhancement. With enhanced signal features obtained after 
MSPCA processing, the detectable measures, QRS duration and R-R interval are evaluated. By 
using the rule base technique, projecting the detectable measures on a two dimensional area, 
various arrhythmias are detected depending upon the beat falling into particular place of the two 
dimensional area. 
 
Keywords: ECG, Wavelet Transform, Principle Component Analysis, Arrhythmia Detection. 

 
 
1. INTRODUCTION 

In clinical applications, the arrhythmia condition, disturbing the rhythmic activity of heart, and its 
detection plays a vital role for diagnosing the patient’s rhythmic status. The detection of abnormal 
cardiac rhythms became a potential area in clinical research. Arrhythmia detection is possible by 
analyzing the electrocardiogram (ECG) signal features. Several detection algorithms have been 
proposed earlier for arrhythmia detection, such as pattern matching, pattern subtraction etc., Rule 
base technique is one of the simple methods which can be utilized for arrhythmia detection after 
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obtaining the denoised ECG signal. Most of the physiological processes manifest themselves as 
signals reflecting their activity. Heart generated electrocardiogram (ECG), muscle generated 
electromyogram (EMG) and brain generated electroencephalogram (EEG) are some biomedical 
signals of interest [1]-[2]. The ECG signal, recorded with an electrocardiograph, is an electrical 
manifestation of the contraction and relaxation of the heart. ECG signal, whose frequency band of 
interest is 0.05 to 100Hz, is corrupted by different artifacts, which include 50/60 Hz power line 
interference (PLI), EMG interference and baseline wandering. PLI affects the complete ECG 
making it difficult for measurement of QRS complex and the QT interval. In order to remove 60 Hz 
PLI, an LMS adaptive filter can be employed by setting the 60Hz-component as a reference 
signal, so as to adjust the filter coefficient until the error is minimized from the input signal where 
the 60Hz-component is included [3]-[6]. The EMG, due to random contraction of muscles, is a 
high frequency component distributed in a wide frequency band which cannot be removed with a 
simpled filtering operation. The baseline wander, which is a low-frequency noise resulting from 
sudden movement of the body and respiration, has the same frequency band as of the ST 
segment of the ECG signal. Hence baseline wander is to be eliminated for the precise 
measurement of the ST segment. As a usual pre-processing phase, the real ECG is band pass 
filtered in order to remove the corrupted noise and to recover the signal waves (P, QRS and T). 
However, it has been established that the power spectral density (PSD) of the QRS complex (5-
15 Hz) overlap with the muscle noise, while the PSD of P and T waves overlap with that of 
respiration, blood pressure at low frequency band usually (0.1 to 1 Hz). These different artfacts 
prevent considerably the accurate analysis of the ECG signal and eventual diagnosis of cardiac 
anomalies. 
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FIGURE 1: Block diagram for enhancement of ECG signal using multi-scale Principal Component Analysis. 
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FIGURE 2: Block diagram for detection of cardiac arrhythmia from noisy ECG signal 

 
Many solutions were reported in literature like digital filters (FIR or IIR), adaptive filtering methods 
and wavelet transform thresholding methods, in order to eliminate the noise of ECG signal [2]. 
The most widely used method, among the several other methods, used for ECG signal 
enhancement is the least mean square (LMS) adaptive algorithm [5]-[7]. But this algorithm is not 
able to track the rapidly varying non stationary signal, hence causes excessive low pass filter of 
mean parameters such as QRS complex. The wavelet transform (WT) has been proven to be a 
promising tool for non-stationary signal analysis, where in thresholding is used in wavelet domain 
to smooth out or to remove some coefficients of wavelet transform sub signals of the measured 
signal. Furthermore, the non-stationary behavior of the ECG signal, that becomes severe in the 
cardiac anomaly case, attracted researchers to analyze the ECG in both time and frequency 
planes simultaneously. The ability of the wavelet transform to explore signals into different 
frequency bands with adjustable time frequency resolution makes it suitable for ECG signal 
analysis and processing [8]-[13]. Many tools, methods and algorithms from signal processing 
theory have been proposed, described and implemented over the past few years to extract 
feature from ECG signals such as, total least squares based Prony modeling algorithm [14], 
correlation dimension and largest Lyapunov exponent [15], autoregressive model [16], 
multivariate autoregressive model [17], heartbeat interval combined with the shape and 



K. Sharmila, E. Hari Krishna & K. Ashoka Reddy 

Signal Processing: An International Journal (SPIJ), Volume (7) : Issue (2) : 2013 119 

morphological properties of the P, QRS and T waves [18], wavelet transform [19], multiple signal 
classification (MUSIC) algorithm [20], and efficient formation of morphological wavelet transform 
features together with the temporal features of the ECG signal [21].  

