Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(61.94KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Review of Multimodal Biometrics: Applications, Challenges and Research Areas
Vijay Mahadeo Mane, D.V.Jadhav
Pages - 90 - 95     |    Revised - 30-10-2009     |    Published - 30-11-2009
Volume - 3   Issue - 5    |    Publication Date - November 2009  Table of Contents
MORE INFORMATION
KEYWORDS
Biometrics, Multimodal, Fusion, Spoofing, Feature Extraction
ABSTRACT
Biometric systems for today’s high security applications must meet stringent performance requirements. The fusion of multiple biometrics helps to minimize the system error rates. Fusion methods include processing biometric modalities sequentially until an acceptable match is obtained. More sophisticated methods combine scores from separate classifiers for each modality. This paper is an overview of multimodal biometrics, challenges in the progress of multimodal biometrics, the main research areas and its applications to develop the security system for high security areas
CITED BY (27)  
1 da Costa, D. M. M., Passos, H., Peres, S. M., & de Moraes Lima, C. A. (2015). A comparative study of feature level fusion strategies for Multimodal Biometric Systems based on Face and Iris.
2 da Costa, D. M., Passos, H., Peres, S. M., & de Lima, C. A. (2015). Um estudo comparativo das estratégias de fusão no nível de característica para Sistemas Biométricos Multimodais baseados em face e íris.
3 Conti, V., Militello, C., Sorbello, F., & Vitabile, S. (2015). Biometric sensors rapid prototyping on field-programmable gate arrays. The Knowledge Engineering Review, 30(02), 201-219.
4 Celik, N., Manivannan, N., Balachandran, W., & Kosunalp, S. (2015). Multimodal Biometrics for Robust Fusion Systems using Logic Gates.
5 Bazazian, S., & Gavrilova, M. (2015). A Hybrid Method for Context-Based Gait Recognition Based on Behavioral and Social Traits. In Transactions on Computational Science XXV (pp. 115-134). Springer Berlin Heidelberg.
6 Gorodnichy, D. O., Granger, E., Radtke, P., & Meunier, P. (2014). Survey of academic research and prototypes for face recognition in video.
7 Peng, J., El-Latif, A. A. A., Li, Q., & Niu, X. (2014). Multimodal biometric authentication based on score level fusion of finger biometrics. Optik-International Journal for Light and Electron Optics, 125(23), 6891-6897.
8 Wang, N., Li, Q., El-Latif, A. A. A., Peng, J., Yan, X., & Niu, X. (2014). A novel template protection scheme for multibiometrics based on fuzzy commitment and chaotic system. Signal, Image and Video Processing, 1-11.
9 Zhang, Y., Laurikkala, J., & Juhola, M. (2014). Biometric verification of a subject with eye movements, with special reference to temporal variability in saccades between a subject’s measurements. International Journal of Biometrics, 6(1), 75-94.
10 Granger, E., Radtke, P., Gorodnichy, D., & Meunier, P. (2014). Survey of academic research and prototypes for face recognition in video. CBSA Science and Engineering Directorate, Division Report, 25.
11 Wang, N., Lu, L., Gao, G., Wang, F., & Li, S. (2014). Multibiometrics fusion using Aczél-Alsina triangular norm. KSII Transactions on Internet and Information Systems (TIIS), 8(7), 2420-2433.
12 Hajianfard, M., & Emami, H. Brief survey of biometric identification.
13 EmmahThomas, V., Egerton, T. O., & Daniel, M. Multimodal Biometrics: A Measure for Enhancing Authentication.
14 Durgadevi, M. E., Karthiga, M. B., Revathi, M. B., & Revathy, M. M. A Combined Robust Hashing and Secure Sketch Algorithm for Multi-Biometric Template Security.
15 Rureri, P. K. (2013). Biometric Authentication A Case For The Nairobi Securities Exchange (Doctoral dissertation, University of Nairobi).
16 Wang, N., Li, Q., El-Latif, A. A. A., Peng, J., Niu, X., Rawat, P., ... & Kumar, V. V. (2013). Multibiometric Complex Fusion for Visible and Thermal Face Images. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6(3), 1-16.
