Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Atmospheric Non-Thermal Plasma Sources
Vijay Nehra, Ashok Kumar, H K Dwivedi
Pages - 53 - 68     |    Revised - 15-02-2008     |    Published - 30-02-2008
Volume - 2   Issue - 1    |    Publication Date - February 2008  Table of Contents
Atmospheric plasma, Non-thermal, Dielectric barrier discharge
Atmospheric non-thermal plasmas (ANTPs) have received a great deal of attention in the last two decades because of their substantial breakthrough in diverse scientific areas and today technologies based on ANTP are witnessing an unprecedented growth in the scientific arena due to their ever-escalating industrial applications in several state-of-the-art industrial fields. ANTPs are generated by a diversity of electrical discharges such as corona discharges, dielectric barrier discharges (DBD), atmospheric pressure plasma jet (APPJ) and micro hollow cathode discharges (MHCD), all having their own characteristic properties and applications. This paper deals with some fundamental aspects of gas discharge plasmas (GDP) and provides an overview of the various sources of ANTPs with an emphasis on dielectric barrier discharge.
CITED BY (77)  
1 Rehman, F., Liu, Y., & Zimmerman, W. B. (2016). The role of chemical kinetics in using O 3 generation as proxy for hydrogen production from water vapour plasmolysis. International Journal of Hydrogen Energy, 41(15), 6180-6192.
2 Mir, S. A., Shah, M. A., & Mir, M. M. (2016). Understanding the Role of Plasma Technology in Food Industry. Food and Bioprocess Technology, 9(5), 734-750.
3 Agon, N. (2015). Development and study of different numerical plasma jet models and experimental study of plasma gasification of waste (Doctoral dissertation, Ghent University).
4 Chen, M., Zhang, R., Tang, L., Zhou, X., Li, Y., & Yang, X. Development of an industrial applicable dielectric barrier discharge (DBD) plasma treatment for improving bondability of poplar veneer. Holzforschung.
5 Shang, I. (2015). The use of atmospheric plasma lithium battery anode material doped with nitrogen to improve its electrical performance. University Department of Materials Science and Engineering Thesis, 1-93.
6 Zhunussova, A. S., Orynbayeva, Z. S., & Tuleukhanov, S. T. (2015). The ability of metastatic prostate cancer cell viability studies of the effects of atmospheric low-temperature plasma. The bulletin. Series Bïologïçeskaya, 64 (2/1), 86-93.
7 Mohanty, S., Das, A. K., & Das, S. P. DBD non-thermal Plasma for decomposition of Volatile Organic Compounds.
8 Maurya, M. R., Saini, N., & Avecilla, F. (2015). Liquid phase versus microwave assisted selective oxidation of volatile organic compounds involving dioxidomolybdenum (VI) and oxidoperoxidomolybdenum (VI) complexes as catalysts in the presence/absence of an N-based additive. Polyhedron, 90, 221-232.
9 Ghazali, K. (2015). Experimental study of cool microwave plasma at atmospheric pressure generated by high voltages of different shapes (Doctoral dissertation, Pau).
10 Trinh, Q. H., & Mok, Y. S. (2015). Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. Korean Journal of Chemical Engineering, 1-14.
11 Mohammadi, A., Irani, S., & Atyabi, S. M. (2015). Study of breast cancer cells inhibition by cold atmospheric plasma. Medical Science Journal of Islamic Azad Univesity-Tehran Medical Branch, 25(2), 125-131.
12 Pavelic, B. (2015). Options use plasma therapy in dentistry: the theoretical basis and clinical application (Doctoral dissertation, University of Zagreb, School of Dental Medicine, Department of Endodontics and Restorative Dentistry.).
13 Peng Hanxuan. (2015). NSR catalyst combination of plasma technology of NOx removal. Thesis Environmental Engineering Research Institute, Central University, 1-128.
14 Schnabel, U., Niquet, R., Schlüter, O., Gniffke, H., & Ehlbeck, J. (2015). Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). Journal of Food Processing and Preservation, 39(6), 653-662.
