Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
New Particle Swarm Optimizer with Sigmoid Increasing Inertia Weight.
Reza Firsandaya Malik, Tharek Abdul Rahman, Siti Zaiton Mohd. Hashim, Razali Ngah
Pages - 35 - 44     |    Revised - 15-08-2007     |    Published - 30-08-2007
Volume - 1   Issue - 2    |    Publication Date - August 2007  Table of Contents
Particle Swarm Optimization, Inertia Weight, Linearly Increasing Inertia Weight, Sigmoid Decreasing Inertia Weight, Sigmoid Increasing Inertia Weigh
The inertia weight of particle swarm optimization (PSO) is a mechanism to control the exploration and exploitation abilities of the swarm and as mechanism to eliminate the need for velocity clamping. The present paper proposes a new PSO optimizer with sigmoid increasing inertia weight. Four standard non-linear benchmark functions are used to confirm its validity. The comparison has been simulated with sigmoid decreasing and linearly increasing inertia weight. From experiments, it shows that PSO with increasing inertia weight gives better performance with quick convergence capability and aggressive movement narrowing towards the solution region.
CITED BY (41)  
1 Gkartzonikas , A . , & Theoharatos , D . ( 2016 ) . Discovery Framework Information : particle swarm optimization and optimum stop theory.
2 Adewumi, A. O., & Arasomwan, M. A. (2016). On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. International Journal of Bio-Inspired Computation, 8(1), 14-32.
3 Chenshou Wen . ( 2015 ) . Based on the centroid and adaptive inertia weight index improved particle swarm algorithm . Journal of Computer Applications , 35 ( 3 ) , 675-679.
4 Kessentini, S., & Barchiesi, D. Particle Swarm Optimization with Adaptive Inertia Weight.Chen, R. M., & Huang, S. C. (2015, August). Particle swarm optimization for scheduling problems by curve controlling based global communication topology. In Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on (pp. 1716-1720). IEEE.
5 Yang, C. T. (2015). Based on plant location and to adapt to deviate from the value of the governor enhanced particle swarm optimization method . Kung University Thesis Institute of Information Management , 1-60 .
6 Zellagui, M., Benabid, R., Boudour, M., & Chaghi, A. (2015). Mixed Integer Optimization of IDMT Overcurrent Relays in the Presence of Wind Energy Farms Using PSO Algorithm. Periodica Polytechnica-Electrical Engineering and Computer Science, 59(1), 7-19.
7 Khurana, M., & Massey, K. (2015). Swarm algorithm with adaptive mutation for airfoil aerodynamic design. Swarm and Evolutionary Computation, 20, 1-13.
8 Neshat, M., & Sepidname, G. (2015). A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO). Egyptian Informatics Journal, 16(3), 339-350.
9 Adewumi, A. O., & Arasomwan, M. A. (2015). Improved Particle Swarm Optimizer with Dynamically Adjusted Search Space and Velocity Limits for Global Optimization. International Journal on Artificial Intelligence Tools.
10 Chenshou Wen. (2015) based on the centroid and adaptive inertia weight index improved particle swarm optimization. Computer Engineering and Applications, 51 (5).
11 Chen, R. M., & Huang, H. T. (2014, August). Particle Swarm Optimization Enhancement by Applying Global Ratio Based Communication Topology. In Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference on (pp. 443-446). IEEE.
13 Gu, J., & Shi, X. (2014, July). An adaptive PSO based on motivation mechanism and acceleration restraint operator. In Evolutionary Computation (CEC), 2014 IEEE Congress on (pp. 1328-1336). IEEE.
14 Adewumi, A. O., & Arasomwan, A. M. (2014). An improved particle swarm optimiser based on swarm success rate for global optimisation problems. Journal of Experimental & Theoretical Artificial Intelligence, (ahead-of-print), 1-43.
15 Alrabady, L. A. Y. (2014). An online-integrated condition monitoring and prognostics framework for rotating equipment.