 
Extracting the features from clean ECG signal has been found very helpful in identifying various 
cardiac arrhythmias. This could be difficult, when the size of the data of the ECG is huge and the 
existence of different noise types that may be contained in the ECG signals. Furthermore, manual 
analysis is considered a very time consuming and is prone to error. Hence arises the importance 
of automatic recognition and analysis of the ECG signals for extracting the different features 
available. Clean artifact free ECG signal is required exact identification of cardiac arrhythmias. 
 
This paper presents multi-scale principal component analysis (MSPCA) based method for ECG 
enhancement as illustrated in Figure 1, which makes use of abilities of both the wavelets and the 
principal component analysis (PCA). This enhanced ECG is applied to the arrhythmia detector as 
shown in Figure 2. This basic idea is an extension to our previous work [22], where the enhanced 
ECG when presented to rule based arrhythmia classifier, resulted in a robust classification for 
arrhythmia. 

 
2. WAVELETS 

Since the useful ECG signal is corrupted with artifacts, the objective is to analyze accurately an 
ECG signal, to identify all the possible cardiovascular abnormalities. Wavelet analysis answers 
most of these problems [9]-[10]. In contrast to the classical Short-Time Fourier Transform (STFT) 
or Gabor transform, which uses a single analysis window, the WT uses long windows at low 
frequencies and short windows at high frequencies.  
 
Discrete Wavelet Transform is referred as decomposition by wavelet filter banks as shown in Fig 
3. and reconstruction in fig 4. Furthermore, the decomposition process, by which the signal is 
broken into many levels of lower resolution components, is iterative.  
 
Only the last level of approximation is save among all levels of details, which provides sufficient 
data. Aj is the approximate coefficients and Dj is the detailed coefficients. The output coefficients 
of the LPF are referred to as ‘approximations’ and the output coefficients of the HPF are referred 
to as ‘details’. The approximations of the signal are define its identity, while the details imparts 
gradation. 
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FIGURE 3: Wavelet Decomposition.     FIGURE 4: Wavelet Reconstruction. 
 

 
Selecting a mother wavelet which closely matches the signal to be processed is of important in 
wavelet applications. The Haar wavelet algorithm is simple to compute, where the Daubechies 
algorithm is conceptually more complex and picks up detail that is missed by the Haar wavelet 
algorithm [11]. In practice, there is no absolute of choosing a certain wavelet. The choice of the 
wavelet function absolutely depends on the application. The energy spectrum of Daubechies 
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wavelet family is concentrated around low frequencies and more over similar in shape to QRS 
complex. 
 
2.1 Wavelet De-noising 
During denoising, the signals are transformed, thresholded and inverse-transformed as shown in 
Fig 5. The result is cleaned-up signal that shows important details. The general de-noising 
procedure follows the steps described below. 
 

i. Decomposition: Perform wavelet decomposition by choosing a mother wavelet and  a 
convenient level N for decomposition. 
 

ii. Thresholding detail coefficients: For each level from 1 to N, select a threshold and apply 
soft or hard thresholding to the detail coefficients. 
 

iii. Reconstruction:  Perform  the wavelet reconstruction using the original approximation 
coefficients and the modified detail coefficients obtained at different levels. 
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FIGURE 5: Wavelet Denoising Procedure. 
 

There are two important issues with this: how to choose the threshold, and how to perform the 
thresholding [13]. Thresholding algorithm can be applied in two ways. One is hard thresholding 
process, which sets any wavelet coefficient less than or equal to the threshold to zero and the 
other is soft thresholding, which in addition to applying hard threshold, subtracts the threshold 
from any wavelet coefficient greater than the threshold. 
 
2.2 Principal Component Analysis 
Principal component analysis (PCA) is essentially a variable reduction procedure and it identifies 
the patterns in the data [27]. PCA can be performed using two methods, one of which using 
covariance matrix and the other using singular value decomposition (SVD). The essential steps 
involved in performing PCA on the data are discussed below. 
 