15 Öngel, C., Keles, M., Acar, E., & Birer, Ö. (2015). Atmospheric Pressure Plasma Jet Treatment of Human Hair Fibers. Journal of Bio-and Tribo-Corrosion, 1(1), 1-10.
16 Zille, A., Oliveira, F. R., & Souto, A. P. (2015). Plasma treatment in textile industry. Plasma Processes and Polymers, 12(2), 98-131.
17 Birer, Ö. (2015). Reactivity zones around an atmospheric pressure plasma jet. Applied Surface Science, 354, 420-428.
18 Mouele, E. S. M., Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2015). Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review. Environmental Science and Pollution Research, 22(23), 18345-18362.
19 Samanta, K. K., Basak, S., Chattopadhyay, S. K., & Gayatri, T. N. (2015). 1 Water-Free Plasma. Handbook of Sustainable Apparel Production, 1.
20 Abbasi, H., Nazeri, M., Mirpour, S., & Farahani, N. J. (2015, November). Measuring electron density, electric field and temperature of a micro-discharge air plasma jet using optical emission spectroscopy. In 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI) (pp. 1139-1141). IEEE.
21 Bastawros, A. F., Chandra, A., & Poosarla, P. A. (2015). Atmospheric pressure plasma enabled polishing of single crystal sapphire. CIRP Annals-Manufacturing Technology, 64(1), 515-518.
22 Schnabel, U., Sydow, D., Schlüter, O., Andrasch, M., & Ehlbeck, J. Decontamination of Fresh-Cut Iceberg Lettuce and Fresh Mung Bean Sprouts by Non-Thermal Atmospheric Pressure Plasma Processed Water (PPW).
23 Mouele, E. S. M. (2014). Water treatment using electrohydraulic discharge system.
24 Allam, T. M., Ward, S. A., El-sayed, H. A., Saied, E. M., Soliman, H. M., & Ahmed, K. M. (2014). Electrical Parameters Investigation and Zero Flow Rate Effect of Nitrogen Atmospheric Nonthermal Plasma Jet. Energy and Power Engineering, 6(12), 437.
25 Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., & Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 236, 348-368.
26 Cheng, X., Sherman, J., Murphy, W., Ratovitski, E., Canady, J., & Keidar, M. (2014). The effect of tuning cold plasma composition on glioblastoma cell viability. PloS one, 9(5), e98652.
27 Radic, N. (2014). of Dissertation: Atmospheric Pressure Plasma Activation and. Nanostructured materials, 19(59), 66.
28 Attri, P., Arora, B., Bhatia, R., Venkatesu, P., & Choi, E. H. (2014). Plasma Technology: A New Remediation for Water Purification with or without Nanoparticles. Application of Nanotechnology in Water Research, 63-77.
29 Barakat, C., Gravejat, P., Guaitella, O., Thevenet, F., & Rousseau, A. (2014). Oxidation of isopropanol and acetone adsorbed on TiO 2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring. Applied Catalysis B: Environmental, 147, 302-313.
30 Kusano, Y. (2014). Atmospheric pressure plasma processing for polymer adhesion: a review. The Journal of Adhesion, 90(9), 755-777.
31 Tatarova, E., Bundaleska, N., Sarrette, J. P., & Ferreira, C. M. (2014). Plasmas for environmental issues: from hydrogen production to 2D materials assembly. Plasma Sources Science and Technology, 23(6), 063002.
32 Babij, M., Gotszalk, T., Kowalski, Z. W., Nitsch, K., Silberring, J., & Smoluch, M. (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Acta Physica Polonica A, 125(6), 1260-1263.
33 Xiao, G., Xu, W., Wu, R., Ni, M., Du, C., Gao, X., ... & Cen, K. (2014). Non-Thermal plasmas for VOCs abatement. Plasma Chemistry and Plasma Processing, 34(5), 1033-1065.
34 Chang Cc (2014). Technology has made the use of plasma discharge and purification of hydrogen to drive a fuel cell. Thesis, Institute of Space and Plasma Sciences Kung University, 1-73.
35 Aleknaviciute, I. (2014). Plasma assisted decomposition of methane and propane and cracking of liquid hexadecane (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses).
