Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Implementation of Radial Basis Function Neural Network for Image Steganalysis
Sambasiva Rao Baragada, S. Ramakrishna, M.S. Rao, S. Purushothaman
Pages - 12 - 22     |    Revised - 15-02-2008     |    Published - 30-02-2008
Volume - 2   Issue - 1    |    Publication Date - February 2008  Table of Contents
Steganography, carrier image, covert image
Steganographic tools and techniques are becoming more potential and widespread. Illegal use of steganography poses serious challenges to the law enforcement agencies. Limited work has been carried out on supervised steganalysis using neural network as a classifier. We present a combined method of identifying the presence of covert information in a carrier image using fisher’s linear discriminant (FLD) function followed by the radial basis function (RBF). Experiments show promising results when compared to the existing supervised steganalysis methods, but arranging the retrieved information is still a challenging problem.
CITED BY (14)  
1 Pandian, A., & Sadiq, M. A. K. (2014). Authorship categorization in email investigations using fisher's linear discriminant method with radial basis function. Journal of Computer Science, 10(6), 1003.
2 Tamrakar, S., & Aloney, M. R. (2013). Role of Artificial Neural Networks in Digital Image Processing: A review. Journal of Environmental Science, 2(3), 908-913.
3 Kalaivani, R., & Thangaraj, P. (2013). An effective technique to identify a rivers stage through satellite images by means of RBFNN. The Imaging Science Journal, 61(3), 279-291.
4 Pandian, A., & Sadiq, A. K. (2013). Authorship Attribution in Tamil Language Email For Forensic Analysis. International Review on Computers and Software (IRECOS), 8(12), 3002-3008.
5 Mohammadi, F. G., & Abadeh, M. S. (2012). A survey of data mining techniques for steganalysis. Recent Advances in Steganography, 1-25.
6 Rajeswari, R., & Irudhayaraj, A. A. (2011). Implementation of Radial Basis Function for fMRI Registration. International Journal of Computer Theory and Engineering, 3(2), 287.
7 Awad, M. (2010). Optimization RBFNNs parameters using genetic algorithms: applied on function approximation. International Journal of Computer Science and Security (IJCSS), 4(3), 295.
8 Baragada, S. R., Ramakrishna, S., Rao, M. S., & Purushothaman, S. (2010). Polynomial Vector Discriminant Back Propagation Algorithm Neural Network for Steganalysis. IJCSNS, 10(5), 73.
9 Awad, M., & Occupied, P. (2010). Optimization RBFNNs Parameters using Genetic Algorithms: Applied on Function Approximation Full text.
10 Bhowmik, M. K., Bhattacharjee, D., Nasipuri, M., Basu, D. K., & Kundu, M. (2010). A Parallel Framework for Multilayer Perceptron for Human Face Recognition. arXiv preprint arXiv:1007.0627.
11 Tirdad, K. (2010). Developing pseudo random number generator based on neural networks and neurofuzzy systems.
12 Bhattacharjee, D., Bhowmik, M. K., Nasipuri, M., Basu, D. K., & Kundu, M. (2009). A Parallel Framework for Multilayer Perceptron for Human Face Recognition. International Journal of Computer Science and Security (IJCSS), 3(6), 491-507.
13 Baragada, S. R., Ramakrishna, S., Rao, M. S., & Purushothaman, S. (2009). Polynomial Discriminant Radial Basis Function for Steganalysis. International Journal of Computer Science and Network Security, IJCSNS, 9(2), 209-218.
14 Mansor, S., Din, R., & Samsudin, A. (2009). Analysis of natural language steganography. International Journal of Computer Science and Security (IJCSS), 3(2), 113-125.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Libsearch 
10 Bielefeld Academic Search Engine (BASE) 
11 OpenJ-Gate 
12 Scribd 
13 WorldCat 
14 SlideShare 
16 PdfSR 
17 Chinese Directory Of Open Access 
1 R.A.Fisher, The Use of Multiple Measurements in Taxonomic Problems, Ann. of Eugenics, vol. 7, pp. 178 188, 1936.
2 J.W.Sammon, An Optimal Discriminant Plane, IEEE Trans. On Comp, vol. 19, no. 9, pp. 826 829, 1970.
3 D.H.Foley, Consideration of Sample and Feature Size, IEEE Trans., on Info. Theory, vol.18, no. 5, pp. 626 681, September 1972.
4 J.W Sammon., Interactive Pattern Analysis and Classification, IEEE Trans. on Comp., vol. 19, no. 7, pp. 594616, 1970.
5 J.Kittler, P.C.Young P.C, Approach to Feature Selection Based on the Karhunen-Loeve Expansion, Pattern Recognition, Vol. 5, No 5, pp. 335 352, 1973.
6 H.Friedman, J.W Turkey, A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Trans. on Comp., vol. 23, no. 9, pp. 881890, 1974.
7 D.H Foley, J.E.Sammon, An Optimal Set of Discriminant Vectors, IEEE Trans. on Comp., vol. 24, no. 3, pp. 281 289, 1975.
8 J. Fehlauer., B.A Eisenstein., A Declustering Criterion for Feature Extraction in Pattern Recognition, IEEE Trans. on Comp., vol. 27, no. 3, pp. 261 266, 1978.