17 Telgad, R. L., Siddiqui, A. M., & Deshmukh, P. D. (2013). Automated Biometric Verification: A Survey on Multimodal Biometrics. International Journal of Computer Science and Business Informatics, 6(1).
18 Sanjekar, P. S., & Patil, J. B. (2013). An Overview Of Multimodal Biometrics. Signal & Image Processing: An International Journal (SIPIJ) Vol, 4.
19 Edo, G. S. A review of b biometric modalities most likely to.
20 Zhang, Y., Rasku, J., & Juhola, M. (2012). Biometric verification of subjects using saccade eye movements. International Journal of Biometrics, 4(4), 317-337.
21 Sahoo, S. K., Choubisa, T., & Prasanna, S. M. (2012). Multimodal biometric person authentication: a review. IETE Technical Review, 29(1), 54-75.
22 Wang, Z., Yang, J., Wang, E., Liu, Y., & Ding, Q. (2012). A Novel Multimodal Biometric System based on Iris and Face. International Journal of Digital Content Technology & its Applications, 6(2).
23 Jacobsen, K. L. (2012). Biometrics as security technology: Expansion amidst fallibility (No. 2012: 07). DIIS Reports/Danish Institute for International Studies.
24 Kumar, N., Khan, R. A., & Pandey, D. (2012). Cellular Phone: A Contemporary Tool for Biometric Implications. International Journal of Information and Education Technology, 2(5), 445.
25 Shahin, M. K., Badawi, A. M., & Rasmy, M. E. (2011). Multimodal Biometric System Based on Near-Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands. World Academy of Science, Engineering and Technology, 56, 1107-1122.
26 Marasco, E. (2010). Secure multibiometric systems (Doctoral dissertation, Università degli Studi di Napoli Federico II).
27 Bansal, R., Sehgal, P., & Bedi, P. (2010). Effective morphological extraction of true fingerprint minutiae based on the hit or miss transform. International Journal of Biometrics and Bioinformatics (IJBB), 4(2), 71.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 Scribd 
11 WorldCat 
12 SlideShare 
13 PdfSR 
14 PDFCAST 
15 Free-Books-Online 
1 A. K. Jain, A. Ross and S. Prabhakar, “An introduction to biometric recognition”. IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 4–20, Jan 2004.
2 Chander Kant, Rajender Nath, “Reducing Process-Time for Fingerprint Identification System”, International Journals of Biometric and Bioinformatics, Vol. 3, Issue 1, pp.1- 9, 2009.
3 A.K. Jain, A. Ross, “Multibiometric systems”. Communications of the ACM, vol. 47, pp. 34-40, 2004.
4 Phillips, P.J., P. Grother R.J. Michaels, D.M. Blackburn and E. Tabassi and J.M Bone, “FRVT 2002: overview and summary", March 2003.
5 Gokberk, B., A.A. Salah. and L. Akarun, “Rank-Based Decision Fusion for 3D Shape- Based Face Recognition,” LNCS 3546: AVBPA, pp. 1019-1028, July 2005.
6 Xu, C., Y. Wang, T. Tan and L. Quan, Automatic 3D face recognition combining global geometric features with local shape variation information,” Aut. Face and Gesture Recog., pp. 308 -313, 2004.
7 Chang, K. I., K. W. Bowyer, and P. J. Flynn, “An evaluation of multi-modal 2D+3D face biometrics,” IEEE Trans. on PAMI 27 (4), pp. 619-624, April 2005.
8 A. Ross, A.K. Jain, “Multimodal Biometrics: An Overview”, 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, pp. 1221- 1224, 9/2004
9 L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin, “Is independence good for combining classifiers?”. in Proceedings of International Conference on Pattern Recognition (ICPR), vol. 2, (Barcelona, Spain), pp. 168–171, 2000.
10 L. Rukhin, I. Malioutov, “Fusion of biometric algorithms in the recognition problem”. Pattern Recognition Letter, pp. 26, 679–684, 2005.
