Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(807.54KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Fuzzy Logic and Neuro-fuzzy Systems: A Systematic Introduction
Yue Wu, Biaobiao Zhang, Jiabin Lu, K. -L. Du
Pages - 47 - 80     |    Revised - 01-05-2011     |    Published - 31-05-2011
Volume - 2   Issue - 2    |    Publication Date - May / June 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Fuzzy Set, Fuzzy Logic, Fuzzy Inference System, Neuro-Fuzzy System, Mamdani Model, Takagi-Sugeno-Kang Model
ABSTRACT
Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer perceptron (MLP) and the radial basis function network (RBFN), some fuzzy inference systems (FISs) have the capability of universal approximation. Fuzzy logic can be used in most areas where neural networks are applicable. In this paper, we first give an introduction to fuzzy sets and logic. We then make a comparison between FISs and some neural network models. Rule extraction from trained neural networks or numerical data is then described. We finally introduce the synergy of neural and fuzzy systems, and describe some neuro-fuzzy models as well. Some circuits implementations of neuro-fuzzy systems are also introduced. Examples are given to illustrate the cocepts of neuro-fuzzy systems.
CITED BY (24)  
1 Salem, D. A., Seoud, R. A. A., Kadah, Y. M., & Kadah, Y. M. Robust Classification of MHC Class II Peptides.
2 Singh, P., & Arora, S. Adaptive Perturb and Observe-Fuzzy Control Maximum Power Point Tracking for Photovoltaic Boost DC-DC Converter.
3 Iatan, I. F. (2012). A Concurrent Fuzzy Neural Network Approach for a Fuzzy Gaussian Neural Network. Blucher Mechanical Engineering Proceedings, 1(1), 3018-3025.
4 Garrido, A. (2012). Axiomatic of Fuzzy Complex Numbers. Axioms, 1(1), 21-32.
5 Al-Enezi, J. (2012). Artificial immune systems based committee machine for classification application (Doctoral dissertation, Brunel University).
6 Mohd Zainuri, M., Radzi, M., Amran, M., Soh, A. C., & Rahim, N. A. (2012, December). Adaptive P&O-fuzzy control MPPT for PV boost dc-dc converter. In Power and Energy (PECon), 2012 IEEE International Conference on (pp. 524-529). IEEE.
7 Mirinejad, H., Welch, K. C., & Spicer, L. (2012, May). A review of intelligent control techniques in HVAC systems. In Energytech, 2012 IEEE (pp. 1-5). IEEE.
8 Aji, S., Ajiatmo, D., Robandi, I., & Suryoatmojo, H. (2013). MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 4(2), 127-134.
9 De Canete, J. F., Garcia-Cerezo, A., Garcνa-Moral, I., Del Saz, P., & Ochoa, E. (2013). Object-oriented approach applied to ANFIS modeling and control of a distillation column. Expert Systems with Applications, 40(14), 5648-5660.
10 Yuste, A. J., Triviρo, A., & Casilari, E. (2013). Type-2 fuzzy decision support system to optimise MANET integration into infrastructure-based wireless systems. Expert Systems with Applications, 40(7), 2552-2567.
11 Kar, S., Das, S., & Ghosh, P. K. (2014). Applications of neuro fuzzy systems: A brief review and future outline. Applied Soft Computing, 15, 243-259.
12 Ravizza, S., Chen, J., Atkin, J. A., Stewart, P., & Burke, E. K. (2014). Aircraft taxi time prediction: Comparisons and insights. Applied Soft Computing, 14, 397-406.
13 Mohd Zainuri, M., Radzi, M., Amran, M., Soh, A. C., & Rahim, N. A. (2014). Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter. Renewable Power Generation, IET, 8(2), 183-194.
14 Bouzeria, H., Fetha, C., Bahi, T., Lekhchine, S., & Rachedi, L. (2014). Speed Control of Photovoltaic Pumping System. International Journal of Renewable Energy Research (IJRER), 4(3), 705-713.
