Home   >   CSC-OpenAccess Library   >   Intelligent Systems   >  International Journal of Artificial Intelligence and Expert Systems (IJAE)
International Journal of Artificial Intelligence and Expert Systems (IJAE)
An International peer-review journal operated under CSC-OpenAccess Policy.
ISSN - 2180-124X
Published - Bi-Monthly   |   Established -    |   Year of Publication - 2018

SUBMISSION
April 30, 2019

NOTIFICATION
May 31, 2019

PUBLICATION
June 30, 2019

HOME   About IJAE   Editorial Board   Call For Papers/Editors   Current Issue   Issues Archive   Submission Guidelines   Subscribe IJAE

CITATION ANALYSIS

IJAE Citation Impact
(347 - 0) / 52 = 6.673

Refer to Citation Report for 2018 for complete details.
 

ABSTRACTING & INDEXING

 
Google Scholar
ScientificCommons
Academic Index
CiteSeerX
refSeek
 
FIND MORE
 

OPEN ACCESS LIBRARY

 
For Inquiries & Fast Response cscpress@cscjournals.org

CITATION REPORT FOR IJAE

Below calculations are based on in-process citations that are extracted through Google Scholar.


Total Citations = 347
Self Citations = 0
Total Publications = 52


Citation Impact
(Total Citations - Self Citations) / Total Publications

Citation Impact
(347 - 0) / 52 = 6.673

 
SR
M-CODE
CITATION
1
Bala, A., Malhotra, S., Gupta, N., & Ahuja, N. (2016). Emerging Green ICT: Heart Disease Prediction Model in Cloud Environment. In Proceedings of International Conference on ICT for Sustainable Development (pp. 579-587). Springer Singapore.
2
Turabieh, H. (2016). A Hybrid ANN-GWO Algorithm for Prediction of Heart Disease. American Journal of Operations Research, 6(02), 136.
3
Karlik, B. The Positive Effects of Fuzzy C-Means Clustering on Supervised Learning Classifiers.
4
Ruiz-Fernández, D., Torra, A. M., Soriano-Payá, A., Marín-Alonso, O., & Palencia, E. T. (2016). Aid decision algorithms to estimate the risk in congenital heart surgery. Computer Methods and Programs in Biomedicine.
5
Pant, H., & Srivastava, R. MINDEX_IB: A Feature Selection method for Imbalanced Dataset. IONOSPHERE, 34(2), 126-225.
6
Patil, N., Patil, A. S., & Pawar, B. V. (2016). Survey of Named Entity Recognition Systems with respect to Indian and Foreign Languages. International Journal of Computer Applications, 134(16).
7
Elyazgi, M., Nilashi, M., Ibrahim, O., Rayhan, A., & Elyazgi, S. (2016). Evaluating the Factors Influencing E-book Technology Acceptance among School Children Using TOPSIS Technique. Journal of Soft Computing and Decision Support Systems, 3(2), 11-25.
8
Chitra, D., & Nasira, G. M. (2015). wrapper based feature selection for ct image. ictact journal on image & video processing, 6(1).
9
Pyshkin, E., & Kuznetsov, A. (2015, September). Approach to building a web-based expert system interface and its application for software provisioning in clouds. In Computer Science and Information Systems (FedCSIS), 2015 Federated Conference on (pp. 343-354). IEEE.
10
Radhimeenakshi, S., & Nasira, G. M. Prediction of Heart Disease using Neural Network with Back Propagation.
11
Bilgi, N. B. (2015). A Rule–Based Graphical Decision Charting Approach to Legal Knowledge Based System. In Logic in the Theory and Practice of Lawmaking (pp. 435-457). Springer International Publishing.
12
Elyazgi, M., Nilashi, M., Ibrahim, O., Rayhan, A., & Elyazgi, S. (2015). Journal of Soft Computing and Decision Support Systems. Journal of Soft Computing and Decision, 2(5).
13
Wei, the staff super, & SOCIALIST. (2015). Applied Research in nonlinear control arm of linear quadratic regulator. Journal of Mechanical & Electrical Engineering, 32 (6).
14
Nilashi, M., Ahmadi, H., Ahani, A., & Ibrahim, O. (2015). Evaluating the Factors Affecting Adoption of Hospital Information System Using Analytic Hierarchy Process. Journal of Soft Computing and Decision Support Systems, 3(1), 8-35.
15
Babakhani, A. R., Moradi, E., Salooki, M., & Fakhraie, R. (2015). Novel Intelligent-Based Gravity Control for Industrial Robot Arm. International Journal of Hybrid Information Technology, 8(1), 121-132.
16
Ulagapriya, S., & Balasubramanian, P. (2015, August). Study on inter sector association rules in national stock exchange, India. In Advances in Computing, Communications and Informatics (ICACCI), 2015 International Conference on (pp. 859-865). IEEE.
17
Maatallah, M., & Seridi-Bouchelaghem, H. (2015). A fuzzy hybrid approach to enhance diversity in top-N recommendations. International Journal of Business Information Systems, 19(4), 505-530.
18
Kurniawan, K. A., Utomo, D., & Nugroho, S. (2015). Direction Control System on a Carrier Robot Using Fuzzy Logic Controller. In Intelligence in the Era of Big Data (pp. 27-36). Springer Berlin Heidelberg.
19
Helwan, A. (2015). Heart Attack Prediction System Based Neural Arbitration. Turkish Online Journal of Science & Technology, 5(2).
20
Purnamawati, M. M. D., Santoso, A. J., & Ardanari, P. (2015, July). perancangan sistem pakar neuro fuzzy untuk pengenalan tokoh wayang kulit purwa. In Seminar Nasional Informatika 2008 (Vol. 1, No. 4).
21
Katiyar, V. (2015). Relative Performance of Certain Meta Heuristics on Vehicle Routing Problem with Time Windows. International Journal of Information Technology and Computer Science (IJITCS), 7(12), 40.
22
Han, Z. (2015). Truckload Carrier Selection, Routing and Cost Optimization.
23
Johar, F., Potts, C., & Bennell, J. (2015). Vehicle Routing Problem with Time Constraints. Malaysian Journal of Fundamental and Applied Sciences, 11(4).
24
MUYIWA, O., FABOYE, I., & OGUNSHIPE, B. (2015). Development of case based ailment diagnoses nutrition prescription expert system. American International Journal of Contemporary Scientific Research, 2(6), 62-68.
25
Moses, D. (2015). A survey of data mining algorithms used in cardiovascular disease diagnosis from multi-lead ECG data. Kuwait Journal of Science, 42(2).
26
Shahangian, B., & Pourghassem, H. (2015). Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure. Biocybernetics and Biomedical Engineering.
27
Pant, H., & Srivastava, R. a survey on feature selection methods for imbalanced datasets.
28
Rosmalina, A. R. Forecasting export price of sabah sawn timber using neural network.
29
Khosravi, B., Pourahmad, S., Bahreini, A., Nikeghbalian, S., & Mehrdad, G. (2015). Five Years Survival of Patients After Liver Transplantation and Its Effective Factors by Neural Network and Cox Poroportional Hazard Regression Models. Hepatitis monthly, 15(9).
30
Amarappa, S., & Sathyanarayana, S. V. kannada named entity recognition and classification (nerc) based on multinomial naïve bayes (mnb) classifier.
31
Srikanth, K., & Arivazhagan, D. Prediction Model to Enhance Resource Efficiently For Hospitals.
32
Akbarzadeh-T, M. R., & Bashari, M. RLS Based Adaptive IVT2 Fuzzy Controller for Uncertain Model of Inverted Pendulum.
