Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(729KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Accuracy Assessment of DEMs Using Modern Geoinformatic Methods
Mohamed Doma, Ahmed Sedeek
Pages - 13 - 22     |    Revised - 28-02-2019     |    Published - 01-04-2019
Volume - 6   Issue - 2    |    Publication Date - April 2019  Table of Contents
MORE INFORMATION
KEYWORDS
DEMs, LiDAR, ASTER, SRTM, ALOS, Height Measurement, Vertical Accuracy.
ABSTRACT
Digital Elevation Models (DEMs), which can come in the form of digital surface models or digital terrain models, are key tools in land analyses and other purposes. Classical methods such as field surveying and photogrammetry can yield high-accuracy terrain data, but they are time consuming and labor-intensive. Nowadays, different modernistic height-finding methods have emerged, including Global Positioning System (GPS) and airborne methods. In contrast to the airborne ways that are suited to gain highly precise, fine-resolution DEMs at a local scale. The airborne ways are complementary to their space-borne matches, such as Light Detection and Ranging (LiDAR), Shuttle Radar Topography Mission (SRTM), Advanced Spaceborne Thermal Emission and Reflection Radiometer- Global Digital Elevation Model (ASTER GDEM) and Advanced Land Observing Satellite (ALOS). LiDAR data acquisition has become the standard approach for collecting point data to interpolate high-resolution ground and aboveground surface. In this study, we assessed elevation accuracy of three modern geoinformatic methods (STRM, ASTER GDEM and ALOS); by comparing standard deviations of elevation differences for these methods versus more than 6,000,000 points from LiDAR. From case study results, standard deviations of elevation differences between LiDAR points vs ASTER DEM equal 9.09 m, LiDAR points vs STRM DEM equal 5.28 m and LiDAR point's vs ALOS DEM equal 2.08 m, based on these results, ALOS DEM shows a good agreement with LiDAR data.
1 Google Scholar 
2 refSeek 
3 BibSonomy 
4 Doc Player 
5 Scribd 
6 SlideShare 
1 Gao, J. Towards accurate determination of surface height using modern geoinformatic methods, possibilities and limitations, Physical Geography, 31(6): 591-605, 2007.
2 Chaieb, A.; Rebai, N. and Bouaziz, S., Vertical Accuracy Assessment of SRTM Ver 4.1 and ASTER GDM Ver 2 Using GPS Measurements in Central West of Tunisia, Journal of Geographic Information System, (8): 57-64, 2016.
3 Purinton, B. and Bookhagen B., Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau, Earth Surf. Dynam, 5, 211-237, 2017.
4 Wechsler, Suzanne P., Perceptions of Digital Elevation Model Uncertainty by Dem Users." URISA-WASHINGTON DC- 15 (2): 57-64, 2003.
5 Li, Z., Zhu, Q. and Gold, C., Digital Terrain Modeling: Principles and Methodology, Boca Raton, London, New York, and Washington, D.C.: CRC Press, 2005.
6 Elkhrachy I., Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia, Ain Shams Engineering Journal (9): 1807-1817, 2018.
7 Habib, A., Ghanma, M., Morgan, M. and AlRuzouq, R., Photogrammetric and LiDAR Data Registration Using Linear Features. Photogrammetric Engineering and Remote Sensing, 71 (6), pp.699-707, 2005.
8 Raber, George T, John R Jensen, Michael E Hodgson, Jason A Tullis, Bruce A Davis, and Judith Berglund., Impact of LiDAR Nominal Post-Spacing on Dem Accuracy and Flood Zone Delineation, Photogrammetric engineering & remote sensing 73 (7): 793-804, 2007.
9 Liu, X. Airborne lidar for DEM generation, Some critical issues. Prog. Phys. Geogr. Earth Environ, 32, 31-49, 2008.
10 Vaze, J.; Teng, J., High resolution lidar DEM How good is it? Model. Simul. 2007, 692-698, 2007.
11 Koci, J.; Jarihani, B.; Leon, J.X.; Sidle, R.; Wilkinson, S.; Bartley, R., Assessment of UAV and ground-based structure from motion with multi-view stereo photogrammetry in a gullied savanna catchment. ISPRS Int. J. Geo-Inf., 6, 328, 2017.
12 Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P., Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2. Remote Sens., 10, 859, 2018.
13 Kodors, S., Point distribution as true quality of lidar point cloud. Balt. J. Mod. Comput., 5, 362-378, 2017.
14 El-Sheimy, N., Valeo, C. and Habib, A., Digital terrain modeling: acquisition, manipulation, and application, Boston and London: Artech House, 2005.
