Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Automatic Detection and Classification of Malarial Parasite
Muhammad Imran Razzak
Pages - 1 - 12     |    Revised - 01-03-2015     |    Published - 31-03-2015
Volume - 9   Issue - 1    |    Publication Date - March 2015  Table of Contents
Malaria Detection, Segmentation, RBC Classification, Malaria Classification.
Recent advancement in genomic technologies has opened a new realm for early detection of diseases that shows potential to overcome the drawbacks of manual detection technologies. Computer based malarial parasite analysis and classification has opened a new area for the early malaria detection that showed potential to overcome the drawbacks of manual strategies. This paper presented a method for automatic detection of malarial infected cells. Blood cell segmentation and morphological analysis is a challenging due complexity of the blood cells. To improve the performance of malaria parasite segmentation and classification, we have used different set of features which are forward to the ANN for malaria classification. We have used Rao’s method and bounding box for segmentation whereas we have used BPNN for classification on different set of texture and shape features.
CITED BY (2)  
1 Shirazi, S. H., Umar, A. I., Naz, S., & Razzak, M. I. (2016). Efficient leukocyte segmentation and recognition in peripheral blood image. Technology and Health Care, (Preprint), 1-13.
2 Razzak, I. (2015). Malarial Parasite Classification using Recurrent Neural Network. International Journal of Image Processing (IJIP), 9(2), 69.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 T. Chen, YongZhang, C. Wang, ZhenshenQu, FeiWang, and Tanveer Syeda-Mahmood, Complex local phase based subjective surfaces (CLAPSS) and its application to DIC red blood cell image segmentation. Neurocomputing 99, 98 (2013).
2 M.I.Razzak, B. AlHaqbani, “Automatic Detection of Malarial Parasite Using Microscopic Blood Images” Journal of Medical Imaging and Health Informatics Vol. 5, 1–8, 2015.
3 M. M. Kettelhut, P. L. Chiodini, and H. Edwards, Moody A: External quality assessment schemes raise standards: evidence from the UKNEQAS parasitology subschemes. J. Clin. Pathol. 56, 927 (2003).
4 Chan, Y.-K., Tsai, M.-H., Huang, D. C., Zheng, Z.-H., Hung, K.-D., 2010. Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinformatics 11, 558.
5 Yunda L., Ramirez, A.A., Millan, J., Automated Image Analysis Method for p-vivax Malaria Parasite Detection in Thick Film Blood Images, Revista S&T, 10(20), 9-25.
6 Chan LL, Laverty DJ, Smith T, Nejad P, Hei H, Gandhi R, Kuksin D, Qiu J., Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error” , Journal of Immunological Method, Vol. 238, pp 2532, 2013 Feb.
7 F. B. Tek, A. G. Dempster, and I. Kale, Malaria parasite detection in peripheral blood images. Proceeding of British Machine Vision Conference (2006).
8 C. D. Ruberto, A. Dempster, and S. B. Khan Jarra, Analysis of infected blood cell images using morphological operators. Image and Computer Vision 20 (2002).
9 R. Sriram, M. Chandar, and K. Srinivas, Computer aided malarial diagnosis for JSB stained white light images using neural networks. International Journal of Advanced Research in Computer Science and Software Engineering 3 (2013).
10 D. K. Das, M. Ghosh, M. Pal, A. K. Maiti, and C. Chakraborty, Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45, 97 (2013).
11 G. Díaz, F. A. González, and E. Romero, A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. Journal of Biomedical Informatics 42, 296 (2009).
12 G Díaz, Fabio Gonzalez, and Eduardo Romero, Infected cell identification in thin blood images based on color pixel classification: Comparison and analysis. Lecture Notes in Computer Science 4756, 812 (2007).
13 T. P. Suradkar, Detection of malarial parasite in blood using image processing. International Journal of Engineering and Innovative Technology (IJEIT) 2, (2013).