15 Bouzeria, H., Fetha, C., Bahi, T., Lekhchine, S., & Layate, Z. (2014, October). Fuzzy logic of speed control for photovoltaic pumping system. In Renewable and Sustainable Energy Conference (IRSEC), 2014 International (pp. 136-140). IEEE.
16 Awan, J. A., & Bae, D. H. (2014). Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water resources management, 28(5), 1185-1199.
17 Al-Enzi, J., Al-Sharhan, S., & Abbod, M. (2014). A new intelligent artificial immune systems based ensemble for high-dimensional data clustering. International Journal of Hybrid Intelligent Systems, 11(3), 167-181.
18 Al-zahra, K. A., Moosa, K., & Jasim, B. H. (2015). A comparative Study of Forecasting the Electrical Demand in Basra city using Box-Jenkins and Modern Intelligent Techniques. Iraqi Journal for Electrical & Electronic Engineering, 11(1).
19 Zainuri, M. A. A. M., Radzi, M. A. M., Soh, A. C., Mariun, N., & Rahim, N. A. (2015). DC-link capacitor voltage control for single-phase shunt active power filter with step size error cancellation in self-charging algorithm. IET Power Electronics.
20 Bouzeria, H., Fetha, C., Bahi, T., Abadlia, I., Layate, Z., & Lekhchine, S. (2015). Fuzzy Logic Space Vector Direct Torque Control of PMSM for Photovoltaic Water Pumping System. Energy Procedia, 74, 760-771.
21 Abdul-Jabbar, D. J., Al-Faydi, S. N. M., & Yahya, H. N. (2015). Neuro-Fuzzy Based ECG Signal Classification with A Gaussian Derivative Filter. Al-Rafadain Engineering Journal, 23(2).
22 Awan, J. A., & Bae, D. H. (2016). Drought prediction over the East Asian monsoon region using the adaptive neuro-fuzzy inference system and the global sea surface temperature anomalies. International Journal of Climatology.
23 Dνaz, R., & Hurtado, N. (2012). Uso del Sistema Neuro-Difuso (SND) en Datos de Porosidad y Saturaciσn de Agua, para la Inferencia de Permeabilidad.
24 Onieva, E., Hernandez-Jayo, U., Osaba, E., Perallos, A., & Zhang, X. (2015). A Multi-Objective Evolutionary Algorithm for the Tuning of Fuzzy Rule Bases for Uncoordinated Intersections in Autonomous Driving. Information Sciences.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 iSEEK 
5 Scribd 
6 SlideShare 
7 PdfSR 
1 S. Abe, M.S. Lan. ?Fuzzy rules extraction directly from numerical data for function approximation?. IEEE Trans. Syst. Man Cybern., 25(1), pp. 119–129, 1995.
2 D.F. Akhmetov, Y. Dote, S.J. Ovaska. ?Fuzzy neural network with general parameter adaptation for modeling of nonlinear time-series?. IEEE Trans. Neural Netw., 12(1), pp. 148–152, 2001.
3 J.S. Albus. ?A new approach to manipulator control: Cerebellar model articulation control(CMAC)?. Trans. ASME J. Dyna. Syst. Meas. Contr., 97, pp. 220–227, 1975.
4 P.P. Angelov, D.P. Filev. ?An approach to online identification of Takagi-Sugeno fuzzy models?.IEEE Trans. Syst. Man Cybern. B, 34(1), 484–498, 2004.
5 M.F. Azeem, M. Hanmandlu, N. Ahmad. ?Generalization of adaptive neuro-fuzzy inference systems?. IEEE Trans. Neural Netw., 11(6), pp. 1332–1346, 2000.
6 I. Baturone, S. Sanchez-Solano, A. Barriga, J.L. Huertas. ?Implementation of CMOS fuzzy controllers as mixed-signal integrated circuits?. IEEE Trans. Fuzzy Syst., 5(1), pp. 1–19,1997.