33
Ranjbar, B., Mahmoodi, J., Karbasi, H., Dashti, G., & Omidvar, A. (2015). Robot Manipulator Path Planning Based on Intelligent Multi-resolution Potential Field. International Journal of u-and e-Service, Science and Technology, 8(1), 11-26.
34
sadegh Dahideh, M., Najafi, M., Zarei, A., Barmayeh, Y., & Afshar, M. (2015). Intelligent Mechatronic Model Reference Theory for Robot End-effector Control. International Journal of u-and e-Service, Science and Technology, 8(1), 165-172.
35
Sahamijoo, G., Avatefipour, O., Nasrabad, M. R. S., Taghavi, M., & Piltan, F. (2015). Research on Minimum Intelligent Unit for Flexible Robot. International Journal of Advanced Science and Technology, 80, 79-104.
36
Das, B. R., Patnaik, S., Baboo, S., & Dash, N. S. (2015). A System for Recognition of Named Entities in Odia Text Corpus Using Machine Learning Algorithm. In Computational Intelligence in Data Mining-Volume 1 (pp. 315-324). Springer India.
37
Freiberg, M. Knowledge-Based-System Usability.
38
Chahkoutahi, A., MoradiPour, M. R., Gholami, M., Ashja, S., & Rahimi, M. H. (2015). Design High Precision Intelligent Nonlinear-Based Controller. International Journal of u-and e-Service, Science and Technology, 8(1), 201-210.
39
Prerana, P. S. (2015). Comparative Study of GD, LM and SCG Method of Neural Network for Thyroid Disease Diagnosis. IJAR, 1(10), 34-39.
40
Ross, O. H. M., & Cruz, R. S. (2015). Evolving Embedded Fuzzy Controllers. In Springer Handbook of Computational Intelligence (pp. 1451-1477). Springer Berlin Heidelberg.
41
Abdullah, N., Tiew, Y. W., & Rosmalina, A. R. Export price of sabah sawn timber: now and future? a mathematical approach using neural network.
42
ORESKI, D., & KLICEK, B. A novel feature selection techniques based on contrast set mining.
43
Pathak, A., Agarwal, T., & Mohan, A. (2015). A Novel Fuzzy Membership Partitioning for Improved Voting in Fault Tolerant System. Journal of Intelligent Learning Systems and Applications, 7(01), 1.
44
Mirsaeidi, M., & Karimi, A. (2015). A novel probabilistic bit voter using genetic algorithm for fault-tolerant systems. International Journal of Computer Science Issues (IJCSI), 12(4), 88.
45
Ceylan, R., Özbay, Y., & Karlik, B. (2014). comparison of type-2 fuzzy clustering-based cascade classifier models for ecg arrhythmias. biomedical engineering: applications, basis and communications, 26(06), 1450075.
46
Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82.
47
Lam, H. K., Li, H., Deters, C., Secco, E. L., Wurdemann, H. A., & Althoefer, K. (2014). Control design for interval type-2 fuzzy systems under imperfect premise matching. Industrial Electronics, IEEE Transactions on, 61(2), 956-968.
48
Mozafari, N. G., Piltan, F., Shamsodini, M., Yazdanpanah, A., & Roshanzamir, A. (2014). On Line Tuning Premise and Consequence FIS Based on Lyaponuv Theory with Application to Continuum Robot. International Journal of Intelligent Systems and Applications (IJISA), 6(3), 96.
49
Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 6(4), 63.
50
Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 6(2), 76.
51
Nazemizadeh, M., Taheri, M., & Nazeri, S. (2014). THE APPLICATION OF FUZZY-LOGIC METHOD TO CONTROL OF ROBOTS: A REVIEW STUDY. International Journal of Mechanical Engineering and Robotics Research, 3(2), 229.
52
Mohan, K. R., Paramasivam, I., & Narayan, S. S. (2014, February). Prediction and Diagnosis of Cardio Vascular Disease--A Critical Survey. In Computing and Communication Technologies (WCCCT), 2014 World Congress on (pp. 246-251). IEEE.
53
Leskelä, C. L. H. (2014). Learning for RoboCup Soccer.
54
Ðordevic, m. z. klasifikacija srcanih oboljenja pomocu neuronskih mreta classification of heart diseases using neural networks.
55
Shahangian, B., Pourghassem, H., B. Shahngyan, & Hussein Pourghassem. Automatic detection and classification using Support Vector Machine multi-class areas of brain hemorrhage on CT images. Journal of Medicine, 32 (284), 631-646.
56
Krenek, J., & Kuca, K. Artificial Neural Data M.
57
Mozafari, N. G., Piltan, F., Shamsodini, M., Yazdanpanah, A., & Roshanzamir, A. (2014). On Line Tuning Premise and Consequence FIS Based on Lyaponuv Theory with Application to Continuum Robot. International Journal of Intelligent Systems and Applications (IJISA), 6(3), 96.
58
Krenek, J., Kuca, K., Krejcar, O., Maresova, P., Sobeslav, V., & Blazek, P. (2014, November). Artificial neural network tools for computerised data modeling and processing. In Computational Intelligence and Informatics (CINTI), 2014 IEEE 15th International Symposium on (pp. 255-260). IEEE.
59
Maheta, H. H., & Dabhi, V. K. (2014, February). An improved SPEA2 Multi objective algorithm with non dominated elitism and Generational Crossover. In Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on (pp. 75-82). IEEE.
60
Bouaiachi, Y., Khaldi, M., & Azmani, A. (2014, October). Neural network-based decision support system for pre-diagnosis of psychiatric disorders. In Information Science and Technology (CIST), 2014 Third IEEE International Colloquium in (pp. 102-106). IEEE.
61
Latifi, Z., & Karimi, A. (2014). A TMR Genetic Voting Algorithm for Fault-tolerant Medical Robot. Procedia Computer Science, 42, 301-307.
62
Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 6(4), 63.
63
Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 6(2), 76.
64
Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82.
65
El-Nagar, A. M., & El-Bardini, M. (2014). Practical implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Engineering Journal, 5(2), 475-487.
66
Mohamed, H., Ahmad, N. B. H., & Shamsuddin, S. M. H. (2014, September). Bijective soft set classification of student's learning styles. In Software Engineering Conference (MySEC), 2014 8th Malaysian (pp. 289-294). IEEE.
67
Sharma, B., & Venugopalan, K. (2014). Comparison of neural network training functions for Hematoma classification in brain CT images. Int J Comput Sci Eng, 16(1), 31-35.
68
Norlina, M. S., Mazidah, P., Md Sin, N. D., & Rusop, M. (2014, December). Computational intelligence approach in optimization of a nanotechnology process. In Research and Development (SCOReD), 2014 IEEE Student Conference on (pp. 1-5). IEEE.
69
Sugimoto Masaya, Igarashi Harukazu, Ishihara Seiji, & Tanaka Ichi-ki (2014) fuzzy control strategy gradient method with the difference between the approach expressed by the rule:. Action decision in RoboCup small size league intelligence and information, 26 (3), 647-657.
70
Usman, O. L., & Alaba, O. B. (2014). Predicting Electricity Consumption Using Radial Basis Function (RBF) Network. International Journal of Computer Science and Artificial Intelligence, 4(2), 54.