Form a data set by using the periodicity of the ECG signal. Periodicity will be found using SVR 
profile i.e. the ratio of first principal component to the second principal component. The data 
matrix X is size of m x n, where n is the SVR computed periodicity and m is the number of periods 
considered. 

   Let 1 2 3( ) [ ( ), ( ), ( ), ( )]= KK

m
X t x t x t x t x t

        (1) 
 
is the time ordered collection of the feature at all beats into a single matrix to which PCA can be 
applied. The means of the xi are removed and the covariance matrix computed. The covariance is 
defined as 

   
1 T

X X
n
 ∑ =               (2) 

 

∑  is an m x m square symmetric matrix, eigenvalues (aj) and corresponding eigenvectors (λj) will 
be calculated, In general, once eigenvectors are found from the covariance matrix, the next step 
is to order them by eigenvalue, highest to lowest. This gives you the components in order of 
significance. The lesser eigenvalues can be ignored; this will form the basis for compression. The 
principal components (PC) are ordered eigenvectors of the covariance matrix. The PCs were 
obtained using 
 zj=aj x   j=1,2, …….n        (3) 
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The PCs are a linear transformation of the beats with transformation coefficients given by the 
eigenvectors αj. The performance of PCA an futher be improved by using PCA in conjunction with 
the wavelets, resulting in the concept of multiscale PCA. 

 
2.3 Multi-Scale PCA 
Multi-scale Principal Component Analysis (MSPCA) has been proposed as a fault detection 
method for the time series data [23]. This method combines the ability of PCA to extract the 
relationship among variables, then, to decorrelate the cross-correlation with that of wavelet 
analysis to decompose the time-series data into several frequency scales. Multiscale PCA 
reconcstructs simplified multivariate signal, starting from a multivariate signal using a simple 
representation at each resolution level. In MSPCA, the PCA will be performed (i) on the matrices 
of details of different levels, (ii) on the matrices of coarser approximation coefficients and (iii) on 
the final reconstructed matrix. Finally, the interested simplified signals can be obtained by 
retaining useful principal components. Such an approach is developed in this paper by efficiently 
combining the abilities of PCA and wavelets. The  present work is focused on using wavelets for 
multi scale data analysis. The sequence of steps employed for implementing proposed MSPCA 
method for ECG signal enhancement are given below. 
 
Step1: For each column in data matrix of ECG, perform wavelet decomposition process 
 
Step 2: For each scale, compute covariance matrix of wavelet  coefficients  
 
Step 3: At selected scale, compute PCA loadings and scores of wavelet coefficients 
 
Step 4: Select the appropriate number of loadings and wavelet coefficients (larger than 
appropriate threshold) 
 
Step 5: For all scales together, compute PCA by including the scales with significant events 
 
Step 6: Reconstruct approximate data matrix from the selected and thresholded scores at  each 
scale 
 

3. ARRYTHMIA DETECTION 
Arrhythmia is a condition in which the rhythmic activity of heart is disturbed. It may be due to 
disturbance in impulse formation or conduction or both but it is not always an irregular heart 
activity. Arrhythmia can be detected by analyzing the ECG signal features particularly based on 
the detectable measures, QRS duration and R-R interval. The detection of abnormal cardiac 
rhythm, an automatic discrimination from rhythmic heart activity became a thrust area in clinical 
research. Several detection algorithms have been proposed earlier for arrhythmia detection, such 
as pattern matching, pattern subtraction etc., Rule base technique is one of the simple method 
which can be utilized for arrhythmia detection after obtaining the denoised ECG signal. In the 
present work, initially, noisy ECG signal is effectively processed by the MSPCA method for noise 
elimination from corrupted signals. The detectable measures, QRS duration and R-R interval, are 
evaluated for the restored artifact free ECG signal. Based upon these two values, arrhythmia can 
be detected by using rule base technique (two- parameter method). The rule base technique 
essentially projects QRS duration and R-R intervals on a two dimensional area. According to the 
beat falling into particular place of this two dimensional area, various arrhythmias can be 
detected. The two- parameter mapping method [27] can be clearly described by using the Figure 
6 shown below. 
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FIGURE 6: Two-Parameter Mapping. 