7 J.M. Benitez, J.L. Castro, I. Requena. ?Are artificial neural networks black boxes??. IEEE Trans.Neural Netw., 8(5), pp. 1156–1164, 1997.
8 J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, 1981.
9 A. Blanco, M. Delgado, M.C. Pegalajar. ?Extracting rules from a (fuzzy/crisp) recurrent neural network using a self-organizing map?. Int. J. Intell. Syst., 15(7), pp. 595–621, 2000.
10 S. Bouras, M. Kotronakis, K. Suyama, Y. Tsividis. ?Mixed analog-digital fuzzy logic controller with continuous-amplitude fuzzy inferences and defuzzification?. IEEE Trans. Fuzzy Syst.,6(2), pp. 205–215, 1998.
11 J.J. Buckley. ?Fuzzy complex numbers?. Fuzzy Sets Syst., 33, pp. 333–345, 1989.
12 J.J. Buckley. ?Sugeno type controllers are universal controllers?. Fuzzy Sets Syst., 53, pp.299–304, 1993.
13 J.J. Buckley, Y. Hayashi, E. Czogala. ?On the equivalence of neural nets and fuzzy expert systems?. Fuzzy Sets Syst., 53, pp. 129–134, 1993.
14 J.J. Buckley, E. Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets, Heidelberg: PhysicaVerlag,2002.
15 J.L. Castro. ?Fuzzy logic controllers are universal approximators?. IEEE Trans Syst Man Cybern., 25(4), pp. 629–635, 1995.
16 J.L. Castro, C.J. Mantas, J. Benitez. ?Interpretation of artificial neural networks by means of fuzzy rules?. IEEE Trans. Neural Netw., 13(1), pp. 101–116, 2002.
17 A. Cechin, U. Epperlein, B. Koppenhoefer, W. Rosenstiel. ?The extraction of Sugeno fuzzy rules from neural networks?, in Proc. Euro. Symp. Artif. Neural Netw., Bruges, Belgium, 1996,pp. 49–54.
18 M.S. Chen, R.J. Liou. ?An efficient learning method of fuzzy inference system?, in Proc. IEEE Int. Fuzzy Syst. Conf., Seoul, Korea, 1999, pp. 634–638.
19 C.B. Cheng, E.S. Lee. ?Fuzzy regression with radial basis function network?. Fuzzy Sets Syst.,119, pp. 291–301, 2001.
20 S. Chiu. ?Fuzzy model identification based on cluster estimation?. J. Intell. & Fuzzy Syst., 2(3),pp. 267–278, 1994.
21 S.L. Chiu. ?A cluster estimation method with extension to fuzzy model identification?, in Proc.IEEE Int. Conf. Fuzzy Syst., Orlando, FL, 2, 1994, pp. 1240–1245.
22 K.B. Cho, B.H. Wang. ?Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction?. Fuzzy Sets Syst., 83, pp. 325–339, 1996.
23 M.Y. Chow, S. Altrug, H.J. Trussell. ?Heuristic constraints enforcement for training of and knowledge extraction from a fuzzy/neural architecture—Part I: Foundations?. IEEE Trans.Fuzzy Syst., 7(2), pp. 143–150, 1999.
24 U. Cilingiroglu, B. Pamir, Z.S. Gunay, F. Dulger. ?Sampled-analog implementation of application-specific fuzzy controllers?. IEEE Trans. Fuzzy Syst., 5(3), pp. 431–442, 1997.
25 A. Costa, A. De Gloria, P. Farabosch, A. Pagni, G. Rizzotto. ?Hardware solutions of fuzzy control?. Proc. IEEE, 83(3), pp. 422–434, 1995.
26 T. Denoeux, M.H. Masson. ?Principal component analysis of fuzzy data using autoassociative neural networks?. IEEE Trans. Fuzzy Syst., 12(3), pp. 336–349, 2004.