71
George, J. B., Abraham, G. M., Singh, K., Ankolekar, S. M., Amrutur, B., & Sikdar, S. K. (2014). Input coding for neuro-electronic hybrid systems. Biosystems, 126, 1-11.
72
Dey, G., & Maringanti, H. B. (2014). Paninian Framework for Odia Language Processing.
73
da Costa Martins, J. K. E., Cavalcante, M. S. F. F., de Lima Souza, F. R., & de Araújo, f. m. u. desenvolvimento de um ambiente computacional para ensino de controle fuzzy.
74
Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135.
75
Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(5), 57.
76
Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science (IJMECS), 5(10), 53.
77
Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
78
Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 171-185.
79
Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1.
80
Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
81
Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1.
82
Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Adjust the fuel ratio by high impact chattering free sliding methodology with application to automotive engine. International Journal of Hybrid Information Technology, 6(1), 13-24.
83
Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
84
Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162.
85
Sadrnia, O. R., Piltan, F., Jafari, M., Eram, M., & Shamsodini, M. (2013). Design PID Estimator Fuzzy plus Backstepping to Control of Uncertain Continuum Robot. International Journal of Hybrid Information Technology, 6(4), 31-48.
86
Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57.
87
Boukens, M., & Boukabou, A. (2013, October). PD with fuzzy compensator control of robot manipulators: Experimental study. In Systems and Control (ICSC), 2013 3rd International Conference on (pp. 973-978). IEEE.
88
Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103.
89
Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
90
Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101.
91
Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
92
Shamsodini, M., Piltan, F., Jafari, M., reza Sadrnia, O., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science (IJMECS), 5(8), 58.
93
Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76.
94
Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
95
Jalali, A., Piltan, F., Hashemzadeh, H., Hasiri, A., & Hashemzadeh, M. (2013). Design Novel Soft Computing Backstepping Controller with Application to Nonlinear Dynamic Uncertain System. International Journal of Intelligent Systems and Applications (IJISA), 5(10), 93.
96
Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57.
97
Bayat, R. (2013). Artificial Intelligence SVC Based Control of Two Machine Transmission System. International Journal of Intelligent Systems and Applications (IJISA), 5(8), 1.
98
Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications (IJISA), 5(2), 59.
99
Khoiy, K. A., Davatgarzadeh, F., Taheri, M., & Damavand, I. A Review on Fuzzy-Logic Method to Control Robotic Manipulator Systems.
100
Roper, D. (2013). Energy based control system designs for underactuated robot fish propulsion.
101
Jiang, S. Y., & Wang, L. X. (2013). Unsupervised Feature Selection Method for Imbalanced Data. Journal of Chinese Computer Systems, 34(1), 63-67.
102
Reyes, J. A., Montes, A., González, J. G., & Pinto, D. E. (2013). Clasificación de roles semánticos usando características sintácticas, semánticas y contextuales. Computación y sistemas, 17(2), 263-272.
103
Jiangsheng Yi, & Wanglian Xi. (2013). Unsupervised feature unbalanced data selection method. Small Computer Systems, 34 (1), 63-66.
104
Uma, S., Chitra, A., & Suganthi, J. (2013). Design of a non-linear time series prediction model for daily electricity demand forecasting. International Journal of Business Innovation and Research, 7(3), 298-317.
105
Mesri, A., Khoei, A., & Hadidi, K. (2013, May). Hardware implementation of interval type-2 fuzzy logic controller. In Electrical Engineering (ICEE), 2013 21st Iranian Conference on (pp. 1-6). IEEE.
106
Khosla, M., Sarin, R. K., & Uddin, M. (2012). A simplified architecture for triangular quasi type-2 fuzzy logic systems. International Journal of Computational Intelligence Studies, 1(4), 349-367.Khosla, M., Sarin, R. K., & Uddin, M. (2012, July). Implementation of interval type-2 fuzzy systems with analog modules. In Control and System Graduate Researc
107
Singh, V. K., Baghel, A., & Negi, S. K. (2013). Finding New Framework for Resolving Problems in Various Dimensions by the Use of ES: An Efficient and Effective Computer Oriented Artificial Intelligence Approach. Innovative Systems Design and Engineering, 4(11), 1-6.
108
Jiangsheng Yi, & Wanglian Xi. (2013). Unsupervised feature selection method for imbalanced data. Computer Systems, 34 (1), 63-67.
109
Eboña, K. M. L., Llorca Jr, O. S., Perez, G. P., Roldan, J. M., Domingo, I. V. R., & Sagum, R. A. (2013). Named-Entity Recognizer (NER) for Filipino Novel Excerpts using Maximum Entropy Approach. Journal of Industrial and Intelligent Information Vol, 1(1).
110
Jimmy, L., & Kaur, D. (2013). Named entity recognition in Manipuri: a hybrid approach. In Language Processing and Knowledge in the Web (pp. 104-110). Springer Berlin Heidelberg.
111
Reyes, J. A., Montes, A., González, J. G., & Pinto, D. E. (2013). Classifying Case Relations using Syntactic, Semantic and Contextual Features. Computación y Sistemas, 17(2).
112
Wahyunggoro, O., Permanasari, A. E., & Chamsudin, A. Utilization of Neural Network for Disease Forecasting.
113
Ÿö, Ÿ. Proof Version.
114
Thilagalakshmi, A. (2013, July). Simulation of Neuro-PID Controller for Pressure Process. In IJCA Proceedings on International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences (No. 9, pp. 18-21). Foundation of Computer Science (FCS).
115
Shrivastava, A., Baghel, M., & Gupta, H. (2013). A Novel Hybrid Feature Selection and Intrusion Detection Based On PCNN and Support Vector Machine. International Journal of Computer Technology and Applications, 4(6), 922.
116
Ivaniuk, D. Neuro-PID Controller for a Pasteurizer.
117
Lashari, S. A., & Ibrahim, R. (2013). A Framework for Medical Images Classification Using Soft Set. Procedia Technology, 11, 548-556.
118
Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 171-185.
119
Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
120
Al-Milli, N. (2013). Backpropagation Neural Network for Prediction of Heart Disease. Journal of Theoretical and Applied Information Technology, 56(1), 131-135.
121
LD, V. A. Simulation of Neuro-PID Controller for Pressure Process.
122
Shrivastava, A., Baghel, M., & Gupta, H. (2013). A Review of Intrusion Detection Technique by Soft Computing and Data Mining Approach. International Journal of Advanced Computer Research, 3(3), 224.