 
In this two-parameter mapping, a region called normal is established by permitting the algorithm 
to first learn on a set of eight QRS complex defined by a clinician, as having normal rhythm and 
morphology for the specific subject. This learning establishes the initial center of the normal 
region in the two dimensional mapping space. Boundaries of all other regions in the map, except 
for region “0”, are computed as percentages of the location of the center of the normal region. 
Region “0“ has fixed boundaries based on physiological limits. Any point mapped into region  “ 0 ” 
is consider to be noise because it falls outside, what we normally expect to be the physiological 
limits of the smallest possible RR interval or QRS duration. 
 
An abnormality such as tachycardia condition causes the clusters of beats to fall in the region “1” 
(which represents very short RR intervals) whereas the bradycardia beats fall in region“6”. 
Abnormalities must be classified by considering sequences of beats .for example a pre mature 
ventricular contraction (PVC) with a full compensatory pause would be characterized by a short 
RR interval coupled with a long QRS duration, followed by a long RR interval coupled with a 
normal QRS duration. This would be manifested as a sequence of two points on the map, the first 
in the region “3” and the second in the region “5”. Thus, arrhythmia analysis consists of analyzing 
the ways in which the beats fall onto the mapping space. 
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S.No Type of Beat Description 

1. Normal If a beat falls in the normal box 

2. Asystole No R wave for more than 1.72 s; less than 35 beats /min 

3. Droped A long RR interval;beat falls in region 6 

4. R-on-T A beat falls in region 2 

5. 
Compensated 
PVC 

A beat in Region 3, followed by another in Region 5 

6. 
Uncompensated 
PVC 

Abeat in Region 3, followed by another  in the normal region 

7. Couplet Two consecutive beats in region 3 followed by beat in normal region 5 

8. 
Paroxysmal 
bradycardia 

If there are at least three consecutive points in Region 5 

9. Tachycardia Average RR interval is less than  120 beats /min 

10. Fusion Beat  with a wide QRS duration; falls in region 4 

11. Escape Beat with a delayed QRS complex; falls in Region 5 

12. Rejected Beat with RR interval of 200 ms or less QRS duration of 60 ms or less. 

 
TABLE 1: Arrythmia Classification. 

 
The center of the normal region is continuously updated, based on the average RR interval of the 
eight most-recent beats classified as normal. This approach permits the normal region to move in 
the two-dimensional space with normal changes in heart rate that occur with exercise and other 
physiological changes. The boundaries of other regions are modified beat-by-beat (adapts to 
normal changes in heart rate). The classification of the waveforms can be made by noting the 
regions in which successive beats fall. The rule base technique described above is an efficient 
method for extracting RR interval and QRS duration information from an denoised ECG signal. 
Based on the acquired information, different arrhythmias are classified as shown in the Table I. 

 
4. RESULTS AND DISCUSSION 
In order to test the performance of the proposed MSPCA algorithm, the MIT-BIH Arrhythmia 
Database records [24] were considered. To observe the enhancement, elimination of EMG, 
baseline wandering and PLI noise were considered. Steps described in section III were applied 
on corrupted ECG signals. Figure 7 illustrates EMG corrupted and eliminated ECG signal using 
multi scale PCA on two different subjects. Similarly, for the baseline wandering noise the result is 
shown in Fig 8. PLI corrupted and eliminated signals for two different subjects are portrayed in 
Fig 9. The principal components of the transformed ECG signal corresponding to record-103m 
are shown in Figure 10. 
 
In order to test the efficacy of the proposed filtering method, different wavelets were used in the 
process of applying multi scale PCA on the PLI corrupted ECG and the resulted denoised signals 
were observed, wherein the morphological features of the ECG were clearly restored can be seen 
from fig 11. For the sake of comparison, the same ECGs were processed with only wavlets and 
the signals are portrayed as (e)-(g) in Figure 10. However, visual inspection of the enhanced 
signals did not reveal much information about the efficacy of the method used. Hence, for 
performance comparison, the following statistical measures were considered: RMSV, RMSE, 
RMSD. 
 
1. Root mean square deviation (RMSD): It is the RMS value obtained from difference of pure 
ECG signal and the restored ECG signal that has been processed by the proposed method.  
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2. Root mean square error (RMSE): RMSE is the RMS value of the restored ECG minus filter 
output for clean ECG.  
 
3. Root mean square variation (RMSV): It is the RMS value of the difference between the original 
input ECG and processed one. 
 