27 S. Dick. ?Toward complex fuzzy logic?. IEEE Trans. Fuzzy Syst., 13(3), pp. 405–414, 2005.
28 J.A. Dickerson, B. Kosko. ?Fuzzy function learning with covariance ellipsoids?, in Proc. IEEE Int. Conf. Neural Netw., San Francisco, 3, 1993, pp. 1162–1167.
29 K.-L. Du, M.N.S. Swamy. Neural Networks in a Softcomputing Framework, London: Springer,2006.
30 K.-L. Du. ?Clustering: a neural network approach?. Neural Netw., 23(1), pp. 89–107, 2010.
31 C. Dualibe, M. Verleysen, P.G.A. Jespers. Design of Analog Fuzzy Logic Controllers in CMOS Technology, Netherlands: Kluwer, 2003.
32 W. Duch. ?Uncertainty of data, fuzzy membership functions, and multilayer perceptrons?.IEEE Trans. Neural Netw., 16(1), pp. 10–23, 2005.
33 M.J. Er, S. Wu. ?A fast learning algorithm for parsimonious fuzzy neural systems?. Fuzzy Sets Syst., 126, pp. 337–351, 2002.
34 S.E. Fahlman, C. Lebiere. ?The cascade-correlation learning architecture?, in Advances in Neural Information Processing Systems 2, D.S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 524–532.
35 G. Ferrari-Trecate, R. Rovatti. ?Fuzzy systems with overlapping Gaussian concepts:Approximation properties in Sobolev norms?. Fuzzy Sets Syst., 130, pp. 137–145, 2002.
36 M. Figueiredo, F. Gomides, A. Rocha, R. Yager. ?Comparison of Yager’s level set method for fuzzy logic control with Mamdani and Larsen methods?. IEEE Trans. Fuzzy Syst., 2, pp. 156–159, 1993.
37 B. Gabrays, A. Bargiela. ?General fuzzy min-max neural networks for clustering and classification?. IEEE Trans. Neural Netw., 11(3), pp. 769–783, 2000.
38 S.I. Gallant. ?Connectionist expert systems?. Commun. of ACM, 31(2), pp. 152–169, 1988.
39 S. Guillaume. ?Designing fuzzy inference systems from data: An interpretability-oriented review?. IEEE Trans. Fuzzy Syst., 9(3), pp. 426–443, 2001.
40 Y. Hayashi, J.J. Buckley, E. Czogala. ?Fuzzy neural network with fuzzy signals and weights?Int. J. Intell. Syst., 8(4), pp. 527–537, 1993.
41 P. Holmblad, J. Ostergaard. ?Control of a cement kiln by fuzzy logic?, in Fuzzy Information and Decision Processes, M.M. Gupta, E. Sanchez, Eds. Amsterdam: North-Holland, 1982,pp. 389–399.
42 T. Hong, C. Lee. ?Induction of fuzzy rules and membership functions from training examples?.Fuzzy Sets Syst., 84, pp. 33–37, 1996.
43 K.J. Hunt, R. Haas, R. Murray-Smith. ?Extending the functional equivalence of radial basis function networks and fuzzy inference systems?. IEEE Trans. Neural Netw., 7(3), pp. 776–781, 1996.
44 J.F. Hurdle. ?The synthesis of compact fuzzy neural circuits?. IEEE Trans. Fuzzy Syst., 5(1),pp. 44–55, 1997.
45 M. Ishikawa. ?Rule extraction by successive regularization?. Neural Netw., 13(10), pp. 1171–1183, 2000.
46 H. Ishibuchi, R. Fujioka, H. Tanaka. ?Neural networks that learn from fuzzy IF-THEN rules?.IEEE Trans. Fuzzy Syst., 1, pp. 85–97, 1993.
47 H. Jacobsson. ?Rule extraction from recurrent neural networks: A taxonomy and review?.Neural Comput., 17(6), pp. 1223–1263, 2005.