36 Babij, M., Kowalski, Z. W., Nitsch, K., Silberring, J., & Gotszalk, T. (2014). Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer. Review of Scientific Instruments, 85(5), 054703.
37 Samanta, K. K., Basak, S., & Chattopadhyay, S. K. (2014). Environment-Friendly Textile Processing Using Plasma and UV Treatment. In Roadmap to Sustainable Textiles and Clothing (pp. 161-201). Springer Singapore.
38 Kalaitzis, A. (2014). Decontamination of soil electrical dielectric barrier discharges (Doctoral dissertation).
39 Grzadziel, J., & Plonka, M. (2014). Evaluation of bactericidal activity of low temperature non-equilibrium plasma generated in the reactor RF. EJMT, 2, 3.
40 Yu, H., Zhang, Y., Wong, A., De Rosa, I. M., Chueh, H. S., Grigoriev, M., ... & Hicks, R. F. (2014). Atmospheric and Vacuum Plasma Treatments of Polymer Surfaces for Enhanced Adhesion in Microelectronics Packaging. Adhesion in Microelectronics, 137-172.
41 Booth, D. (2014). Application of cold plasma vitamin and polyphenol oxidase (PFO) Effect of Enzyme Activity.
42 Shahmirani, Z., Irani, S., Atyabi, S. M., Mirpour, S., Shadpoor, S., Ghorannevis, M., & Joupari, M. D. (2014). Effect of Cold Atmospheric Pressure Plasma and Gold Nanoparticles on Cell Viability. Annual Research & Review in Biology, 4(20), 3108.
43 Babij, M., & Kowalski, Z. W. (2014). Two types of atmospheric pressure plasma jet: construction and features. Elektronika: konstrukcje, technologie, zastosowania, 55(10), 30-33.
44 Vander Wal, R. L., Gaddam, C. K., & Kulis, M. J. (2014). Spectroscopic characterization and comparison between biologics, organics and mineral compounds using pulsed micro-hollow glow discharge. Journal of Analytical Atomic Spectrometry, 29(10), 1791-1798.
45 Šuranský, M. (2014). Depositions of polysiloxane films in low temperature plasma.
46 Kwiatkowski, M., Terebun, P., Krupski, P., Samon, R., Diatczyk, J., Pawlat, J., & Stryczewska, H. (2014). Wlasciwosci i zastosowania reaktorów plazmowych typu dysza plazmowa. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska.
47 Al-Hakary, S. K., Muhamad, S., & Dosky, L. M. Effect of the Hollow Cathode Geometry on Nitrogen Glow Discharge Plasma.
49 García-Alcantara, E., López-Callejas, R., Serment-Guerrero, J., Peña-Eguiluz, R., Muñoz-Castro, A. E., Rodríguez-Méndez, B. G., ... & Barbabosa-Pliego, A. (2013). Toxicity and Genotoxicity in HeLa and E. coli Cells Caused by a Helium Plasma Needle. Applied Physics Research, 5(5), 21.
50 Attri, P., Arora, B., & Choi, E. H. (2013). Utility of plasma: a new road from physics to chemistry. RSC Advances, 3(31), 12540-12567.
51 Cloth Fumiya. (2013). Generation of atmospheric pressure non-equilibrium plasma. Journal of Kyushu Kyoritsu University Research Institute No.
52 Lin, Y. S., Lin, D. J., Sung, P. J., & Tien, S. W. (2013). Atmospheric-pressure plasma-enhanced chemical vapor deposition of electrochromic organonickel oxide thin films with an atmospheric pressure plasma jet. Thin Solid Films, 532, 36-43.
53 Afshari, R., & Hosseini, H. (2013). Non-thermal plasma as a new food preservation method, Its present and future prospect. Journal of Paramedical Sciences, 5(1).
54 Stoica, M., Mihalcea, L., Borda, D., & Alexe, P. (2013). Non-thermal novel food processing technologies. An overview. Journal of Agroalimentary Processes and Technologies, 19(2), 212-217.
