Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(135.04KB)
This is an Open Access publication published under CSC-OpenAccess Policy.

PUBLICATIONS BY COUNTRIES

Top researchers from over 74 countries worldwide have trusted us because of quality publications.

United States of America
United Kingdom
Canada
Australia
Malaysia
China
Japan
Saudi Arabia
Egypt
India
Automatic Detection of Malaria Parasites for Estimating Parasitemia
S. S. Savkare, S. P. Narote
Pages - 310 - 315     |    Revised - 01-07-2011     |    Published - 05-08-2011
Volume - 5   Issue - 3    |    Publication Date - July / August 2011  Table of Contents
MORE INFORMATION
KEYWORDS
OTSU Thresholding, Watershed Transform, Feature Extraction, SVM Classifier
ABSTRACT
Malaria parasitemia is a measurement of the amount of Malaria parasites in the patient's blood and an indicator for the degree of infection. In this paper an automatic technique is proposed for Malaria parasites detection from blood images by extracting red blood cells (RBCs) from blood image and classifying as normal or parasite infected. Manual counting of parasitemia is tedious and time consuming and need experts. Proposed automatic approach is used Otsu thresholding on gray image and green channel of the blood image for cell segmentation, watershed transform is used for separation of touching cells, color and statistical features are extracted from segmented cells and SVM binary classifier is used for classification of normal and parasite infected cells.
CITED BY (17)  
1 Razzak, I. (2015). Malarial Parasite Classification using Recurrent Neural Network. International Journal of Image Processing (IJIP), 9(2), 69.
2 DAS, D., Mukherjee, R., & Chakraborty, C. (2015). Computational microscopic imaging for malaria parasite detection: a systematic review. Journal of microscopy.
3 Razzak, M. I. (2015). Automatic Detection and Classification of Malarial Parasite. International Journal of Biometrics and Bioinformatics (IJBB), 9(1), 1.
4 Savkare, S. S., & Narote, S. P. (2015, January). Automated system for malaria parasite identification. In Communication, Information & Computing Technology (ICCICT), 2015 International Conference on (pp. 1-4). IEEE.
5 Chayadevi, M. L., & Raju, G. T. (2015). Automated Colour Segmentation of Malaria Parasite with Fuzzy and Fractal Methods. In Computational Intelligence in Data Mining-Volume 3 (pp. 53-63). Springer India.
6 Jiji, G. W., Lakshmi, V. S., Lakshmi, K. V., & Priya, S. S. (2014). Diagnosis and Prognosis of the Arbovirus-Dengue using Intelligent Algorithm. Journal of The Institution of Engineers (India): Series B, 1-6.
7 Kang, Y. J., Ha, Y. R., & Lee, S. J. (2014). Microfluidic-based measurement of erythrocyte sedimentation rate for biophysical assessment of blood in an in vivo malaria-infected mouse. Biomicrofluidics, 8(4), 044114.
8 Opoku-Ansah, J., Eghan, M. J., Anderson, B., & Boampong, J. N. (2014). Wavelength Markers for Malaria (Plasmodium Falciparum) Infected and Uninfected Red Blood Cells for Ring and Trophozoite Stages. Applied Physics Research, 6(2), p47.
9 Opoku-Ansah, J., Anderson, B., Eghan, J. M., Boampong, J. N., Adueming, P. O. W., Amuah, C. L. Y., & Akyea, A. G. (2013). Automated Protocol for Counting Malaria Parasites (P. falciparum) from Digital Microscopic Image Based on L* a* b* Colour Model and K-Means Clustering.
10 Nithyaa, A. N., Premkumar, R., Kanchana, D., & Krishnan, N. A. (2013). Automated Detection and Classification of Blood Diseases. In Recent Advancements in System Modelling Applications (pp. 393-404). Springer India.
11 Suradkar, P. T. (2013). Detection of malarial parasite in blood using image processing. International Journal of Engineering and Innovative Technology (IJEIT), 2(10).
12 Waghmare, V., & Akhter, S. Image Analysis Based System for Automatic Detection of Malarial Parasite in Blood Images.
