Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Genetic Algorithm for the Traveling Salesman Problem using Sequential Constructive Crossover Operator
Zakir H. Ahmed
Pages - 96 - 105     |    Revised - 01-02-2010     |    Published - 02-03-2010
Volume - 3   Issue - 6    |    Publication Date - January 2010  Table of Contents
Traveling salesman problem, NP-complete, Genetic algorithm, Sequential constructive crossover
This paper develops a new crossover operator, Sequential Constructive crossover (SCX), for a genetic algorithm that generates high quality solutions to the Traveling Salesman Problem (TSP). The sequential constructive crossover operator constructs an offspring from a pair of parents using better edges on the basis of their values that may be present in the parents' structure maintaining the sequence of nodes in the parent chromosomes. The efficiency of the SCX is compared as against some existing crossover operators; namely, edge recombination crossover (ERX) and generalized N-point crossover (GNX) for some benchmark TSPLIB instances. Experimental results show that the new crossover operator is better than the ERX and GNX.
CITED BY (105)  
1 Kermani, M. A. M. A., Badiee, A., Aliahmadi, A., Ghazanfari, M., & Kalantari, H. (2016). Introducing a procedure for developing a novel centrality measure (Sociability Centrality) for social networks using TOPSIS method and genetic algorithm. Computers in Human Behavior, 56, 295-305.
2 Shih, C. C., Horng, M. F., Pan, T. S., Pan, J. S., & Chen, C. Y. (2016). A genetic-based effective approach to path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans. Soft Computing, 1-18.
3 Arabi, B. H. Solving NP-Complete Problems Using Genetic Algorithms.
4 Dong Chaoyang , Lu Yao , & Wang Qing . ( 2016 ) . Improved Genetic Algorithm for Firepower Distribution Optimization. Ordnance Technology, 37 ( 1 ) , 97-102.
5 Shahab, M. L., & Irawan, M. I. (2016). Algoritma Genetika Ganda untuk Capacitated Vehicle Routing Problem. Jurnal Sains dan Seni ITS, 4(2).
6 TAN -like, country Xiao Yun , & Zhang Jiahua . ( 2016 ) . Culture using a genetic algorithm for TSP Based on Genetic Algorithms and technology vision , ( 5 ) , 62-64.
7 Petrov , S. A. , Petrov SA , Petrov, S. O., Rudenko , P. O. Rudenko , RA , Rudenko, R. O., ... & Zhigulin , IV (2015 ) . Practicality vikoristannya method genetichnih algoritm?v for rozv'yazannya zadach? kom?voyazhera in geo?nformats?ynih systems.
8 Utomo, D. B., Irawan, M. I., & Shahab, M. L. (2015). Algoritma Genetika Ganda (AGG) untuk Capacitated Vehicle Routing Problem (CVRP). In PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA. Jurusan Pendidikan Matematika FMIPA UNY.
9 He Hong , SUN & Root years ( 2015 ) based on the teaching and learning optimization algorithm Intelligent optimization tours Shaanxi Institute of Technology : Natural Science , 31 ( 1 ) , 72-78.
10 Stolarski, P. Metoda ekstrakcji modeli wyceny skladki ubezpieczeniowej ze zródel internetowych.
11 Varalakshmi, L. M., & Ramalingam, R. Recognition of License Plate Numbers Using Image Processing Technique and Genetic Algorithm.
12 Rao, I., & Hegde, K. Literature Survey On Travelling Salesman Problem Using Genetic Algorithms.
13 Potuzak, T. (2015, August). Distributed/Parallel Genetic Algorithm for Road Traffic Network Division Using Step Parallelization. In Engineering of Computer Based Systems (ECBS-EERC), 2015 4th Eastern European Regional Conference on the (pp. 67-74). IEEE.
14 Gupta, S. K., & Jana, P. K. Energy Efficient Clustering and Routing Algorithms for Wireless Sensor Networks: GA Based Approach. Wireless Personal Communications, 1-21.
15 Kang, S., Kim, S. S., Won, J. H., & Kang, Y. M. (2015, August). Bidirectional Constructive Crossover for Evolutionary Approach to Travelling Salesman Problem. In IT Convergence and Security (ICITCS), 2015 5th International Conference on (pp. 1-4). IEEE.