123
Lake, D. (2013). Web-Based Expert System for Cattle Diseases Diagnose (Doctoral dissertation, Addis Ababa University).
124
Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
125
Rubio, E., & Castillo, O. (2013, April). Interval type-2 fuzzy clustering for membership function generation. In Hybrid Intelligent Models and Applications (HIMA), 2013 IEEE Workshop on (pp. 13-18). IEEE.
126
Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1.
127
Jalali, A., Piltan, F., Hashemzadeh, H., Hasiri, A., & Hashemzadeh, M. (2013). Design Novel Soft Computing Backstepping Controller with Application to Nonlinear Dynamic Uncertain System. International Journal of Intelligent Systems and Applications (IJISA), 5(10), 93.
128
Sadrnia, O. R., Piltan, F., Jafari, M., Eram, M., & Shamsodini, M. (2013). Design PID Estimator Fuzzy plus Backstepping to Control of Uncertain Continuum Robot. International Journal of Hybrid Information Technology, 6(4), 31-48.
129
Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162.
130
Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
131
Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
132
Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(5), 57.
133
Piltan, F., ShahryarZadeh, F., Mansoorzadeh, M., & Zare, S. (2013). Robust Fuzzy PD Method with Parallel Computed Fuel Ratio Estimation Applied to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 5(8), 83.
134
Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science (IJMECS), 5(10), 53.
135
Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
136
Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Adjust the fuel ratio by high impact chattering free sliding methodology with application to automotive engine. International Journal of Hybrid Information Technology, 6(1), 13-24.
137
Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135.
138
Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications (IJISA), 5(2), 59.
139
Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Intelligent Robust Fuzzy-Parallel Optimization Control of a Continuum Robot Manipulator. International Journal of Control and Automation, 6(3), 15-34.
140
Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
141
Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76.
142
Shamsodini, M., Piltan, F., Jafari, M., reza Sadrnia, O., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science (IJMECS), 5(8), 58.
143
Karlk, B., & Harman, G. (2013, April). Computer-aided software for early diagnosis of eerythemato-squamous diseases. In Electronics and Nanotechnology (ELNANO), 2013 IEEE XXXIII International Scientific Conference (pp. 276-279). IEEE.
144
Chattopadhyay, S. (2013). Mining the risk of heart attack: a comprehensive study. International Journal of Biomedical Engineering and Technology, 11(4), 394-410.
145
Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1.
146
Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103.
147
Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184.
148
Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101.
149
Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
150
Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
151
Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
152
Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
153
Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. International Journal of Control and Automation, 5(1), 89-118.
154
Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
155
Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
156
Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
157
Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, (3), 167-191.
158
Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
159
Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
160
Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40.
161
Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
162
Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
163
Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
164
Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40.
165
Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
166
Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
167
Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
168
Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. International Journal of Control and Automation, 5(1), 89-118.
169
Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
170
Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
171
Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
172
Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17.
173
Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189.
174
Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
175
Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
176
Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
177
Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
178
Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
179
Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
180
Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
181
Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
182
Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
183
Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
184
Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
185
Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
186
Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17.
187
Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
188
Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
189
Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, (3), 167-191.
190
Khosla, M., Sarin, R. K., & Uddin, M. (2012, July). Implementation of interval type-2 fuzzy systems with analog modules. In Control and System Graduate Research Colloquium (ICSGRC), 2012 IEEE (pp. 136-141). IEEE.
191
Oliveira, M. A. P. D. (2012). High level coordination and decision making of a simulated robotic soccer team.
192
Jiang accounting only, & Yang (2012) Voice fuzzy feature extraction and codebook training algorithm of Jilin University:. Information Science, 30 (3), 279-284.
193
Hagras, H., & Wagner, C. (2012). Towards the wide spread use of type-2 fuzzy logic systems in real world applications. Computational Intelligence Magazine, IEEE, 7(3), 14-24.
194
Asaduzzaman, M., Kabir, A. M. E., Uddin, N., Mollah, A. S., & Nurunnabi, M. A Feature Selection Approach Using Asymmetry.
195
Chandra, R., & Prihastomo, Y. (2012). Self Driving Car: Artificial Intelligence Approach. Journal TICOM (Technology of Information and Communication), 1(1), 43-48.
196