48 J.S.R. Jang. ?ANFIS: Adaptive-network-based fuzzy inference systems?. IEEE Trans, Syst,Man Cybern., 23(3), pp. 665–685, 1993.
49 J.S.R. Jang, E. Mizutani. ?Levenberg-Marquardt method for ANFIS learning?, in Proc. Biennial Conf. North Amer. Fuzzy Inf. Process. Soc. (NAFIPS), Berkeley, CA, 1996, pp. 87–91.
50 J.S.R. Jang, C.I. Sun. ?Functional equivalence between radial basis function Networks and fuzzy inference systems?. IEEE Trans. Neural Netw., 4(1), pp. 156–159, 1993.
51 J.S.R. Jang, C.I. Sun. ?Neuro-fuzzy modeling and control?. Proc. IEEE, 83(3), pp. 378–406,1995.
52 Y. Jin. ?Advanced fuzzy systems design and applications?. Heidelberg: Physica-Verlag, 2003.
53 C.F. Juang, C.T. Lin. ?An on-line self-constructing neural fuzzy inference network and its application?. IEEE Trans. Fuzzy Syst., 6(1), pp. 12–32, 1998.
54 J. Kim, N. Kasabov. ?HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems?. Neural Netw., 12, pp. 1301–1319, 1999.
55 B. Kosko. ?Fuzzy system as universal approximators?, in Proc. IEEE Int. Conf. Fuzzy Syst.,San Diego, CA, 1992, pp. 1153–1162.
56 B. Kosko. Fuzzy engineering. Prentice Hall, Englewood Cliffs, 1997.
57 V. Kreinovich, H.T. Nguyen, Y. Yam. ?Fuzzy systems are universal approximators for a smooth function and its derivatives?. Int. J. Intell. Syst., 15, pp. 565–574, 2000.
58 Y.H. Kuo, C.L. Chen. ?Generic LR fuzzy cells for fuzzy hardware synthesis?. IEEE Trans.Fuzzy syst., 6(2), pp. 266–285, 1998.
59 R. Langari, L. Wang, J. Yen. ?Radial basis function networks, regression weights, and the expectation-maximization algorithm?. IEEE Trans. Syst. Man Cybern. A, 27(5), 613–623,1997.
60 C.W. Lee, Y.C. Shin. ?Construction of fuzzy systems using least-squares method and genetic algorithm?. Fuzzy Sets Syst., 137, pp. 297–323, 2003.
61 L. Lemaitre, M. Patyra, D. Mlynek. ?Analysis and design of CMOS fuzzy logic controller in current mode?. IEEE J. Solid-State Circ., 29(3), pp. 317–322, 1994.
62 G. Leng, G. Prasad, T.M. McGinnity. ?An on-line algorithm for creating self-organizing fuzzy neural networks?. Neural Netw., 17, pp. 1477–1493, 2004.
63 H.X. Li, C.L.P. Chen. ?The equivalence between fuzzy logic systems and feedforward neural networks?. IEEE Trans. Neural Netw., 11(2), pp. 356–365, 2000.
64 C.T. Lin, Y.C. Lu. ?A neural fuzzy system with fuzzy supervised learning?. IEEE Trans. Syst.Man Cybern. B, 26(5), pp. 744–763, 1996.
65 F.J. Lin, R.J. Wai. ?Hybrid control using recurrent fuzzy neural network for linear-induction motor servo drive?. IEEE Trans. Fuzzy Syst., 9(1), pp. 102–115, 2001.
66 P. Liu. ?Max-min fuzzy Hopfield neural networks and an efficient learning algorithm?. Fuzzy Sets Syst., 112, pp. 41–49, 2000.
67 P. Liu, H. Li. ?Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks?. IEEE Trans. Neural Netw., 15(3), 545–558, 2004.
68 P. Liu, H. Li. ?Hierarchical TS fuzzy system and its universal approximation?. Inf. Sci., 169, pp.279–303, 2005.
69 E.H. Mamdani. ?Application of fuzzy algorithms for control of a simple dynamic plant?. Proc.IEEE, 12(1), pp. 1585–1588, 1974.