16 Dogru, S., & Marques, L. (2015, April). Energy Efficient Coverage Path Planning for Autonomous Mobile Robots on 3D Terrain. In Autonomous Robot Systems and Competitions (ICARSC), 2015 IEEE International Conference on (pp. 118-123). IEEE.
17 Ahmed, Z. H. (2015). Experimental analysis of crossover and mutation operators on the quadratic assignment problem. Annals of Operations Research, 1-19.
18 Savuran, H., & Karakaya, M. (2015). Route Optimization Method for Unmanned Air Vehicle Launched from a Carrier. Heron, 40, 3300.
19 Satyananda, D. (2015).modification of crossover operator on ga application for tsp. In Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2015 (ICRIEMS 2015), Yogyakarta State University, 17-19 May 2015. Faculty of Mathematics and Sciences Yogyakarta State University.
20 Dogru, S., & Marques, L. (2015, September). Towards fully autonomous energy efficient Coverage Path Planning for autonomous mobile robots on 3D terrain. In Mobile Robots (ECMR), 2015 European Conference on (pp. 1-6). IEEE.
21 Potuzak, T. (2015, June). Sparsely synchronized parallel genetic algorithm for road traffic network division. In Human System Interactions (HSI), 2015 8th International Conference on (pp. 129-134). IEEE.
22 Hussin, Z. B. (2015). Incorporating Reliability of Anchors for Proximity-based Mobile Localization in Wireless Sensor Networks.
23 Kim, J. W. (2015). Developing a job shop scheduling system through integration of graphic user interface and genetic algorithm. Multimedia Tools and Applications, 74(10), 3329-3343.
24 Ahmed, Z. H. (2015). A multi-parent genetic algorithm for the quadratic assignment problem. OPSEARCH, 1-19.
25 Sahoo, S., & Erlich, I. (2015). Improved Mean Variance Mapping Optimization for the Travelling Salesman Problem. In Computational Intelligence in Data Mining-Volume 1 (pp. 67-75). Springer India.
26 Schemeleva, K., Delorme, X., & Dolgui, A. (2015). A memetic algorithm for a stochastic lot-sizing and sequencing problem. IFAC-PapersOnLine, 48(3), 1809-1814.
27 Thanh, P. D., Binh, H. T. T., & Lam, B. T. (2015). New Mechanism of Combination Crossover Operators in Genetic Algorithm for Solving the Traveling Salesman Problem. In Knowledge and Systems Engineering (pp. 367-379). Springer International Publishing.
28 Ahmed, Z. H. (2015, July). An improved genetic algorithm using adaptive mutation operator for the quadratic assignment problem. In Telecommunications and Signal Processing (TSP), 2015 38th International Conference on (pp. 1-5). IEEE.
29 Petrov , S. A. , Petrov SA , Petrov, S. O., Rudenko , P. O. Rudenko , RA , Rudenko, R. O., ... & Zhigulin , IV (2015 ) . Practicality vikoristannya method genetichnih algoritm?v for rozv'yazannya zadach? kom?voyazhera in geo?nformats?ynih systems.
30 Varalakshmi, L. M., & Ramalingam, R. (2015). License Plate Character Recognition using Advanced Image Processing Techniques and Genetic Algorithm. International Journal, 3(4).
31 In Yingying , Chen Yan , Li & Tao Ying . ( 2014 ) . Improved Genetic Algorithm for Solving Traveling Salesman Problem . Control and Decision , 29 ( 8 ) , 1483-1488.
32 TO, M. M. A. L. S., & META-HEURISTICS, M. D. U. (2014). spécialité Génie industriel.
33 Ban, H. B., & Duc, N. N. (2014, December). A parallel algorithm combines genetic algorithm and ant colony algorithm for the minimum latency problem. In Proceedings of the Fifth Symposium on Information and Communication Technology (pp. 39-48). ACM.
34 Trä, J. P. Comparison of Crossover and Diversity-Maintaining Operators in Randomized Search Heuristics.
35 Potuzak, T. (2014, October). Parallelization Possibilities of a Genetic Algorithm for Road Traffic Network Division for Distributed/Parallel Environment. In Distributed Simulation and Real Time Applications (DS-RT), 2014 IEEE/ACM 18th International Symposium on (pp. 211-218). IEEE.