13 Prof. S. K. Bandyopadhyay and S. Roy, “Detection of Sharp Contour of the element of the WBC and Segmentation of two leading elements like Nucleus and Cytoplasm”, International Journal of Engineering Research and Applications (IJERA), 2(1), pp.545-551, Jan-Feb 2012.
14 Bandyopadhyay, S. K., & Roy, S. (2012). Detection of sharp contour of the element of the WBC and segmentation of two leading elements like nucleus and cytoplasm. Int J Eng Res Appl (IJERA), 2(1), 545-551.
15 Crysdian, C., & Abdullah, A. H. (2012). The Application of Multi Gradient Operators to Enhance Watershed Transform for Generic Medical Segmentation. Journal of Next Generation Information Technology, 3(4).
16 Ghate, D. A., & Jadhav, C. (2012). Automatic Detection of Malaria Parasite from Blood Images. International Journal of Computer Science & Applications (TIJCSA), 1(3).
17 Wahyuningrum, R. T., & Indrawan, A. K. (2012). a hybrid automatic method for parasite detection and identification of plasmodium falciparum in thin blood images. International Journal of Academic Research, 4(6).
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Libsearch 
5 Bielefeld Academic Search Engine (BASE) 
6 Scribd 
7 SlideShare 
8 PdfSR 
1 Shiff, C., 2002. Integrated approach for malaria control. Clin. Microbiol. Rev.15, 278–293.
2 World Health Organization What is malaria? Factssheetno94. http://www.who.int/mediacentrefactsheetsfs094/en/./factshee. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp 68–73.
3 M. Tam Le, T. Bretschneider,“A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in Giemsa-stained thin blood smears”, Research article, BMC Cell Biology, 28 March 2008.
4 J. Angulo, G. Flandrin, “Automated detection of working area of peripheral blood smears using mathematical morphology”, U. S. National Library of Medicine, Analytical Cellular Pathology 25(1), pp 39-47, 2003.
5 C.D. Ruberto, A.G. Dempster, S. Khan, and B. Jarra, "Automatic Thresholding of Infected Blood Images Using Granulometry and Regional Extrema", in Proceedings of International Conference on Pattern Recognition, pp 3445-3448, 2000.
6 S. Halim et al., “Estimating Malaria Parasitaemia from Blood Smear Images”, in Proceedings of IEEE international conference on control, automation, robotics and vision, pp 1-6, 2006.
7 S. Osowski et al., “Application of Support Vector Machine and Genetic Algorithm for Improved Blood Cell Recognition”, in proceedings of IEEE transaction on Instrumentation and Measurement, Vol. 58, No. 7, pp 2159-2168, July 2009.
8 S.W.S. Sio et al., “Malaria Count: An image analysis-based program for the accurate determination of parasitemia”, Journal of Microbiological Methods 68, Science Direct, pp 11-18, 2007.
9 D. Anoraganingrum et al.’ “Cell Segmentation with Median Filter and Mathematical Morphology Operation”, in proceedings of on Image Analysis and Processing, Italy, pp 1043-1046, 1999.
10 N. Otsu, “A threshold selection method from gray-level histograms”, in proceedings of IEEE Transactions on Systems, Man and Cybernetics, 9(1), pp 62-66, 1979.
11 K. Kim et al., “Automatic Cell Classification in Human's Peripheral Blood Images Based on Morphological Image Processing”, Lecture Notes in Computer Science, vol. 2256. pp 225-236, 2001.
12 T. Markiewicz, S. Osowski, “Data mining techniques for feature selection in blood cell recognition”, European Symposium on Artificial Neural Networks, Bruges (Belgium), 26-28 April, pp 407-412, 2006
13 N. Ritter, J. Cooper, “Segmentation and Border Identification of Cells in Images of Peripheral Blood Smear Slides”, in Proceedings of Thirtieth Australasian Computer Science Conference (ACSC2007), CRPIT, 62, 161-169, 2007.
14 G. Diaz et al., “A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images”, Journal of Biomedical Informatics 42, Science Direct, pp 296–307, 2009.
Dr. S. S. Savkare
- India
swati_savkare@yahoo.com
Dr. S. P. Narote
- India