Uma, S., & Chitra, A. (2012). Pattern recognition using enhanced non-linear time-series models for predicting dynamic real-time decision making environments. International Journal of Business Information Systems, 11(1), 69-92.
197
Sathyanarayana, S. A. S. A Hybrid approach for Named Entity Recognition, Classification and Extraction (NERCE) in Kannada Documents.
198
Swain, D., & Pati, C. Named Entity Disambiguation In Odia.
199
Abdallah, S., Shaalan, K., & Shoaib, M. (2012). Integrating rule-based system with classification for Arabic named entity recognition. In Computational Linguistics and Intelligent Text Processing (pp. 311-322). Springer Berlin Heidelberg.
200
Verma, O. P., Singla, R., & Kumar, R. (2012). Intelligent Temperature Controller for Water Bath System. World Academy of Science, Engineering and Technology, International Journal of Computer, Information, Systems and Control Engineering, 6(9).
201
Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189.
202
Jahangir, F., Anwar, W., Bajwa, U. I., & Wang, X. (2012, December). N-gram and gazetteer list based named entity recognition for urdu: A scarce resourced language. In Proceedings of the 10th Workshop on Asian Language Resources (pp. 95-104).
203
Dangare, C. S., & Apte, S. S. (2012). A data mining approach for prediction of heart disease using neural networks. International Journal of Computer Engineering and Technology (IJCET), 3(3).
204
Prabhu, K., & Bhaskaran, V. M. (2012). Optimization of a control loop using adaptive method. Optimization, 1(3).
205
Chowdhury, D. R., Majumder, R., Bhattacharjee, D., & Siliguri, S. (2012). Neonatal Disease Diagnosis: AI Based Neuro-Genetic Hybrid Approach. International Journal of Computer Science Issues(IJCSI), 9(5).
206
Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44.
207
Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13.
208
Shoaib, M. (2011). Using Machine Learning to Improve Rule based Arabic Named Entity Recognition.
209
Igarashi, H., Fukuoka, H., & Ishihara, S. (2011). Policy Gradient Approach for Learning of Soccer Player Agents. In Intelligent Control and Computer Engineering (pp. 137-148). Springer Netherlands.
210
Seven Tir Ave, S. (2011). Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
211
Dovydaitis, J., Jasinevicius, R., Petrauskas, V., & Vrubliauskas, A. Training, Retraining, and Self-training Procedures for the Fuzzy Logic-Based Intellectualization of IoT&S Environments. International Journal of Fuzzy Systems, 1-11.
212
Taher, S. A., & Zolfaghari, M. Adaptive Fuzzy Gain-Scheduling Design to Improve Instantaneous Average Current–Sharing Control Scheme for Parallel–Connected Inverters Considering Line Impedance Impact in Microgrid Networks.
213
Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44.
214
Tan, M. K., Chin, Y. K., Tham, H. J., & Teo, K. T. K. (2011, December). Genetic algorithm based PID optimization in batch process control. In Computer Applications and Industrial Electronics (ICCAIE), 2011 IEEE International Conference on (pp. 162-167). IEEE.
215
Cuaya, G., Munoz-Meléndez, A., & Morales, E. F. (2011). A minority class feature selection method. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 417-424). Springer Berlin Heidelberg.
216
Cesarini, P., Guidera, S., Rana, M. M., Fakrudeen, M., Rana, U., Lewis, M., ... & Tsuji, L. J. (2011). Technological Disintermediation in Design and Higher Education. International Journal of Technology, Knowledge & Society, 7(3).
217
Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13.
218
Seven Tir Ave, S. Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
219
Grando, N., Centeno, T. M., Botelho, S. S. D. C., & Fontoura, F. M. (2010). Forecasting electric energy demand using a predictor model based on liquid state machine.
220
Almeida, F., Lau, N., & Reis, L. P. (2010). A Survey on Coordination Methodologies for Simulated Robotic Soccer Teams. In MALLOW.
221
Igarashi, H., Fukuoka, H., & Ishihara, S. (2010). Learning of soccer player agents using a policy gradient method: pass selection. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 1).
222
Igarashi, H., Masaki, J., Suzuki, T., Tonegawa, N., Sano, N., Imaizumi, T., ... & Fukuoka, H. Fifty-Storms: Team Description 2009.
223
Gurmu, Z. K., & Fan, W. D. (2014). Artificial Neural Network Travel Time Prediction Model for Buses Using Only GPS Data. Journal of Public Transportation, 17(2), 3.
224
Garg, G., & Sharma, P. (2014). An Analysis of Contrast Enhancement using Activation Functions. International Journal of Hybrid Information Technology, 7(5), 235-244.
225
Tan, T. G., Teo, J., & Anthony, P. (2014). A comparative investigation of non-linear activation functions in neural controllers for search-based game AI engineering. Artificial Intelligence Review, 41(1), 1-25.
226
Vukicevic, A. M., Jovicic, G. R., Stojadinovic, M. M., Prelevic, R. I., & Filipovic, N. D. (2014). Evolutionary assembled neural networks for making medical decisions with minimal regret: Application for predicting advanced bladder cancer outcome. Expert Systems with Applications, 41(18), 8092-8100.
227
KARAN O?uz, BAYRAKTAR Canan, GÜMÜ?KAYA Haluk, KARLIK Bekir, “Diagnosing Diabetes Using Neural Networks on Small Mobile Devices”, Expert Systems with Applications, vol. 39 (2012), pp. 54-60, 2012
228
Jaddi, N. S., Abdullah, S., & Hamdan, A. R. (2015). Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Information Sciences, 294, 628-644.
229
Zhang, C., Jiang, J., Ma, J., Zhang, X., Yang, Q., Ouyang, Q., & Lei, X. (2015). Evaluating soil reinforcement by plant roots using artificial neural networks. Soil Use and Management, 31(3), 408-416.
230
Feng Chang. (2015) study in depth a positive linear function of neural networks. Computer Engineering and Design, 36 (3), 759-762.
231
Gautam, C., & Ravi, V. (2015). Data imputation via evolutionary computation, clustering and a neural network. Neurocomputing, 156, 134-142.
232
Akar, M., Hekim, M., & Orhan, U. (2015). Mechanical fault detection in permanent magnet synchronous motors using equal width discretization-based probability distribution and a neural network model. Turkish Journal of Electrical Engineering & Computer Sciences, 23(3).
233
Yakovyna Vitaliy, S. (2015). of article.
234
Deo, R. C., & Sahin, M. (2015). Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmospheric Research, 161, 65-81.
235
Rotich, N. (2014). Forecasting of wind speeds and directions with artificial neural networks.
236
Al Doori, M., & Beyrouti, B. (2014). Credit scoring model based on back propagation neural network using various activation and error function. IJCSNS International Journal of Computer Science and Network Security, 14(3), 16-24.
237