36 Buttar, A. S., Goel, A. K., & Kumar, S. (2014, December). Evolving novel algorithm based on intellectual behavior of Wild dog group as optimizer. In Swarm Intelligence (SIS), 2014 IEEE Symposium on (pp. 1-7). IEEE.
37 Guha, S. K., Mukherjee, A., & Roy, S. An Approach for Defining the Optimal Path for a Mobile Robot Navigating in an Area with Fixed Obstructions Using Genetic Algorithm Applying Travelling Salesman Problem.
38 Bagheri, L., & Fooladi, M. D. T. (2014, October). A rendezvous-based data collection algorithm with mobile sink in wireless sensor networks. In Computer and Knowledge Engineering (ICCKE), 2014 4th International eConference on (pp. 758-762). IEEE.
39 Nagar, R., Kumar, A., Kumar, S., & Baghel, A. S. (2014, September). Implementing test case selection and reduction techniques using meta-heuristics. In Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference- (pp. 837-842). IEEE.
40 Osaba, E., Carballedo, R., Diaz, F., Onieva, E., & Perallos, A. (2014, January). A proposal of good practice in the formulation and comparison of meta-heuristics for solving routing problems. In International Joint Conference SOCO’14-CISIS’14-ICEUTE’14 (pp. 31-40). Springer International Publishing.
41 Wu, S. Y., & Liu, J. S. (2014, July). Evolutionary path planning of a data mule in wireless sensor network by using shortcuts. In Evolutionary Computation (CEC), 2014 IEEE Congress on (pp. 2708-2715). IEEE.
42 De Lara, M. L. D., Burgos, V. J. B., Silva, A. M. M., & Nazareno, A. L. determining the optimal route of vehicles delivering relief goods to the calamity-prone areas in region iv-a. Journal of Nature Studies, 13(2), 13-24.
43 Venkatesh, D., Mishra, T., & Gogi, V. S. Generation of Genetic Maps Using the Travelling Salesman Problem (TSP) Algorithm.
44 Ezzeddine, A. B., Kasala, S., & Navrat, P. applying the firefly approach to the dna fragments assembly problem.
45 Abdullah, P. H. B., & Mafraq, J. (2014). Improve Efficiency of Symmetric Travelling Salesman Problem by Applying Modified Crossover Operator. Journal of Intelligent Computing Volume, 5(4), 145.
46 Potuzak, T. (2014). Time Requirements of Optimization of a Genetic Algorithm for Road Traffic Network Division Using a Distributed Genetic Algorithm. In Issues and Challenges in Artificial Intelligence (pp. 155-166). Springer International Publishing.
47 In Yingying, Chen Yan, Tao Ying & Lee. (2014). Improved genetic algorithm traveling salesman problem. Control and Decision, 29 (8), 1483-1488.
48 Elloumi, W., El Abed, H., Abraham, A., & Alimi, A. M. (2014). A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP. Applied Soft Computing, 25, 234-241.
49 Contreras, R., Neira, R., Pinninghoff, M. A., & Urrutia, H. (2014). an optimization algorithm based on bacteria behavior. International Journal of Artificial Intelligence & Applications, 5(5), 53.
50 Gonçalves, F. A., Guimarães, F. G., & Souza, M. J. (2014). Query join ordering optimization with evolutionary multi-agent systems. Expert Systems with Applications, 41(15), 6934-6944.
51 Moganarangan, N., Raju, R., Ramachandiran, R., Paul, P. V., Dhavachelvan, P., & Venkatachalapathy, V. S. K. (2014). Efficient crossover operator for genetic algorithm with ODV based population seeding technique. Int. J. Appl. Eng. Res, 9(17), 3885-3898.
52 Hijaze, M. (2014). Investigating adaptive migration schemes for distributed evolutionary algorithms (Doctoral dissertation, Heriot-Watt University).
53 Ahmed, Z. H. (2014). A data-guided lexisearch algorithm for the quadratic assignment problem. Indian Journal of Science and Technology, 7(4), 480-490.
54 Ahmed, Z. H., Bennaceur, H., Vulla, M. H., & Altukhaim, F. (2014). A hybrid genetic algorithm for the quadratic assignment problem. In Proceedings of second international conference on emerging research in computing, information, communication and applications (ERCICA 2014) (Vol. 3, pp. 916-922).