11 Kittler, “On combining classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20 (3), pp. 226–239, 1998.
12 P. Verlinde, G. Chollet, M. Acheroy, “Multimodal identity verification using expert fusion”. Information Fusion, vol. 1 (1), pp. 17-33, 2000.
13 J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzalez-Rodriguez, “Fusion strategies in multimodal biometric verification”. In Proceedings of International Conference on Multimedia and Expo (ICME ’03), vol.3(6–9), pp. 5–8, 2003.
14 J. Fierrez-Aguilar, “Kernel-based multimodal biometric verification using quality signals”. Biometric Technology for Human Identification, Proceedings of the SPIE, vol. 5404, pp. 544–554, 2004.
15 B. Gutschoven, P. Verlinde, “Multimodal identity verification using support vector machines (SVM)”.Proceedings of the Third International Conference on Information Fusion, vol. 2, pp. 3–8, 2000.
16 J. Bigun, et al., “Multimodal biometric authentication using quality signals in mobile communications”. Proceedings of IAPR International Conference on Image Analysis and Processing (ICIAP), IEEE CS Press, pp. 2–13, 2003.
17 E. Tabassi, C. Wilson, C. Watson, “Fingerprint image quality”. Technical Report 7151, 2004.
18 Y. Chen, S. Dass, A.J. Jain, “Fingerprint quality indices for predicting authentication performance,. ”Fifth International Conference AVBPA Proceedings, Springer Lecture Notes in Computer Science, vol. 3546, pp. 160–170, 2005.
19 L. M. Wein, M. Baveja, “Using Fingerprint image quality to improve the identification performance of the U.S. Visitor and Immigrant Status Indicator Technology Program”. Proc. National Academy Science, vol. 102 (21), pp. 7772–7775, 2005.
20 K. Nandakumar, Y. Chen, A.K. Jain, S.C. Dass, “Quality-based score level fusion in multibiometric systems”. Proceedings of the 18th International Conference on Pattern Recognition (ICPR06), pp. 473–476, 2006.
21 J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzales-Rodriguez, “Discriminative multimodal biometric authentication based on quality measures“. Pattern Recognition, vol. 38, pp. 777–779, 2005.
22 J.P. Baker, D.E. Maurer, “Fusion of biometric data with quality estimates via a Bayesian belief network”. Proceedings of the Biometric Symposium, Arlington, VA, pp. 21–22, 2005.
23 J. Richiardi, P. Prodanov, A. Drygajlo, “A probabilistic measure of modality reliability in speaker verification”. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’05, vol. 1, pp. 709–712, 2005.
24 A. B. J. Teoh, S.A. Samad, A. Hussain, “A face and speech biometric verification system using a simple Bayesian structure”. Journal of Information Science Engineering, vol. 21, pp. 1121–1137, 2005.
25 E.S. Bigun, J. Bigun, B. Duc, S. Fischer, “Expert conciliation for multimodal person authentication systems by Bayesian statistics”. J. Bigun, G. Chollet, G. Borgefors (Eds.), First International Conference AVBPA Proceedings, Springer Lecture Notes in Computer Science, vol. 1206, pp. 291–300, 1997.
26 R. Brunelli and D. Falavigna, “Person identification using multiple cues”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 955–966, Oct 1995.
27 E. Bigun, J. Bigun, B. Duc, and S. Fischer, “Expert conciliation for multimodal person authentication systems using Bayesian Statistics”. First International Conference on AVBPA, (Crans-Montana, Switzerland), pp. 291–300, March 1997.
28 L. Hong and A. K. Jain, “Integrating faces and fingerprints for personal identification”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 1295– 1307, Dec 1998.
29 R. W. Frischholz and U. Dieckmann, “Bioid: A multimodal biometric identification system”.IEEE Computer, vol. 33, no. 2, pp. 64–68, 2000.
30 Aloysius George, “Multi-Modal Biometrics Human Verification using LDA and DFB”, International Journal of Biometric and Bioinformatics, Vol. 2, Issue 4, pp.1 -10, 2008.
Professor Vijay Mahadeo Mane
VIT,PUNE - 37 - India
manevijaym@rediffmail.com
Dr. D.V.Jadhav
VIT,PUNE - 37 - India