16 Arya, M., Deep, K., & Bansal, J. C. (2014). A nature inspired adaptive inertia weight in particle swarm optimisation. International Journal of Artificial Intelligence and Soft Computing 13, 4(2-3), 228-248.
17 Arasomwan, A. M., & Adewumi, A. O. (2014). An investigation into the performance of particle swarm optimization with various chaotic maps. Mathematical Problems in Engineering, 2014.
18 Lopez , C. E. M. ( 2014 ) . Search parameters particle swarm optimization solver for constraint satisfaction problems.
19 Chen, R. M., & Hsu, C. C. (2013). Guiding Search Using an Asymmetric Decline Control Function for Solving Flowshop Problems. Journal of Convergence Information Technology, 8(6).
20 Singh, N., & Singh, S. B. (2013, September). A New Modified Approach of Mean Particle Swarm Optimization Algorithm. In Computational Intelligence and Communication Networks (CICN), 2013 5th International Conference on (pp. 296-300). IEEE.
21 Costeira da Rocha, M., & Tome Saraiva, J. (2013, June). Transmission expansion planning—A multiyear PSO based approach considering load uncertainties. In PowerTech (POWERTECH), 2013 IEEE Grenoble (pp. 1-6). IEEE.
22 Ramphuengnit, P., & Polvichai, J. An Effective Hybrid-DEPSO applied with Dynamic Sigmoid Weights.
23 Chen, R. M., & Wu, D. S. (2013). Solving Scheduling Problem Using Particle Swarm Optimization with Novel Curve Based Inertia Weight and Grouped Communication Topology. International Journal of Digital Content Technology and its Applications, 7(7), 94.
24 Wang, L. (2013). An improved cooperative particle swarm optimizer. Telecommunication Systems, 53(1), 147-154.
25 Pessin, G., Osório, F. S., Souza, J. R., Ueyama, J., Costa, F. G., Wolf, D. F., ... & Vargas, P. A. (2013). Investigation on the evolution of an indoor robotic localization system based on wireless networks. Applied Artificial Intelligence, 27(8), 743-758.
26 Yavari, S., Zoej, V., Mohammad, J., Mohammadzadeh, A., & Mokhtarzade, M. (2013). Particle swarm optimization of RFM for georeferencing of satellite images. Geoscience and Remote Sensing Letters, IEEE, 10(1), 135-139.
27 Jadon, S. S., Sharma, H., Bansal, J. C., & Tiwari, R. (2013, January). Self adaptive acceleration factor in particle swarm optimization. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) (pp. 325-340). Springer India.
28 Arasomwan, M. A., & Adewumi, A. O. (2013, April). On adaptive chaotic inertia weights in particle swarm optimization. In Swarm Intelligence (SIS), 2013 IEEE Symposium on (pp. 72-79). IEEE.
29 Arasomwan, M. A., & Adewumi, A. O. (2013). On the performance of linear decreasing inertia weight particle swarm optimization for global optimization. The Scientific World Journal, 2013.
30 Arasomwan, M. A., & Adewumi, A. O. (2013, June). An adaptive velocity particle swarm optimization for high-dimensional function optimization. In Evolutionary Computation (CEC), 2013 IEEE Congress on (pp. 2352-2359). IEEE.
31 Latha, K., Rajinikanth, V., & Surekha, P. M. (2013). PSO-based PID controller design for a class of stable and unstable systems. ISRN Artificial Intelligence, 2013.
32 da Rocha, M. C., & Saraiva, J. T. (2013). A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties. International Journal of Electrical Power & Energy Systems, 45(1), 427-442.
33 Chen, R. M., Wang, C. T., Wang, C. T., & Hsu, C. C. (2012, December). An exploration and exploitation search control scheme for permutation flow shop problem. In Computing and Convergence Technology (ICCCT), 2012 7th International Conference on (pp. 1298-1303). IEEE.
34 Yavari, S., Zoej, M. J. V., Mokhtarzade, M., & Mohammadzadeh, A. (2012). Comparison of Particle Swarm Optimization and Genetic Algorithm in Rational Function Model Optimization. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B1.