9 E.Gelsema, R.Eden, Mapping Algorithms in ISPAHAN, pattern Recognition, vol. 12, no. 3, pp.127 136, 1980.
10 V.C.Klema, A.J.Laub, The Singular Value Decomposition: Its Computation and Some Applications, IEEE Trans. on Automatic Control, vol. 25, no.2, pp. 164 176, 1980.
11 D.F.Mix, R.A.Jones, A Dimensionality Reduction Techniques Based on a Least Squared Error Criterion, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 4, no. 1, pp. 537 544, 1982.
12 Simmons, G. J., The Prisoners Problem and the Subliminal Channel, CRYPTO83, Advances in Cryptology, August 22-24, pp. 51 67, 1984.
13 B.J.Sullivan, B.Liu, On the Use of Singular Value Decomposition and Decimation in Discrete- Time Band-Limited Signal Extrapolation, IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 32, no. 6, pp. 1201 1212, 1984.
14 W.Siedlecki, K.Siedlecka, J. Skalansky, An Overview of Mapping Techniques for Exploratory Data Analysis, Pattern Recognition, vol. 21, no. 5, pp. 411 429, 1988.
15 Z.Q.Hong, Y.J.Yang, Optimal Discriminate Plane for a Small Number of Samples and Design Method of Classifier on the Plane, pattern recognition, vol. 24, pp. 317 324, 1991.
16 W.Siedlecki, K.Siedlecka., J.Skalancky, Experiments on Mapping Techniques for Exploratory Pattern Analysis, Pattern Recognition, vol. 21, no.5, pp. 431 438, 1988.
17 P.Gallinari, S. Thiria., F.Badran., F Fogelman-Soulie F., On The Relations Between Discriminant Analysis and Multilayer Perceptrons, Neural Networks, vol. 4, no.3, pp.349 360, 1991.
18 K.Liu, Y.Q.Cheng, J.Y.Yang J.Y., A Generalized Optimal Set of Discriminant Vectors, Pattern Recognition, vol. 25, no. 7, pp. 731 739, 1992.
19 Y.Q.Cheng, Y.M.Zhuang, J.Y.Yang, Optimal Fisher Discriminant Analysis Using the Rank Decomposition, Pattern Recognition, vol. 25, no. 1, pp. 101 111, 1992.
20 R. J. Anderson and F.A.P Petitcolas, On the limits of steganography, IEEE Journal on Selected Areas in Communications, vol. 16 no. 4, pp. 474 -484, 1998.
21 N. Provos and P. Honeyman, Detecting steganographic content on the internet, CITI Technical Report 01-11, August, 2001.
22 N.Johnson and J. Sklansky, Exploring steganography: seeing the unseen, IEEE Computer, pp. 26 34, 1998.
23 A. Westfeld and A. Pfitzmann, Attacks on steganographic systems, Third Information Hiding Workshop, September. 1999.
24 J. Fridrich, R. Du, and M. Long, Steganalysis of lsb encoding in color images, IEEE ICME, vol. 3, pp. 1279 1282, March 2000.
25 R. Chandramouli, A mathematical framework for active steganalysis, ACM Multimedia Systems, vol, 9, no.3, pp.303 311, September 2003.
26 Meng Joo Er,.Shiqian Wu, Juwei Lu and Hock Lye Toh, Face Recognition with Radial Basis Function(RBF) Neural Networks, IEEE Trans. on Neural Networks, vol. 13, no.3, pp. 697 910, May 2002.
27 S. Lyu and H. Farid, Steganalysis Using Color Wavelet Statistics and One-Class Support Vector Machines, SPIE Symposium on Electronic Imaging, San Jose, CA, 2004.
28 J. Harmsen and W. Pearlman, Steganalysis of additive noise modelable information hiding, Proc. SPIE Electronic Imaging, 2003.
29 Ryan Benton and Henry Chu, Soft Computing Approach to Steganalysis of LSB Embedding in Digital Images, Third International Conference on Information Technology: Research and Education, ITRE, pp. 105 109, June 2005.
30 Shi, Y.Q, Guorong Xuan, Zou, D, Jianjiong Gao, Chengyun Yang, Zhenping Zhang, Peiqi Chai, Chen, W, Chen C, Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image, and neural network, IEEE International Conference on Multimedia and Expo, ICME , July 2005.
31 Shalin Trivedi and R. Chandramouli, Secret Key Estimation in Sequential Steganography, IEEE Trans. on Signal Proc., vol. 53, no. 2, pp. 746 - 757, February 2005.
32 Ming Jiang, Wong, E.K. Memon, N. Xiaolin Wu, Steganalysis of halftone images, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, vol. 2, pp. 793 796, March 2005.
33 Liang Sun, Chong-Zhao Han, Ning Dai, Jian-Jing Shen, Feature Selection Based on Bhattacharyya Distance: A Generalized Rough Set Method, Sixth World Congress on Intelligent Control and Automation, WCICA, vol. 2, pp. 101-105, June, 2006.
34 H. Farid, Detecting hidden messages using higher-order statistical models, Proc. IEEE Int. Conf. Image Processing, New York, pp.905- 908, Sep. 2002.
35 Zugen Liu, Xuezeng Pan, Lie Shi, Jimin Wang, Lingdi Ping, Effective steganalysis based on statistical moments of differential characteristic function, International Conference on Computational Intelligence and Security, vol. 2, pp. 1195 1198, November 2006.
Mr. Sambasiva Rao Baragada
Mr. S. Ramakrishna
Mr. M.S. Rao, S. Purushothaman