A smaller values for RMSD, RMSE and RMSV indicates a better efficacy of the method in 
eliminating PLI and less distortion of signal after the processing; a lesser distortion of ECG 
morphology after the filtering operation; and less degree of variation of the ECG signal processed 
by the method respectively. In addition the restoring capacity can be evaluated using the effective 
measure, improvement in signal to noise ratio (SNRI). 
 
4. Improvement in Signal to Noise Ratio (SNRI): It is the difference between Signal to Noise Ratio 
at Output (SNRout)  in dB and the SNRinput in dB. 
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FIGURE 7: EMG corrupted ECG signal in trace (a)  FIGURE 8: Baseline corrupted ECG signal in trace (a) 
and eliminated ECG in trace (b) for two different  and eliminated ECG in trace (b) for two different 
subjects.      subjects. 
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FIGURE 9: PLI corrupted ECG signal in trace (a) and eliminated ECG in trace (b) for two different subjects. 
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FIGURE 10: The Principle components of the  FIGURE 11: (a) PLI corrupted ECG and (b) PLI  
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Where xn (i) is the noisy ECG signal, xd (i) is the de noised ECG signal and x (i) is the Original 
ECG signal. 
 
To evaluate these measures, all the wavelets were initially applied on the original uncorrupted 
MIT-BIH Arrhythmia and then on the PLI corrupted ECG. The computed RMS statistics for 
MSPCA were compared with pure wavelet transform based ECG enhancement algorithm.  
 
Tables II - V, revealed that MSPCA resulted in better statistics compared to only wavelets, which 
eventually facilitates accurate ECG signal analysis due to improved restoration of ECG 
morphology. Also the Daubechies wavelet based PCA efficiently eliminated the PLI. After 
enhancement, based on the signal’s QRS duration and a rule base, the identification of cardiac 
arrythmias will performed. Two original ECG records  (# record 103m, # record 215m), were 
enhanced by MSPCA, QRS locations and  susequent classification is shown in Figure 12.  
 
The sensitivity and positive predictivity of the beat detection algorithm are computed by 
 

TP
Se

TP FN
=

+

           (6) 

 
TP

P
TP FP

+ =

+

          (7) 

 
where TP is the number of true positives, FN the number of false negatives, and FP the number 
of false positives. The sensitivity Se reports the percentage of true beats that were correctly 
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detected by the algorithm. The positive predictivity +P reports the percentage of beat detections 
which were in reality true beats. 
 
Table VI and Table VII give sensitivity and positive predictivity data for different cardiac 
arrythmias. 
 
 

ECG Data 
base 

WAVELET MSPCA 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

103 
0.005± 

1.5x10-4 
0.005 ± 

2.4 x10-4 
0.002 ± 

5.0 x10-4 
0.004± 

1.3x10-4 
0.004 ± 

2.2 x10-4 
0.001± 

2.9x10-4 

215 
0.005 ± 

1.5 x10-4 
0.003± 

2.4 x10-4 
0.004 ± 

3.0 x10-4 
0.004 ± 

1.3 x10-4 
0.003 ± 

2.3 x10-4 
0.003 ± 

2.8 x10-4 

219 
0.005 ± 

1.5 x10-4 
0.004 ± 

2.4 x10-4 
0.004 ± 

3.0 x10-4 
0.004 ± 
1.4x10-4 

0.003 ± 
2.3 x10-4 

0.003± 
2.8x10-4 

222 
0.005 ± 

1.5 x10-4 
0.005 ± 

2.4 x10-4 
0.149 ± 
0.011 

0.004 ± 
1.4 x10-4 

0.004 ± 
2.3 x10-4 

0.148 ± 
0.010 

 

TABLE 2: RMSV Measures. 
 
 

ECG 
Data 
base 

WAVELET MSPCA 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

103 
0.005 ± 

1.5 x10-4 
0.005 ±  

2.4 x10-4 
0.149 ± 
0.011 

0.004 ± 
1.4 x10-4 

0.004 ±  
2.3 x10-4 

0.148 ±  
0.009 

215 
0.005 ± 

1.5 x10-4 
0.005 ±  

2.4 x10-4 
0.148 ± 
0.011 

0.004 ± 
1.4 x10-4 

0.004 ±  
2.1 x10-4 

0.147 ±  
0.010 

219 
0.005 ± 

1.5 x10-4 
0.005 ± 

 2.4 x10-4 
0.146 ± 
0.011 

0.003 ± 
1.0 x10-4 

0.003 ±  
2.3 x10-4 

0.145 ±  
0.010 

222 
0.005 ± 

1.5 x10-4 
0.005 ±  

2.4 x10-4 
0.147±  
0.011 

0.004 ± 
1.0 x10-4 

0.004 ±  
2.3 x10-4 

0.146 ±  
0.009 

 