Sun, W., Su, F., & Wang, L. (2014, December). Improving deep neural networks with multilayer maxout networks. In Visual Communications and Image Processing Conference, 2014 IEEE (pp. 334-337). IEEE.
238
Dogman, A., & Saatchi, R. (2014). Multimedia traffic quality of service management using statistical and artificial intelligence techniques. IET Circuits, Devices & Systems, 8(5), 367-377.
239
Kumar, R., Chand, K., & Lal, S. P. (2014). Gene Reduction for Cancer Classification Using Cascaded Neural Network with Gene Masking. In Advances in Artificial Intelligence (pp. 301-306). Springer International Publishing.
240
Singh, V., & Lai, S. P. (2014, November). Digit recognition using single layer neural network with principal component analysis. In Computer Science and Engineering (APWC on CSE), 2014 Asia-Pacific World Congress on (pp. 1-7). IEEE.
241
Essai, M. H., & Abd Ellah, A. R. (2014, December). M-Estimators based activation functions for robust neural network learning. In Computer Engineering Conference (ICENCO), 2014 10th International (pp. 70-75). IEEE.
242
Nedic, V., Despotovic, D., Cvetanovic, S., Despotovic, M., & Babic, S. (2014). Comparison of classical statistical methods and artificial neural network in traffic noise prediction. Environmental Impact Assessment Review, 49, 24-30.
243
Vijean, V., Hariharan, M., Yaacob, S., & Sulaiman, M. N. B. (2014). Application of clustering techniques for visually evoked potentials based detection of vision impairments. Biocybernetics and Biomedical Engineering, 34(3), 169-177.
244
Valarmathi, P., & Robinson, S. (2014, December). Efficacy of feature selection techniques for Multilayer Perceptron Neural Network to classify mammogram. In Advanced Computing (ICoAC), 2014 Sixth International Conference on (pp. 26-31). IEEE.
245
Golovko, A. (2014). Foreign exchange rate movement prediction using triangle chart patterns and artificial neural networks (Doctoral dissertation, Tartu Ülikool).
246
Amirov, A., Gerget, O., Devjatyh, D., & Gazaliev, A. (2014). Medical Data Processing System Based on Neural Network and Genetic Algorithm. Procedia-Social and Behavioral Sciences, 131, 149-155.
247
García de Soto, B., Adey, B. T., & Fernando, D. (2014). A Process for the Development and Evaluation of Preliminary Construction Material Quantity Estimation Models Using Backward Elimination Regression and Neural Networks. Journal of Cost Analysis and Parametrics, 7(3), 180-218.
248
Ramkishore, S., Madhumitha, P., & Palanichamy, P. (2014, September). Comparison of Logistic Regression and Support Vector Machine for the Classification of Microstructure and Interfacial Defects in Zircaloy-2. In Soft Computing and Machine Intelligence (ISCMI), 2014 International Conference on (pp. 130-134). IEEE.
249
Laqrichi, S., Marmier, F., & Gourc, D. (2014). Software Cost and Duration Estimation Based on Distributed Project Data: A General Framework. In Enterprise Interoperability VI (pp. 213-224). Springer International Publishing.
250
Genç, B. (2015). A methodology for evaluating utilisation of mine planning software and consequent decision-making strategies in South Africa (Doctoral dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg).
251
Laqrichi, S., Marmier, F., Gourc, D., & Nevoux, J. (2015). Integrating uncertainty in software effort estimation using Bootstrap based Neural Networks. IFAC-PapersOnLine, 48(3), 954-959.
252
Arai, K. Rice Crop Quality Evaluation Method through Regressive Analysis between Nitrogen Content and Near Infrared Reflectance of Rice Leaves Measured from Near Field.
253
Sarac, B., Karlik, B., Uncu, U., & Ayhan, T. (2015). Neural Network Methodology for Modeling Heat Transfer in Wake Flow. Journal of Heat Transfer, 137(2), 022201.
254
Díaz, R., & Hurtado, N. (2012). Uso del Sistema Neuro-Difuso (SND) en Datos de Porosidad y Saturación de Agua, para la Inferencia de Permeabilidad.
255
Awan, J. A., & Bae, D. H. (2016). Drought prediction over the East Asian monsoon region using the adaptive neuro-fuzzy inference system and the global sea surface temperature anomalies. International Journal of Climatology.
256
Zainuri, M. A. A. M., Radzi, M. A. M., Soh, A. C., Mariun, N., & Rahim, N. A. (2015). DC-link capacitor voltage control for single-phase shunt active power filter with step size error cancellation in self-charging algorithm. IET Power Electronics.
257
Gupta, S., & Kashyap, S. (2015). Forecasting inflation in G-7 countries: an application of artificial neural network. foresight, 17(1), 63-73.
258
Kudlácek, J. (2015). Analýza velkých dat v mobilních sítích.
259
Wang, A., An, N., Chen, G., Li, L., & Alterovitz, G. (2015). Predicting hypertension without measurement: A non-invasive, questionnaire-based approach. Expert Systems with Applications, 42(21), 7601-7609.
260
Liu, P. H. (2015). Novel Convolutional Neural Networks for Deep Learning and Its Applications to General Image Classification.
261
Zissis, D., Xidias, E. K., & Lekkas, D. (2015). Real-time vessel behavior prediction. Evolving Systems, 1-12.
262
Lu, J., Xue, S., Zhang, X., & Han, Y. (2015). A Neural Network-Based Interval Pattern Matcher. Information, 6(3), 388-398.
263
Zaki, M., Hamouda, A., & Hisham, B. (2015). Travel Time Prediction under Egypt Heterogeneous Traffic Conditions using Neural Network and Data Fusion. Egyptian Computer Science Journal, 39(2).
264
Arai, K. Method for Tealeaves Quality Estimation Through Measurements of Degree of Polarization, Leaf Area Index, Photosynthesis Available Radiance and Normalized Difference Vegetation Index for Characterization of Tealeaves.
265
Arai, K., Sakashita, M., Shigetomi, O., & Miura, Y. Estimation of Protein Content in Rice Crop and Nitrogen Content in Rice Leaves Through Regression Analysis with NDVI Derived from Camera Mounted Radio-Control Helicopter.
266
Zissis, D., Xidias, E. K., & Lekkas, D. (2015). A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. Applied Soft Computing, 35, 652-661.
267
Kashyap, Y., Bansal, A., & Sao, A. K. (2015). Spatial Approach of Artificial Neural Network for Solar Radiation Forecasting: Modeling Issues. Journal of Solar Energy, 2015.
268
Yakovyna, v. s. (2015). software failures prediction using rbf neural network.
269
Hussain, F., & Jeong, J. (2015, March). Exploiting deep neural networks for digital image compression. In Web Applications and Networking (WSWAN), 2015 2nd World Symposium on (pp. 1-6). IEEE.
270
Arai, K. Discrimination Method between Prolate and Oblate Shapes of Leaves Based on Polarization Characteristics Measured with Polarization Film Attached Cameras.
271
Foster, R. (2015). A comparison of machine learning techniques for hand shape recognition.
272
Jaddi, N. S., Abdullah, S., & Hamdan, A. R. (2015). Optimization of neural network model using modified bat-inspired algorithm. Applied Soft Computing, 37, 71-86.