70 K.J. McGarry, J. MacIntyre. ?Knowledge extraction and insertion from radial basis function networks?, in IEE Colloq. Applied Stat. Pattern Recogn, Birmingham, UK, 1999, pp. 15/1–15/6
71 S. Mitra, J. Basak. ?FRBF: A fuzzy radial basis function network?. Neural Comput. & Appl., 10,pp. 244–252, 2001.
72 S. Mitra, Y. Hayashi. ?Neuro-fuzzy rule generation: Survey in soft computing framework?.IEEE Trans. Neural Netw., 11(3), pp. 748–768, 2000.
73 E. Mizutani, J.S. Jang. ?Coactive neural fuzzy modeling?, in Proc. IEEE Int. Conf. Neural Netw., Perth, Australia, 1995, vol. 2, pp. 760–765.
74 D. Moses, O. Degani, H.N. Teodorescu, M. Friedman, A. Kandel. ?Linguistic coordinate transformations for complex fuzzy sets?, in Proc. IEEE Int. Conf. Fuzzy Syst., Seoul, Korea,1999, 3, pp. 1340–1345.
75 D. Nauck, F. Klawonn, R. Kruse. Foundations of Neuro-fuzzy Systems. New York: Wiley,1997.
76 D. Nauck, R. Kruse. ?A neural fuzzy controller learning by fuzzy error propagation?, in Proc.Worksh. North Amer. Fuzzy Inf. Process. Soc. (NAFIPS92), Puerto Vallarta, Mexico, 1992,pp. 388–397.
77 H. Nomura, I. Hayashi, N. Wakami. ?A learning method of fuzzy inference rules by descent method?, in Proc. IEEE Int. Conf. Fuzzy Syst., San Diego, CA, 1992, pp. 203–210.
78 A. Nurnberger, D. Nauck, R. Kruse. ?Neuro-fuzzy control based on the NEFCON-model:Recent developments?. Soft Comput., 2, pp. 168–182, 1999.
79 S.K. Oh, W. Pedrycz, H.S. Park. ?Multi-layer hybrid fuzzy polynomial neural networks: A design in the framework of computational intelligence?. Neurocomput., 64, pp. 397–431,2005.
80 C.W. Omlin, C.L. Giles. ?Extraction of rules from discrete-time recurrent neural networks?.Neural Netw., 9, pp. 41–52, 1996.
81 C.W. Omlin, K.K. Thornber, C.L. Giles. ?Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks?. IEEE Trans. Fuzzy Syst., 6, pp. 76–89, 1998.
82 S.K. Pal, S. Mitra. ?Multilayer perceptron, fuzzy sets, and classification?. IEEE Trans. Neural Netw., 3(5), pp. 683–697, 1992.
83 M.J. Patyra, J.L. Grantner, K. Koster. ?Digital fuzzy logic controller: Design and implementation?. IEEE Trans. Fuzzy Syst., 4(4), pp. 439–459, 1996.
84 W. Pedrycz, A.F. Rocha. ?Fuzzy-set based models of neurons and knowledge-based networks?. IEEE Trans. Fuzzy Syst., 1(4), pp. 254–266, 1993.
85 G.V.S. Raju, J. Zhou, R.A. Kisner. ?Hierarchical fuzzy control?. Int. J. Contr., 54(5), pp. 1201–1216, 1991.
86 D. Ramot, M. Friedman, G. Langholz, A. Kandel. ?Complex fuzzy logic?. IEEE Trans. Fuzzy Syst., 11(4), pp. 450–461, 2003.
87 D. Ramot, R. Milo, M. Friedman, A. Kandel. ?Complex fuzzy sets?. IEEE Trans. Fuzzy Syst.,10(2), pp. 171–186, 2002.
88 L.M. Reyneri. ?Implementation issues of neuro-fuzzy hardware: Going toward HW/SW codesign?. IEEE Trans. Neural Netw., 14(1), pp. 176–194, 2003.