55 Er, H. R., & Erdogan, N. (2014). Parallel Genetic Algorithm to Solve Traveling Salesman Problem on MapReduce Framework using Hadoop Cluster. arXiv preprint arXiv:1401.6267.
56 Ahmed, Z. H. (2014). A simple genetic algorithm using sequential constructive crossover for the quadratic assignment problem. Journal of Scientific and Industrial Research, 73(12), 763-766.
57 Abo Smara, G., & Khalefah, F. (2014). Localization of license plate number using dynamic image processing techniques and genetic algorithms. Evolutionary Computation, IEEE Transactions on, 18(2), 244-257.
58 Ahmed, Z. H. (2014). Improved genetic algorithms for the travelling salesman problem. International Journal of Process Management and Benchmarking, 4(1), 109-124.
59 Ahmed, Z. H. (2014). The ordered clustered travelling salesman problem: A hybrid genetic algorithm. The Scientific World Journal, 2014.
60 Sarfo, a. y. (2014). kwame nkrumah university university of science and technology, kumasi institute of distance learning (doctoral dissertation, institute of distance learning optimal route tour of the regional capitals in ghana case study: west african examinations council’s question papers depot inspection plan by amos yaw sarfo (bsc chemical enginee
61 Osaba, E., Carballedo, R., Diaz, F., Onieva, E., Lopez, P., & Perallos, A. (2014, June). On the influence of using initialization functions on genetic algorithms solving combinatorial optimization problems: a first study on the TSP. In Evolving and Adaptive Intelligent Systems (EAIS), 2014 IEEE Conference on (pp. 1-6). IEEE.
62 Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48-56.
63 Ahmed, Z. H. (2013). A hybrid genetic algorithm for the bottleneck traveling salesman problem. ACM Transactions on Embedded Computing Systems (TECS), 12(1), 9.
64 Ahmed, Z. H. (2013). An experimental study of a hybrid genetic algorithm for the maximum traveling salesman problem. Mathematical Sciences, 7(1), 1-7.
65 karmasun, g. g. (2013). kwame nkrumah university of science and technology department of mathematics (Doctoral dissertation, Department of Mathematics, Kwame Nkrumah University of Science and Technology).
66 Kuila, P., Gupta, S. K., & Jana, P. K. (2013). Swarm and Evolutionary Computation.
67 Singh, R., & Gupta, S. K. (2013). Distributed Process Scheduling Using Genetic Algorithm.
68 Yangchun, China, Tang Xiaolin, Zhou Xiaojun, & CENTRAL. (2013) A Traveling Salesman Problem discrete state transition algorithm. Control Theory and Applications, (008), 1040-1046.
69 Gonçalves, F. A., Guimarães, F. G., & Souza, M. J. (2013, July). An evolutionary multi-agent system for database query optimization. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 535-542). ACM.
70 Potuzak, T. (2013, June). Feasibility study of optimization of a genetic algorithm for traffic network division for distributed road traffic simulation. In Human System Interaction (HSI), 2013 The 6th International Conference on (pp. 372-379). IEEE.
71 Liu, J. S., Wu, S. Y., & Chiu, K. M. (2013, April). Path planning of a data mule in wireless sensor network using an improved implementation of clustering-based genetic algorithm. In Computational Intelligence in Control and Automation (CICA), 2013 IEEE Symposium on (pp. 30-37). IEEE.
72 Mudaliar, D. N., & Modi, N. K. (2013, February). Unraveling Travelling Salesman Problem by genetic algorithm using m-crossover operator. In Signal Processing Image Processing & Pattern Recognition (ICSIPR), 2013 International Conference on (pp. 127-130). IEEE.
73 Rao, A., & Hegde, S. K. A Novel Method to Solve Travelling Salesman Problem Using Sequential Constructive Crossover Using Map/Reduce Framework.
74 Abdel-Raheem, M., & Khalafallah, A. Assessing the Performance of Electimize in Solving NP-Complete Optimization Problems.
75 Er, H. R. (2013). Gezgin Satici Probleminin Hadoop Üzerinde Çalisan Paralel Genetik Algoritma Ile Çözümü (Doctoral dissertation, Fen Bilimleri Enstitüsü).