273
Wróbel, J., & Kulawik, A. (2015, March). Using the artificial neural networks in the modelling of the induction heating. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) (Vol. 1648, p. 850090). AIP Publishing.
274
Borrotti, M., Pievatolo, A., Critelli, I., Degiorgi, A., & Colledani, M. (2015). A computer-aided methodology for the optimization of electrostatic separation processes in recycling. Applied Stochastic Models in Business and Industry.
275
Abdi, B., Mozafari, H., Abdullah, M. R., & Ayob, A. (2013). Multi-objective Design of Fibre Metal Laminates for Maximum Impact Resistance using Imperialist Competitive Algorithm and Genetic Algorithm. Global Journal on Technology, 3.
276
Arai, K., Sasaki, Y., Kasuya, S., & Matusura, H. (2015). Appropriate Tealeaf Harvest Timing Determination Based on NIR Images.
277
Li, N., Zhang, M., Nie, D., & Jiang, W. Q. (2014). An Analysis of Near-field Scattering Characteristics of Rough Target: From the Perspective of Bidirectional Reflectance Distribution Function Based on LS-SVM. Progress In Electromagnetics Research M, 39, 1-9.
278
Kashyap, Y., Bansal, A., & Sao, A. K. (2015). Solar radiation forecasting with multiple parameters neural networks. Renewable and Sustainable Energy Reviews, 49, 825-835.
279
Salem, D. A., Seoud, R. A. A., Kadah, Y. M., & Kadah, Y. M. Robust Classification of MHC Class II Peptides.
280
Bouzeria, H., Fetha, C., Bahi, T., Abadlia, I., Layate, Z., & Lekhchine, S. (2015). Fuzzy Logic Space Vector Direct Torque Control of PMSM for Photovoltaic Water Pumping System. Energy Procedia, 74, 760-771.
281
Abdul-Jabbar, D. J., Al-Faydi, S. N. M., & Yahya, H. N. (2015). Neuro-Fuzzy Based ECG Signal Classification with A Gaussian Derivative Filter. Al-Rafadain Engineering Journal, 23(2).
282
Onieva, E., Hernandez-Jayo, U., Osaba, E., Perallos, A., & Zhang, X. (2015). A Multi-Objective Evolutionary Algorithm for the Tuning of Fuzzy Rule Bases for Uncoordinated Intersections in Autonomous Driving. Information Sciences.
283
Klimashevich AV Nikolsky, VI, & Bogonina, OV experience in prevention and treatment of post-burn scarring esophageal strictures by stenting. (Repeat after neg reviews). HERALD Surgical Gastroenterology, 68.
284
Murugadoss, R., & Ramakrishnan, M. Nonlinear Approximations in Sigmoid Transfer Function for Improved Statistical Pattern Recognition Based On PNN Bayesian Approach.
285
Murugadoss, R., & Ramakrishnan, M. universal approximation with non-sigmoid hidden layer activation functions by using artificial neural network modeling.
286
Mondal, K. Recognition of Static Hand Gestures of Alphabet in Bangla Sign Language.
287
Tantawy, M., & Zorkany, M. A Suitable Approach for Evaluating Bus Arrival Time Prediction Techniques in Egypt. algorithms, 2, 9.
288
Cazella, S. C. Thiago Nunes Kehl Viviane Todt Maurício Roberto Veronez.
289
Sakthivel, S., & Habeeb, S. K. M. NNvPDB: Neural Network based Protein Secondary Structure Prediction with PDB Validation.
290
Karlik, B., Uncu, U., & Ayhan, T. Neural Network Methodology for Modeling Heat Transfer in Wake Flow.
291
Grd, P. two-dimensional face image classification for distinguishing children from adults based on anthropometry.
292
Tosatto, S. C. Neural-Symbolic Learning: How to play Soccer. In Seventh International Workshop on Neural-Symbolic Learning and Reasoning (p. 36).
293
Klimashevich, A. Nikolsky, VM, BOGONINA, O., & KUVAKOVA, R. (2012). Neural network model in treating and preventing post-burn scar formation of structures esophagus. fundamental research (2-0).
294
Supriyono, H., & Tokhi, M. O. (2012, February). Dynamic Neuro-modelling Using Bacterial Foraging Optimisation with Fuzzy Adaptation. In Intelligent Systems, Modelling and Simulation (ISMS), 2012 Third International Conference on (pp. 109-114). IEEE.
295
Al-zahra, K. A., Moosa, K., & Jasim, B. H. (2015). A comparative Study of Forecasting the Electrical Demand in Basra city using Box-Jenkins and Modern Intelligent Techniques. Iraqi Journal for Electrical & Electronic Engineering, 11(1).
296
Al-Enzi, J., Al-Sharhan, S., & Abbod, M. (2014). A new intelligent artificial immune systems based ensemble for high-dimensional data clustering. International Journal of Hybrid Intelligent Systems, 11(3), 167-181.
297
Singh, P., & Arora, S. Adaptive Perturb and Observe-Fuzzy Control Maximum Power Point Tracking for Photovoltaic Boost DC-DC Converter.
298
Iatan, I. F. (2012). A Concurrent Fuzzy Neural Network Approach for a Fuzzy Gaussian Neural Network. Blucher Mechanical Engineering Proceedings, 1(1), 3018-3025.
299
Garrido, A. (2012). Axiomatic of Fuzzy Complex Numbers. Axioms, 1(1), 21-32.
300
Al-Enezi, J. (2012). Artificial immune systems based committee machine for classification application (Doctoral dissertation, Brunel University).
301
Mohd Zainuri, M., Radzi, M., Amran, M., Soh, A. C., & Rahim, N. A. (2012, December). Adaptive P&O-fuzzy control MPPT for PV boost dc-dc converter. In Power and Energy (PECon), 2012 IEEE International Conference on (pp. 524-529). IEEE.
302
Mirinejad, H., Welch, K. C., & Spicer, L. (2012, May). A review of intelligent control techniques in HVAC systems. In Energytech, 2012 IEEE (pp. 1-5). IEEE.
303
Aji, S., Ajiatmo, D., Robandi, I., & Suryoatmojo, H. (2013). MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 4(2), 127-134.
304
De Canete, J. F., Garcia-Cerezo, A., García-Moral, I., Del Saz, P., & Ochoa, E. (2013). Object-oriented approach applied to ANFIS modeling and control of a distillation column. Expert Systems with Applications, 40(14), 5648-5660.
305
Yuste, A. J., Triviño, A., & Casilari, E. (2013). Type-2 fuzzy decision support system to optimise MANET integration into infrastructure-based wireless systems. Expert Systems with Applications, 40(7), 2552-2567.
306
Kar, S., Das, S., & Ghosh, P. K. (2014). Applications of neuro fuzzy systems: A brief review and future outline. Applied Soft Computing, 15, 243-259.
307
Ravizza, S., Chen, J., Atkin, J. A., Stewart, P., & Burke, E. K. (2014). Aircraft taxi time prediction: Comparisons and insights. Applied Soft Computing, 14, 397-406.
308
Mohd Zainuri, M., Radzi, M., Amran, M., Soh, A. C., & Rahim, N. A. (2014). Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter. Renewable Power Generation, IET, 8(2), 183-194.
309
Bouzeria, H., Fetha, C., Bahi, T., Lekhchine, S., & Rachedi, L. (2014). Speed Control of Photovoltaic Pumping System. International Journal of Renewable Energy Research (IJRER), 4(3), 705-713.
310
Bouzeria, H., Fetha, C., Bahi, T., Lekhchine, S., & Layate, Z. (2014, October). Fuzzy logic of speed control for photovoltaic pumping system. In Renewable and Sustainable Energy Conference (IRSEC), 2014 International (pp. 136-140). IEEE.