15 Liu, X., Zhang, Z. and J. Peterson, Evaluation of the performance of DEM interpolation algorithms for LiDAR data. In: Ostendorf, B., Baldock, P., Bruce, D., Burdett, M. and P. Corcoran (eds.), Proceedings of the Surveying & Spatial Sciences Institute Biennial International Conference, Adelaide 2009, Surveying & Spatial Sciences Institute, pp. 771-780. ISBN: 978-0-9581366-8-6, 2009.
16 Zimmerman, D., Pavlik, C., Ruggles, A. and Armstrong, M. P., An experimental comparison of ordinary and universal Kriging and inverse distance weighting. Mathematical Geology, 31(4):375-389, 1999.
17 Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D., The Shuttle Radar Topography Mission, Reviews of Geophysics, 45, 2007.
18 Van Zyl J J., The shuttle radar topography mission (SRTM): A breakthrough in remote sensing of topography; Acta Astronautica 48 559-565, 2001.
19 Wilson, J. P., Digital terrain modeling, Geomorphology, 137, 107-121, 2012.
20 Mukul, M., Srivastava, V. & Mukul, M., Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network, Journal of Earth System Science, 124(6): 1343-1357, 2015.
21 Gorokhovich, Y. and Voustianiouk, A., Accuracy assessment of the processed SRTMbased elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics, Remote Sensing of Environment, 104 (4):409-415, 2006.
22 Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z., Danielson, J. J., Krieger, T., Curtis, B., Haase, J., and others: ASTER global digital elevation model version 2-summary of validation results, 2011.
23 Rexer, M and Hirt, C., Comparison of free high-resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database, Australian Journal of Earth Sciences, 61(2): 1- 19, 2014.
24 Tadono,T.; Ishida, T. H.; Oda, F.; Naito, S.; Minakawa, K; H. Iwamoto, Precise Global DEM Generation by ALOS Prism, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4, 2014.
25 WVU Natural Resource Analysis Center, LIDAR. LAS1.2 DATA, Comprehensive and Bare Earth, AERIAL LIDAR ACQUISITION REPORT, West Virginia, Department of Environmental Protection, PO BOX 6108, June 2013.
26 Rabus, B.; Einder, M.; Roth, A.; Bamler, R., The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar, ISPRS Journal of Photogrammetry and Remote Sensing, 57 (4), 241-262, 2003.
27 Rodriguez, E.; Morris, C. S.; Belz, J. E., A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, 72 (3), p. 249-260, 2006.
28 Li, Z., Variation of the accuracy of digital terrain models with sampling interval. Photogrammetric Record, 14 (79), p.113-128, 1992.
29 Keeratikorn, C.; Trisirisatayawong, I., Reconstruction of 30m dem from 90 m SRTM DEM with bicubic polynomial interpolation method. The International Archives of the Photogrammetry, Remote sensing and spatial information Sciences, Vol. XXXVII, Part B1, p.791-794, 2008.
30 Ehsani, A. H.; Quiel, F.; Malekian, A., Effect of SRTM resolution on morphometric feature identification using neural networkdself organizing map, Geoinformatica, 14, p. 405- 424, 2010.
31 Tachikawa T., Hata M., Kaku M. & Iwaskia A., Characteristics of ASTER GDEM version 2. 576 In, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 577 IEEE, pp. 3657-3660, Vancouver BC, 2011.
32 Tachikawa T., Kaku M., Iwasaki A., Gesch D., Oimoen M., Zhang Z., Danielson J., Krieger T., Curtis B., Haase J., Abrams M., Crippen R. & Carabajal C., ASTER Global Digital Elevation Model Version 2-Summary of Validation Results. Joint Japan-US ASTER Science Team,http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_vali583 dation_report_final.pdf, 2018.
33 USGS, http://earthexplorer.usgs.gov, 2018
34 Luo, W., Taylor, M. C., & Parker, S. R., A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. International Journal of Climatology, 28(7), 947-959. doi:10.1002/joc.1583, 2008.
35 Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of 'AW3D' global DSM generated from ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 3, 25-31, 2016.
36 Alaska Satellite Facility's, http://vertex.daac.asf.alaska.edu, 2018
37 Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, In Proceedings of the 1968 ACM National Conference. doi:10.1145/800186.810616, 1968.
38 Waters, N. M., Expert systems and systems of experts. In: Coffey, W.J., (Ed.), Geographical systems and systems of geography: Essays in honour of William Warntz (pp. 173-187). London: Department of Geography, University of Western Ontario. doi:10. 1177/030913258901300311, 1988.
Associate Professor Mohamed Doma
Cairo University - Egypt
mohamed.doma@sh-eng.menofia.edu.eg
Dr. Ahmed Sedeek
Higher Institute of Engineering and Technology - Egypt