76 López, J. (2013). Optimización multi-objetivo (Doctoral dissertation, Facultad de Informática).
77 Kumar, R., & Kumar, M. (2012). Reliable and Efficient Routing Using Adaptive Genetic Algorithm in Packet Switched Networks. IJCSI International Journal of Computer Science Issues, 9(1), 1694-0814.
78 Albana, A. S., Alpan-Gaujal, G., & Frein, Y. aplikasi metode metaheuristik untuk kasus sequencing pada mixed model assembly line.
79 Gupta, S., & Kakkar, M. techniques for solving travelling sales man problem.
80 Jack, A. A Genetic Algorithm for the Travelling Salesman Problem.
81 Boogaerts, T., Tranchevent, L., Pavlopoulos, G., Aerts, J., & Vandewalle, J. (2012, November). Visualizing high dimensional datasets using parallel coordinates: Application to gene prioritization. In Bioinformatics & Bioengineering (BIBE), 2012 IEEE 12th International Conference on (pp. 52-57). IEEE.
82 Chunhua, Y., Xiaolin, T., Xiaojun, Z., & Weihua, G. (2012, July). State transition algorithm for traveling salesman problem. In Control Conference (CCC), 2012 31st Chinese (pp. 2481-2485). IEEE.
83 Abdoun, O., & Abouchabaka, J. (2012). A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. arXiv preprint arXiv:1203.3097.
84 Abdel-Moetty, S. M., & Heakil, A. O. (2012). Enhanced Traveling Salesman Problem Solving using Genetic Algorithm Technique with modified Sequential Constructive Crossover Operator. J. IJCSNS, 12(6), 134-138.
85 Abdoun, O., Tajani, C., & Abouchabka, J. (2012). Hybridizing PSM and RSM Operator for Solving NP-Complete Problems: Application to Travelling Salesman Problem. arXiv preprint arXiv:1203.5028.
86 M ukherjee, S., Ganguly, S., & Das, S. (2012). A strategy adaptive genetic algorithm for solving the travelling salesman problem. In Swarm, Evolutionary, and Memetic Computing (pp. 778-784). Springer Berlin Heidelberg.
87 Potuzak, T. (2012). Issues of Optimization of a Genetic Algorithm for Traffic Network Division using a Genetic Algorithm. In KDIR (pp. 340-343).
88 Sivaraj, R., Ravichandran, T., & Priya, R. D. (2012). Solving Travelling Salesman Problem using Clustering Genetic Algorithm. International Journal on Computer Science and Engineering, 4(7), 1310-1317.
89 Zhou, X. (2012). Discrete state transition algorithm for unconstrained integer optimization problems. arXiv preprint arXiv:1209.4199.
90 Dash, T., & Nayak, T. (2012). A Level-2 Study on Solution Methods to Travelling Salesman Problem. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1(8), pp-134.
91 Alomari, A. M. (2012). Energy Efficient Data Collection Scheme Using Rendezvous Points and Mobile Actor in Wireless Sensor Networks (Doctoral dissertation).
92 Boogaerts, T. (2012). Addendum to the paper “Visualizing High Dimensional Datasets Using Parallel Coordinates: Application to Gene Prioritization”.
93 Bhanot, M. A. (2012). Traveling Salesman Problem: A Case Study. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 3(1c), 167-169.
94 Nopiah, Z. M., Osman, M. H., Abdullah, S., Kamarudin, M. N. B. C., & Asshari, I. (2012). Satisfying Statistical Constraints in Preparing Edited Variable Amplitude Loading History Using Genetic Algorithm. Modern Applied Science, 6(9), p68.
95 Prabowo, B. Y., & Adiwijaya, U. N. W. Analisis dan Implementasi Algoritma Genetika pada Masalah Travelling Salesman Problem (TSP) menggunakan Sequential Constructive Crossover (SCX) Operator.
96 Samanta, S., De, A., & Singha, S. (2011). solution of traveling salesman problem on scx based selection with performance analysis using genetic algorithm. International Journal of Engineering Science and Technology, 3(8).
97 Henyo, C. (2011). Modelling the West African Examination Council’s question paper depot inspection as a travelling salesman problem (Doctoral dissertation, institute of distance learning department of mathematics modelling the west african examination council’s question paper depot inspection as a travelling salesman problem by charles henyo bachelor of
98 Suri, B., Mangal, I., & Srivastava, V. (2011). Regression Test Suite Reduction using an Hybrid Technique Based on BCO And Genetic Algorithm.
