Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(123.1KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Arabic SentiWordNet in Relation to SentiWordNet 3.0
Samah Alhazmi, William Black, John McNaught
Pages - 1 - 11     |    Revised - 05-04-2013     |    Published - 30-04-2013
Volume - 4   Issue - 1    |    Publication Date - August 2013  Table of Contents
MORE INFORMATION
KEYWORDS
Opinion Mining, Sentiment Analysis, WordNet, SentiWordNet, Arabic.
ABSTRACT
Sentiment analysis and opinion mining are the tasks of identifying positive or negative opinions and emotions from pieces of text. The SentiWordNet (SWN) plays an important role in extracting opinions from texts. It is a publicly available sentiment measuring tool used in sentiment classification and opinion mining. We firstly discuss the development of the English SWN for versions 1.0 and 3.0. This is to provide the basis for developing an equivalent SWN for the Arabic language through a mapping to the latest version of the English SWN 3.0. We also discuss the construction of an annotated sentiment corpus for Arabic and its relationship to the Arabic SWN.
CITED BY (8)  
1 Badaro, G., Baly, R., Akel, R., Fayad, L., Khairallah, J., Hajj, H., ... & Shaban, K. B. (2015, July). A Light Lexicon-based Mobile Application for Sentiment Mining of Arabic Tweets. In ANLP Workshop 2015 (p. 18).
2 Eskander, R., & Rambow, O. SLSA: A Sentiment Lexicon for Standard Arabic.
3 Siddiqui, M. A., Dahab, M. Y., & Batarfi, O. A. (2015). Building A Sentiment Analysis Corpus With Multifaceted Hierarchical Annotation.
4 Alotaibi, S. S. (2015). Sentiment Analysis in the Arabic Language Using Machine Learning (Doctoral dissertation, Colorado State University. Libraries).
5 Duwairi, R. M., Ahmed, N. A., & Al-Rifai, S. Y. Detecting sentiment embedded in Arabic social media–A lexicon-based approach. Journal of Intelligent and Fuzzy Systems.
6 Badaro, G., Baly, R., Hajj, H., Habash, N., & El-Hajj, W. (2014). A large scale Arabic sentiment lexicon for Arabic opinion mining. ANLP 2014, 165.
7 Abdalkader, M. (2014). Sentiment Analysis of Egyptian Arabic in Social Media.
8 Bayoudhi, A., Koubaa, H., Belguith, L. H., & Ghorbel, H. Vers un lexique arabe pour l’analyse des opinions et des sentiments.
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 SlideShare
6 PdfSR
1 A. Esuli, and F. Sebastiani, “SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining.” in Proc. of the 5th Conference on International Language Resources and Evaluation (LREC’06), 2006, pp. 417–422.
2 B. Pang, and L. Lee, “A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts.” in Proc. of the ACL, 2004, pp. 271–278.
3 B. Liu, “Opinion Mining and Sentiment Analysis.” in B. Liu, Web Data Mining, Springer Berlin, Heidelberg, 2011, pp. 459–526.
4 T. Wilson, J. Wiebe, and R. Hwa, “Just how mad are you? Finding strong and weak opinion clauses.” in Proc. of AAAI, 2004, pp. 761–769.
5 S. Baccianella, A. Esuli, and F. Sebastiani, “SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.” in Proc. of the 7th Conference on International Language Resources and Evaluation (LREC’10), 2010, pp. 2200–2204.
6 H. Takamura, T. Inui, and M. Okumura, “Extracting Emotional Polarity of Words using Spin Model.” in Proc. of ACL-05, 43rd Annual Meeting of the Association for Computational Linguistics, 2005, pp. 133–140.
7 A. Esuli and F. Sebastiani, “Determining the semantic orientation of words through gloss classification.” in Proc. of the 14th ACM international conference on Information and Knowledge Management ACM, 2005, pp. 617–624.
8 S.-M. Kim and E. Hovy, “Determining the sentiment of opinions.” in Proc. of the 20th international conference on Computational Linguistics Association for Computational Linguistics, Geneva, Switzerland, 2004, pp. 1-1367.
9 A. Esuli, and F. Sebastiani, “Determining Term Subjectivity and Term Orientation for Opinion Mining.” in Proc. of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL’06), 2006, 193-200.
10 A. Valitutti, C. Strapparava and O. Stock, “Developing Affective Lexical Resources.”Psychology journal, 2004, pp. 61–83.
11 A. Esuli and F. Sebastiani, “SentiWordNet: a high-coverage lexical resource for opinion mining.” Institute of Information Science and Technologies (ISTI) of the Italian National Research Council (CNR), 2006.