14 Z. Karel, Contrast limited adaptive histogram equalization. Graphics Gems IV 474–485 (1994), (code: 479–484).
15 M. I. Khan, B. Acharya, B. K. Singh, and J. Soni, Content based image retrieval approaches for detection of malarial parasite in blood images. International Journal of Biometrics and Bioinformatics (IJBB) 5 (2011).
16 W. S. Selena Sio, W. Sun, Saravana Kumar, W. Z. Bin, S. S. Tan, S. H. Ong, H. Kikuchi, Y. Oshima, and K. S. W. Tan, Malaria Count: An image analysis-based program for the accurate determination of parasitemia. Journal of Microbiological Methods 68, 11 (2007).
17 A. Mehrjou and T. Abbasian, Automatic Malaria Diagnosis System, First International Conference on RSI/ISM.
18 D. M. U. Sabino, L. da Fontoura Costa, E. Gil Rizzatti, and M. Antonio Zago, A texture approach to leukocyte recognition. Real-Time Imaging 10, 205 (2004).
19 D. M. Memeu, K. A. Kaduki, and A. C. K. Mjomba, Njogu Samson Muriuki,Lucy Gitonga, Detection of plasmodium parasites from images of thin blood smears. Open Journal of Clinical Diagnostics 3, 183 (2013).
20 S. S. Savkare and S. P. Narote, Automatic detection of malaria parasites for estimating parasitemia. International Journal of Computer Science and Security (IJCSS), 5 (2011).
21 A. Kumar, A. Choudhary, P. U. Tembhare, and C. R. Pote, Enhanced identification of malarial infected objects using otsu algorithm from thin smear digital images. International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299, 1, 159 (2012).
22 Mohammad Imroze Khan, Bhibhudendra Acharya, Bikesh Kumar Singh, Jigyasa Soni, Content Based Image Retrieval Approaches for Detection of Malarial Parasite in Blood Images, International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (2) : 2011.
23 Nasir A. S. A., Mashor M.Y., Mohamed Z., “Colour Image Segmentation Approach for Detection of Malaria Parasites Using Various Colour Models and k-Means Clustering”, WSEAS Tranaction on Biology and Biomedicine. Issue 1, Volume 10, January 2013.
24 Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. L. (2001). Color image segmentation: Advances and prospects. Pattern Recognition, 34, 2259–2281.
25 Panchbhai V.V, Damahe, L.B, Nagpure A.V., Chopkar P. N., RBCs and Parasites Segmentation from Thin Smear Blood Cell Images, I.J. Image, Graphics and Signal Processing, 2012, 10, 54-60.
26 S. Kaewkamnerd and C. Uthaipibull, Apichart Intarapanich, Montri Pannarut, Sastra Chaotheing, Sissades Tongsima, An automatic device for detection and classification of malaria parasite species in thick blood film. BMC Bioinformatics 13, S18 (Suppl 17) (2012).
27 N. Ahirwar, S. Pattnaik1, and B. Acharya, Advanced image analysis based system for automatic detection and classification of malarial parasite in blood mages. International Journal of Information Technology and Knowledge Management 5, 59 (2012).
28 S. S. Savkare, S. P. Narote, Automatic System for Classification of Erythrocytes Infected with Malaria and Identification of Parasites’s Life Stage, Procedia Technology 6 ( 2012 ) 405 – 410.
29 Soni, J. “Advanced Image Analysis based system for Automatic Detection of Malarial Parasite in Blood Images Using SUSAN Approach”, International Journal of Engineering Science and Technology (IJEST), Vol. 3 No. 6 June 2011.
30 Y.Purwar, Sirish L Shah, Gwen Clarke, Areej Almugairi, Atis Muehlenbachs, “Automated and unsupervised detection of malarial parasites in microscopic images”, Malaria Journal 2011, 10:364.
Dr. Muhammad Imran Razzak
KSAU-HS - Saudi Arabia