89 M. Riedmiller, H. Braun. ?A direct adaptive method for faster backpropagation learning: the RPROP algorithm?, in Proc. IEEE Int. Conf. Neural Netw., San Francisco, CA, 1993, pp.586–591.
90 A. Rizzi, M. Panella, F.M.F. Mascioli. ?Adaptive resolution min-max classifiers?. IEEE Trans.Neural Netw., 13(2), pp. 402–414, 2002.
91 I. Rojas, H. Pomares, J.L. Bernier, J. Ortega et al. ?Time series analysis using normalized PG-RBF network with regression weights?. Neurocomput., 42, pp. 267–285, 2002.
92 I. Rojas, H. Pomares, J. Ortega, A. Prieto. ?Self-organized fuzzy system generation from training examples?. IEEE Trans. Fuzzy Syst., 8(1), pp. 23–36, 2000.
93 M. Russo. ?Fugenesys—A fuzzy genetic neural system for fuzzy modeling?. IEEE Trans.Fuzzy Syst., 6(3), pp. 373–388, 1998.
94 K. Saito, R. Nakano. ?Rule extraction from facts and neural networks?, in Proc. Int. Neural Netw. Conf., Paris, France, pp. 379–382. Kluwer, Dordrecht, the Netherland, 1990.
95 V. Salapura. ?A fuzzy RISC processor?. IEEE Trans. Fuzzy Syst., 8(6), pp. 781–790, 2000.
96 M. Setnes, R. Babuska, U. Kaymak, H.R. van Nauta Remke. ?Similarity measures in fuzzy rule base simplification?. IEEE Trans. Syst. Man Cybern. B, 28(3), pp. 376–386, 1998.
97 P.K. Simpson. ?Fuzzy min-max neural networks–Part I. classification?. IEEE Trans. Neural Netw., 3, pp. 776–786, 1992.
98 P.K. Simpson. ?Fuzzy min-max neural networks–Part II: clustering?. IEEE Trans. Fuzzy Syst.,1(1), pp. 32–45, 1993.
99 N.A. Sisman-Yilmaz, F.N. Alpaslan, L. Jain. ?ANFIS-unfolded-in-time for multivariate time series forecasting?. Neurocomput., 61, pp. 139–168, 2004.
100 E. Soria-Olivas, J.D. Martin-Guerrero, G. Camps-Valls, A.J. Serrano-Lopez, J. CalpeMaravilla,L. Gomez-Chova. ?A low-complexity fuzzy activation function for artificial neural networks?. IEEE Trans. Neural Netw., 14(6), pp. 1576–1579, 2003.
101 C.T. Sun. ?Rule-base structure identification in an adaptive-network-based inference system?.IEEE Trans. Fuzzy Syst., 2(1), pp. 64–79, 1994.
102 R. Tagliaferri, A. Eleuteri, M. Meneganti, F. Barone. ?Fuzzy min-max neural networks: From classification to regression?. Soft Comput., 5, pp. 69–76, 2001.
103 T. Takagi, M. Sugeno. ?Fuzzy identification of systems and its applications to modelling and control?. IEEE Trans. Syst. Man Cybern., 15(1), pp. 116–132, 1985.
104 K. Tanaka, M. Sugeno. ?Stability analysis and design of fuzzy control systems?. Fuzzy Sets Syst., 45, pp. 135–150, 1992.
105 R. Thawonmas, S. Abe. ?Function approximation based on fuzzy rules extracted from partitioned numerical data?. IEEE Trans. Syst. Man Cybern. B, 29(4), pp. 525–534, 1999.
106 A. Tickle, R. Andrews, M. Golea, J. Diederich. ?The truth will come to light: Direction and challenges in extracting the knowledge embedded within trained artificial neural networks?.IEEE Trans. Neural Netw., 9(6), pp. 1057–1068, 1998.