12 A. Esuli, “Automatic generation of lexical resources for opinion mining: models, algorithms and applications.” SIGIR Forum, ACM, vol. 42(2), 2008, pp. 105–106.
13 W. Black, S. Elkateb, and P. Vossen, “Introducing the Arabic WordNet Project.” in Proc. of the third International WordNet Conference (GWC-06), 2006, 295-300.
14 S. Elkateb, W. Black, D. Farwell, P. Vossen, A. Pease, and C. Fellbaum, “Arabic WordNet and the Challenges of Arabic.” In Proc. of the British Computer Society Conference on Challenges of Arabic for Natural Language Processing and Machine Translation.The British Computer Society (BCS), London, 2006, pp. 15–25.
15 G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. Miller. "Introduction to wordnet: An on-line lexical database*." International journal of lexicography, vol. 3(4), 1990, pp. 235-244.
16 S. Cerini, V. Compagnoni, A. Demontis, M. Formentelli, and G. Gandini. "Micro-WNOp: A gold standard for the evaluation of automatically compiled lexical resources for opinion mining," Language resources and linguistic theory: Typology, second language acquisition,English linguistics, A. Sans`o, Ed. Milano: IT, 2007, pp. 200–210 .English linguistics, pp.200–210. Franco Angeli Editore, Milano, IT.
17 A. J. Viera and J. M. Garrett. "Understanding interobserver agreement: the kappa statistic."Family Medicine, vol. 37, 2005, pp. 360–363.
18 A. A. Al-Subaihin, H. S. Al-Khalifa and Al-Salman, A. S. "A proposed sentiment analysis tool for modern Arabic using human-based computing." In Proc. of the 13th International Conference on Information Integration and Web-based Applications and Services, Ho Chi Minh City, Vietnam, ACM, 2011, pp. 543-546.
19 N. Farra, E. Challita, R. Abou Assi and H. Hajj. "Sentence-Level and Document-Level Sentiment Mining for Arabic Texts." in Proc. of the 2010 IEEE International Conference on Data Mining Workshops, IEEE Computer Society, 2010, pp. 1114-1119.
20 M. Rushdi-Saleh, M. T. Martín-Valdivia, L. A. Ureña-López and J. M. Perea-Ortega. "OCA:Opinion corpus for Arabic." J. Am. Soc. Inf. Sci. Technol, vol. 62, 2011, pp. 2045-2054.
21 M. Abdul-Mageed and M. Diab. "Toward Building a Large-Scale Arabic Sentiment Lexicon."in Proc. of the 6th International Global WordNet, 2012, pp. 9-13.
22 B. Liu, X. Li, W. S. Lee and P. S. Yu. "Text classification by labeling words." in Proc. of the National Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London;AAAI Press; MIT Press, 1999, pp. 425-430.
23 X. Ding and B. Liu."The utility of linguistic rules in opinion mining." in Proc. of the 30th annual international ACM SIGIR conference on Research and development in information retrieva, 2007, pp. 811-812.
24 T. Wilson, J. Wiebe and P. Hoffmann. "Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis." in Proc. of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada,Association for Computational Linguistics, 2005, pp. 347-354.
25 P. J. Stone, C. D. Dexter, S. S. Marshall and M. O. Daniel. "The General Inquirer: A Computer Approach to Content Analysis." Cambridge, MA: MIT Press, 1966.
26 J. W. Pennebaker,R. J. Booth and M. E. Francis. "Linguistic inquiry and word count: LIWC 2001." Mahway: Lawrence Erlbaum Associates, 2001.
27 R. Prabowo and M. Thelwall. "Sentiment analysis: A combined approach." J. Informetrics,vol. 3, 2009, pp. 143-157.
28 P. D. Turney. "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews." in Proc. of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia, Pennsylvania, Association for Computational Linguistics, 2002, pp. 417-424.
29 M. Hu and B. Liu. "Mining and summarizing customer reviews." in Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. Seattle, WA,USA, ACM, 2004, pp. 168-177.
30 J. Daudé, L. Daudé and G. Rigau. " Mapping WordNets Using Structural Information." in 38th Annual Meeting of the Association for Computational Linguistics (ACL'2000), Hong Kong, 2000.
Mr. Samah Alhazmi
Text Mining Research Group School of Computer Science University of Manchester Manchester, UK, M13 9PL - United Kingdom
smm484@hotmail.com
Mr. William Black
School of Computer Science & National Centre for Text Mining Manchester Institute of Biotechnology University of Manchester Manchester, UK, M1 7DN - United Kingdom
Mr. John McNaught
School of Computer Science & National Centre for Text Mining Manchester Institute of Biotechnology University of Manchester Manchester, UK, M1 7DN - United Kingdom