99 Jack, A. (2011). Level 4 Project Progress Report.
100 Ahmed, Z. H. (2011). Multi-parent extension of sequential constructive crossover for the travelling salesman problem. International Journal of Operational Research, 11(3), 331-342.
101 Décima, A., Padilla, N. M., Will, A., Rodríguez, S., & Diez, O. Mecánica Computacional, Volume XXX. Number 32. Industrial Applications (A).
102 Jaafar, A. B. O. U. C. H. A. B. A. K. A. (2011). ABDOUN Otman.
103 Ahmed, Z. H. (2010). Solution algorithms for a deterministic replacement problem. International Journal of Engineering (IJE), 4(3), 233.
104 Gupta, I., & Parashar, A. (2011). Study of Crossover operators in Genetic Algorithm for Travelling Salesman Problem. International Journal of Advanced Research in Computer Science, 2(4).
105 Fang, L. Y. P., Yusof, U. K., & Khalid, M. N. A. (1991). Artificial Immune System for Optimizing Public Bus Transportation Route During Peak and Off-Peak Hour. Australian Journal of Basic and Applied Sciences, 8178(8), 24.
1 Google Scholar
2 ScientificCommons
3 Academic Index
4 refSeek
6 Socol@r
7 ResearchGATE
8 Bielefeld Academic Search Engine (BASE)
9 Scribd
10 WorldCat
11 SlideShare
13 PdfSR
14 Free-Books-Online
1 C.H. Papadimitriou and K. Steglitz. “Combinatorial Optimization: Algorithms and Complexity”. Prentice Hall of India Private Limited, India, 1997.
2 C.P. Ravikumar. "Solving Large-scale Travelling Salesperson Problems on Parallel Machines”. Microprocessors and Microsystems 16(3), pp. 149-158, 1992.
3 R.G. Bland and D.F. Shallcross. "Large Travelling Salesman Problems arising form Experiments in X-ray Crystallography: A Preliminary Report on Computation". Operations Research Letters 8, pp. 125-128, 1989.
4 D.E. Goldberg and R. Lingle. “Alleles, Loci and the Travelling Salesman Problem”. In J.J. Grefenstette (ed.) Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates, Hilladale, NJ, 1985.
5 L. Davis. “Job-shop Scheduling with Genetic Algorithms”. Proceedings of an International Conference on Genetic Algorithms and Their Applications, pp. 136-140, 1985.
6 I.M. Oliver, D. J. Smith and J.R.C. Holland. “A Study of Permutation Crossover Operators on the Travelling Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987.
7 D. Whitley, T. Starkweather and D. Shaner. “The Traveling Salesman and Sequence Scheduling: Quality Solutions using Genetic Edge Recombination”. In L. Davis (Ed.) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, pp. 350-372, 1991.
8 N.J. Radcliffe and P.D. Surry. “Formae and variance of fitness”. In D. Whitley and M. Vose (Eds.) Foundations of Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA, pp. 51-72, 1995.
9 P. Poon and J. Carter. “Genetic algorithm crossover operations for ordering applications”. Computers and Operations Research 22, pp. 135–47, 1995.
10 I. Choi, S. Kim and H. Kim. "A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem". Computers & Operations Research 30, pp. 773 – 786, 2003.
11 C. Moon, J. Kim, G. Choi and Y. Seo. "An efficient genetic algorithm for the traveling salesman problem with precedence constraints". European Journal of Operational Research 140, pp. 606- 617, 2002.
12 D.E. Goldberg. "Genetic Algorithms in Search, Optimization, and Machine Learning". Addison- Wesley, New York, 1989.
13 K. Deb. “Optimization For Engineering Design: Algorithms And Examples”. Prentice Hall Of India Pvt. Ltd., New Delhi, India, 1995.
14 Z.H. Ahmed. "A sequential Constructive Sampling and Related approaches to Combinatorial Optimization". PhD Thesis, Tezpur University, India, 2000.
15 Z.H. Ahmed and S.N.N. Pandit. “The travelling salesman problem with precedence constraints”. Opsearch 38, pp. 299-318, 2001.
16 TSPLIB, http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
Dr. Zakir H. Ahmed
Al-Imam Muhammad Ibn Saud Islamic University, - Saudi Arabia