107 V. Tresp, J. Hollatz, S. Ahmad. ?Representing probabilistic rules with networks of Gaussian basis functions?. Mach. Learn., 27, pp. 173–200, 1997.
108 G. Tsekouras, H. Sarimveis, E. Kavakli, G. Bafas. ?A hierarchical fuzzy-clustering approach to fuzzy modeling?. Fuzzy Sets Syst., 150(2), pp. 245–266, 2004.
109 K. Uehara, M. Fujise. ?Fuzzy inference based on families of ??-level sets?. IEEE Trans. Fuzzy Syst., 1(2), pp. 111–124, 1993.
110 A. Ultsch, R. Mantyk, G. Halmans. ?Connectionist knowledge acquisition tool: CONKAT?, in Artificial Intelligence Frontiers in Statistics: AI and Statistics III, : D.J. Hand, Ed. London:Chapman & Hall, 1993, pp. 256–263.
111 P. Vuorimaa. ?Fuzzy self-organizing map?. Fuzzy Sets Syst., 66(2), pp. 223–231, 1994.
112 D. Wang, N.S. Chaudhari. ?Binary neural network training algorithms based on linear sequential learning?. Int J. Neural Syst., 13(5), pp. 333–351, 2003.
113 L.X. Wang. ?Fuzzy systems are universal approximators?, in Proc. IEEE Int. Conf. FuzzySyst., San Diego, CA, 1992, pp. 1163–1170.
114 L.X. Wang. ?Analysis and design of hierarchical fuzzy systems?. IEEE Trans. Fuzzy Syst.,7(5), pp. 617–624, 1999.
115 L.X. Wang, J.M. Mendel. ?Generating fuzzy rules by learning from examples?. IEEE Trans.Syst. Man Cybern., 22(6), pp. 1414–1427, 1992.
116 L.X. Wang, J.M. Mendel. ?Fuzzy basis functions, universal approximation, and orthogonal least-squares learning?. IEEE Trans. Neural Netw., 3(5), pp. 807–814, 1992.
117 L.X. Wang, C. Wei. ?Approximation accuracy of some neuro-fuzzy approaches?. IEEE Trans.Fuzzy Syst., 8(4), pp. 470–478, 2000.
118 S.Wang, H. Lu. ?Fuzzy system and CMAC network with B-spline membership/basis functions are smooth approximators?. Soft Comput., 7, pp. 566–573, 2003.
119 P.J. Werbos. ?Backpropagation through time: what it does and how to do it?. Proc. IEEE,78(10), pp. 1550–1560, 1990.
120 S. Wu, M.J. Er. ?Dynamic fuzzy neural networks—A novel approach to function approximation?. IEEE Trans. Syst. Man Cybern. B, 30(2), pp. 358–364, 2000.
121 R. Yager, D. Filev. ?Generation of fuzzy rules by mountain clustering?. J. Intell. Fuzzy Syst.,2(3), pp. 209–219, 1994.
122 J. Yen. ?Fuzzy logic—A modern perspective?. IEEE Trans. Knowl. Data Eng., 11(1), pp.153–165, 1999.
123 L.A. Zadeh. ?Fuzzy sets?. Inf. & Contr., 8, pp. 338–353, 1965.
124 L.A. Zadeh. ?The concept of a linguistic variable and its application to approximate reasoning–I, II, III?. Inf. Sci., 8, pp. 199–249, pp. 301–357, 1975; 9, pp. 43–80, 1975.
125 D. Zhang, X.L. Bai, K.Y. Cai. ?Extended neuro-fuzzy models of multilayer perceptrons?.Fuzzy Sets Syst., 142, pp. 221–242, 2004.
Dr. Yue Wu
- China
kldu@ece.concordia.ca
Dr. Biaobiao Zhang
- China
Dr. Jiabin Lu
- China
Dr. K. -L. Du
- China