311
Awan, J. A., & Bae, D. H. (2014). Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water resources management, 28(5), 1185-1199.
312
Soares, F. A. A. D. M. (2012). Predição recursiva de diâmetros de clones de eucalipto utilizando rede Perceptron de múltiplas camadas para o cálculo de volume (Doctoral dissertation).
313
Tasic, J. (2012). Procesiranje slikovnih analogija neuronskim mrežama.
314
Mohamad, M., Saman, M. Y. M., & Hitam, M. S. (2012, October). A framework for multiprocessor neural networks systems. In ICT Convergence (ICTC), 2012 International Conference on (pp. 44-48). IEEE.
315
Vijean, V., Hariharan, M., Yaacob, S., Sulaiman, M. N. B., & Adom, A. H. (2013). Objective investigation of vision impairments using single trial pattern reversal visually evoked potentials. Computers & Electrical Engineering, 39(5), 1549-1560.
316
Aziz, N. A., Abdullah, W. F. H., Md Tahir, N., Adenan, M. N. H., & Jamil, W. (2013, August). Enhancement of CHEMFET sensor selectivity based on backpropagation algorithm. In System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on (pp. 226-231). IEEE.
317
Zaki, M., Ashour, I., Zorkany, M., & Hesham, B. (2013). Online Bus Arrival Time Prediction Using Hybrid Neural Network and Kalman filter Techniques. International Journal of Modern Engineering Research, 3(4), 2035-2041.
318
Yerrabolu, P., Mareddy, L., Bhatt, D., Aggarwal, P., Kumar, A., & Devabhaktuni, V. (2013). Correction Model-Based ANN Modeling Approach for the Estimation of Radon Concentrations in Ohio. Environmental Progress & Sustainable Energy, 32(4), 1223-1233.
319
Devabhaktuni, V., Bunting, C. F., Green, D., Kvale, D., Mareddy, L., & Rajamani, V. (2013). A new ANN-based modeling approach for rapid EMI/EMC analysis of PCB and shielding enclosures. Electromagnetic Compatibility, IEEE Transactions on, 55(2), 385-394.
320
Horng, S. C., & Lin, S. Y. (2013). Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation. Information Sciences, 233, 214-229.
321
AlBakkar, A. (2014). Adaptive Simplified Neuro-Fuzzy Controller as Supplementary Stabilizer for SVC.
322
Rotich, N. K., Backman, J., Linnanen, L., & Daniil, P. (2014). Wind Resource Assessment and Forecast Planning with Neural Networks. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(2), 174-190.
323
Jeong, K. (2014). Learning from e-learning: Testing Intelligent Learning Systems in South Asia.
324
Viswanathan, a., & chitra, s. (2014). optimized radial basis function classifier with hybrid bat algorithm for multi modal biometrics. journal of theoretical & applied information technology, 67(1).
325
Mohan, A. (2014). A New Spatio-Temporal Data Mining Method and its Application to Reservoir System Operation (Doctoral dissertation, University of Nebraska).
326
ULER, H. G., Sahin, M., & Ferikoglu, A. (2014). Feature selection on single-lead ECG for obstructive sleep apnea diagnosis. Turkish Journal of Electrical Engineering & Computer Sciences, 22, 465-478.
327
Zhou, Q., & Li, Z. (2014). Use of Artificial Neural Networks for Selective Omission in Updating Road Networks. The Cartographic Journal, 51(1), 38-51.
328
Al-Khasawneh, A., & Hijazi, H. (2014). A Predictive E-Health Information System: Diagnosing Diabetes Mellitus Using Neural Network Based Decision Support System. International Journal of Decision Support System Technology (IJDSST), 6(4), 31-48.
329
Arvidsson, J. (2014). Forecasting on-demand video viewership ratingsusing neural networks.
330
KARLIK, B. (2013). Soft Computing Methods in Bioinformatics: A Comprehensive Review. Mathematical and Computational Applications, 18(3), 176-197.
331
Yeremia, H., Yuwono, N. A., Raymond, P., & Budiharto, W. (2013). Genetic algorithm and neural network for optical character recognition. Journal of Computer Science, 9(11), 1435.
332
Hilbish, N. (2012). Multiple Fundamental Frequency Pitch Detection for Real Time MIDI Applications.
333
Isa, I. S., Fauzi, N. A., Sharif, J. M., Baharudin, R., & Abbas, M. H. (2012, November). Comparisons of MLP transfer functions for different classification classes. In Control System, Computing and Engineering (ICCSCE), 2012 IEEE International Conference on (pp. 110-114). IEEE.
334
Zhou, Q. (2012). Selective omission of road networks in multi-scale representation (Doctoral dissertation, The Hong Kong Polytechnic University).
335
Supriyono, H. (2012). Novel bacterial foraging optimisation algorithms with application to modelling and control of flexible manipulator systems.
336
Anjo, M. D. S., Pizzolato, E. B., & Feuerstack, S. (2012, November). A real-time system to recognize static gestures of Brazilian sign language (libras) alphabet using Kinect. In Proceedings of the 11th Brazilian Symposium on Human Factors in Computing Systems (pp. 259-268). Brazilian Computer Society.
337
Karan, O., Bayraktar, C., Gümüskaya, H., & Karlik, B. (2012). Diagnosing diabetes using neural networks on small mobile devices. Expert Systems with Applications, 39(1), 54-60.
338
Yücelbas, S. (2013). Hibrit siniflayicilar kullanarak kalpteki ritim bozukluklarinin teshisi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
339
Fera, M., Lambiase, A., Fruggiero, F., Martino, G., & Nenni, M. E. (2013). Production Scheduling Approaches for Operations Management. INTECH Open Access Publisher.
340
Parvin, A. (2013). Application of Neural Networks with CSD Coefficients for Human Face Recognition.
341
Vijean, V., Hariharan, M., Yaacob, S., & Sulaiman, M. N. B. (2013). Stockwell transform and clustering techniques for efficient detection of vision impairments from single trial VEPs. International Journal of Medical Engineering and Informatics, 5(4), 352-371.
342
Klimashevich AV Nikolsky, VI, Bogonina, OV, Akimov, AA, & Shabrov, AV (2013). A method of predicting esophageal stricture scar AFTER burns. Fundamental research (2-1).
343
Velican, v. (2013). teza de doctorat (doctoral dissertation, academia tehnica militara).
344
Saputri, T. R. D., & Lee, S. W. (2013). Using Artificial Neural Networks for Predicting Traffic Conditions: A Learning Algorithm for Long-term Time Series Forecasting. Journal of Convergence Information Technology, 8(14), 121.
345
Abd Aziz, N., Latif, A., Al Kasyaf, M., Abdullah, W. F. H., Md Tahir, N., & Zolkapli, M. (2013, November). Hardware implementation of backpropagation algorithm based on CHEMFET sensor selectivity. In Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on (pp. 387-390). IEEE.
346
Tang, W. (2013). Modeling, Estimation, and Control of Nonlinear Time-Variant Complex Processes (Doctoral dissertation, Texas Tech University).
347
Asgari, H. (2014). Modelling, Simulation and Control of Gas Turbines Using Artificial Neural Networks.