35 Uma, S. M., Gandhi, K. R., Kirubakaran, E., & Kirubakaran, E. (2012). A hybrid PSO with dynamic inertia weight and GA approach for discovering classification rule in data mining. International Journal of Computer Applications, 40(17).
36 Ismail, A., & Engelbrecht, A. P. (2012). Self-adaptive particle swarm optimization. In Simulated Evolution and Learning (pp. 228-237). Springer Berlin Heidelberg.
37 Malik, R. F., Rahman, T. A., Ngah, R., Mohd, S. Z., & Hashim, H. (2012). The new multipoint relays selection in OLSR using particle swarm optimization. TELKOMNIKA (Telecommunication Computing Electronics and Control), 10(2), 343-352.
38 García-Gonzalo, E., & Fernández-Martínez, J. L. (2012). A brief historical review of particle swarm optimization (PSO). Journal of Bioinformatics and Intelligent Control, 1(1), 3-16.
39 Fujara, M. (2011). Methode zur rechnerunterstützten Auslegung und Optimierung der Geometrie des Vollhartmetall-Spiralbohrers. epubli.
40 K. Deep, M. Arya and J. C. Bansal, “A Non-Deterministic Adaptive Inertia Weight In PSO”, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, New York, USA, 12 – 16 July. 2011.
41 1. J.C. Bansal, P.K. Singh, M. Saraswat, A. Verma, S.S. Jadon and A. Abraham, “Inertia Weight strategies in Particle Swarm Optimization”, in Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress, Salamanca, pp. 633 – 640, 19-21 Oct. 2011.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 Academic Index 
5 CiteSeerX 
6 refSeek 
7 iSEEK 
8 Socol@r  
9 ResearchGATE 
10 Libsearch 
11 Bielefeld Academic Search Engine (BASE) 
12 Scribd 
13 WorldCat 
14 SlideShare 
16 PdfSR 
1 J. Kennedy, and R.C. Eberhart, “Particle swarm optimization”, Proceedings of the 4th IEEE International Conference on Neural Networks, pp. 1942 – 1948, 1995.
2 R.C. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory”, Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39 – 43, 1995.
3 A. P. Engelbrecht, “Fundamentals of Computational Swarm Intelligence”, John Willey & Sons Inc., pp. 93 (2005)
4 J. Kennedy, and R.C. Erberhart, “A discrete binary version of the particle swarm algorithm”, Proceeding of 1997 Conference on Systems, Man, and Cybernetics, Florida, USA, 1997.
5 Y. Shi, and R.C. Erberhart, “Parameter selection in particle swarm optimization”, Proceedings of 7th Annual Conference on Evolution Computation, pp. 591 – 601, 1998.
6 M. Lovbjerg, T.K. Rasmussen, and T. Krink, “Hybrid particle swarm optimizer with breeding and subpopulation”, Proceeding of the Third Genetic and Evolutionary Computation Congress, pp. 469 – 476, San Fransisco, CA, 2001.
7 Y. Shi, and R.C. Eberhart, “Empirical study of particle swarm optimization”, Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1945 – 1950, 1999.
8 Y. Zheng, et. al., “Empirical study of particle swarm optimizer with an increasing inertia weight”, Proceeding of the IEEE Congress on Evolutionary Computation, 2003.
9 A. Adriansyah, and S.H.M. Amin, “Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight”, Regional Conference on Engineering and Science, Johor, 2006
10 A. Chatterjee, and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization”, Computer and Operation Research, 33:859 – 871, 2006.
11 R.C. Eberhart, and Y. Shi, “Tracking and optimizing systems with particle swarms”, Proceeding Congress on Evolutionary Computation, 2001, Seoul, South Korea.
12 M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization”, Proceeding of the IEEE Congress on Evolutionary Computation, pp. 1951 – 1957, Washington D.C, 1999.
Mr. Reza Firsandaya Malik
- Malaysia
Mr. Tharek Abdul Rahman
- Malaysia
Mr. Siti Zaiton Mohd. Hashim
- Malaysia
Mr. Razali Ngah
- Malaysia