TABLE3: RMSE Measures. 
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coif5 
(Soft) 

bior6.8 
(Hard) 
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0.132 ±  
0.008 

0.132 ±  
0.008 

0.149 ±  
0.011 

0.132 ±  
0.008 

0.132 ± 
0.008 

0.148 ±  
0.009 

215 
0.133 ± 
 0.007 

0.005 ±  
2.4 x10-4 

0.148 ±  
0.011 

0.004 ±  
1.4 x10-4 

0.004 ± 
2.1 x10-4 

0.147 ±  
0.010 

219 
0.131 ±  
0.122 

0.005 ±  
2.4 x10-4 

0.146 ±  
0.011 

0.003 ± 
1.0 x10-4 

0.131 ± 
0.122 

0.145 ±  
0.010 

222 
0.005 ±  

1.5 x10-4 
0.005 ±  

2.4 x10-4 
0.147±  
0.011 

0.004 ± 
1.0 x10-4 

0.004 ± 
2.3 x10-4 

0.146 ±  
0.009 

 
TABLE 4: RMSD Measures. 
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ECG 
Data 
base 

WAVELET MSPCA 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

db5 
(Soft) 

coif5 
(Soft) 

bior6.8 
(Hard) 

103 5.53 5.44 4.99 5.52 5.44 4.98 

215 5.51 5.44 4.99 5.50 5.44 4.97 

219 5.50 5.44 4.99 5.49 5.44 4.98 

222 5.52 5.44 4.99 5.50 5.44 4.97 

 
TABLE 5: SNRI Measures. 
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FIGURE 12: Noisy ECG signal shown in top trace, denoised using MSPCA in bottom trace and QRS 
detected signal in bottom trace for identification of cardiac arrythmias for a record of 103m in (i) and a record 

of 215m. 
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TABLE 6: Arrythmia Beats of Eight Different Subjects. 
 

 

 
TABLE 7: Arrythmia Beats of Eight Different Subjects. 

 

5. CONCLUSION 
In clinical applications, the arrhythmia condition, disturbing the rhythmic activity of heart, and its 
detection plays a vital role for diagnosing the patient’s rhythmic status. The detection of abnormal 
cardiac rhythms, automatic discrimination from rhythmic heart activity, became a thrust area in 
clinical research. Arrhythmia detection is possible by analyzing the electrocardiogram (ECG) 
signal features. ECG is a non-stationary biomedical signal that is invariably corrupted with 
different artifacts during its recording. This paper presents an approach for ECG signal 
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record # Noise Fusion 
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(%) 
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+P 
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100m 646 2 1 99.69 99.84 1069 20 2 98.16 99.81 

101m 175 1 0 99.43 100 41 0 1 100.0 97.61 

103m 162 1 1 99.38 99.38 43 0 1 100.0 97.72 

107m 1486 25 24 99.00 99.06 175 1 1 99.43 99.43 

121m 1017 10 2 99.02 99.80 257 1 2 99.61 99.22 

215m 463 1 0 99.78 100.0 335 1 1 99.70 99.70 

219m 140 0 1 100 99.29 39 0 0 100.0 100.0 

222m 661 2 1 99.69 99.84 583 2 1 99.65 99.82 

Total 4570 42 30 99.08 99.34 2542 25 9 99.02 99.64 
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enhancement by combining the attractive properties of principal component analysis (PCA) and 
wavelet processing, called multiscale PCA. The resulting multi-scale PCA extracts relationships 
between the variables by PCA, and between the measurements by wavelet analysis. In this 
application, the proposed MSPCA served as a powerful tool when addressing problems related to 
noise elimination. MSPCA eliminated the different types of noises present in the corrupted ECG 
signal. Experimental results revealed that Daubechies based MSPCA resulted in improved 
restoration of ECG morphology compared to simple wavelet processing. With enhanced ECG 
signal features obtained after MSPCA processing, detectable measures, QRS duration and R-R 
interval are evaluated. By using the rule base technique, projecting the detectable measures on a 
two dimensional area, various arrhythmias were detected depending upon the beat falling into 
particular place of the two dimensional area.  
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