55 Gaikwad, V., Kennedy, E., Mackie, J., Holdsworth, C., Molloy, S., Kundu, S., & Dlugogorski, B. (2013). Non-Oxidative Conversion of 1, 2-Dichloroethane in a Non-Thermal Plasma and Characterisation of the Polymer Formed. Plasma Processes and Polymers, 10(2), 141-149.
56 Babij, M., Gotszalk, T., Kowalski, Z. W., Nitsch, K., Silberring, J., & Smoluch, M. (2013, July). Miniature plasma jet for mass spectrometry. In Electron Technology Conference 2013 (pp. 890208-890208). International Society for Optics and Photonics.
57 Rehman, F., Abdul Majeed, W. S., & Zimmerman, W. B. (2013). Hydrogen production from water vapor plasmolysis using DBD-Corona hybrid reactor. Energy & Fuels, 27(5), 2748-2761.
58 Aleknaviciute, I., Karayiannis, T. G., Collins, M. W., & Xanthos, C. (2013). Methane decomposition under a corona discharge to generate CO x-free hydrogen. Energy, 59, 432-439.
59 Barni, R., Biganzoli, I., Dell’Orto, E., & Riccardi, C. Letters in Applied NanoBioScience. Letters in Applied NanoBioScience, 167.
60 Gaikwad, V., Kennedy, E., Mackie, J., Holdsworth, C., Molloy, T., Kundu, S., & Dlugogorski, B. (2013, June). Reaction of chloroform in a non-oxidative atmosphere using dielectric barrier discharge. In Pulsed Power Conference (PPC), 2013 19th IEEE (pp. 1-6). IEEE.
61 Stoica, M., Mihalcea, L., Borda, D., & Alexe, P. (2013). Non-thermal novel food processing technologies. An overview. Journal of Agroalimentary Processes and Technologies, 19(2), 212-217.
62 Mukherjee, A. (2012). LUNAR REGOLITH SIMULANTS (Doctoral dissertation, The Pennsylvania State University).
63 Mohd, N. D., Bakar, S. A., Zaaba, S. K., & Ahmad, W. K. W. (2012, December). Study on bovine bone surface after atmospheric plasma treatment. In Biomedical Engineering and Sciences (IECBES), 2012 IEEE EMBS Conference on (pp. 70-75). IEEE.
64 Rehman, F., Lozano-Parada, J. H., & Zimmerman, W. B. (2012). A kinetic model for H 2 production by plasmolysis of water vapours at atmospheric pressure in a dielectric barrier discharge microchannel reactor. international journal of hydrogen energy, 37(23), 17678-17690.
65 Chen Meijun. (2012). NO investigate the preparation of perovskite-type catalyst used in its decomposition. Thesis Environmental Engineering Research Institute, Central University, 1-110.
66 Valincius, V., Grigaitiene, V., & Tamošiunas, A. (2012). Report on the different plasma modules for pollution removal MO 0 3. Plasma for environ protect.
67 Afshari, R., & Hosseini, H. (2012). Atmospheric pressure plasma technology: A new tool for food preservation. ICEEB, 33, 275-278.
68 Tian Liqiang, Liu Shaofeng, Li Yijun, Niehua Li, & Zhu Limin. (2012). The atmospheric pressure plasma pretreatment of cotton fabric / pectinase scouring and dyeing, 38 (16), 1-5.
69 Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of hazardous materials, 195, 30-54.
70 Abdul-Majeed, W. S., Parada, J. H. L., & Zimmerman, W. B. (2011). Optimization of a miniaturized DBD plasma chip for mercury detection in water samples. Analytical and bioanalytical chemistry, 401(9), 2713-2722.
71 Navratil, M. Z. Bachelor thesis Spectroscopy discharges in rare gases.
72 Suyjiw, S., & Magaraphan, R. Plasma-assisted Processing of Polypropylene/Clay Nanocomposites.
73 Haghdel, A., Abiri, H., Eskandari, M. R., & Zibaeinejad, H. (2011). Measurement of Ions Penetration Pattern in Point to Grid Atmospheric Corona Discharge. Japanese Journal of Applied Physics, 50(1R), 016001.
74 Zimmerman, B. (2011). Wameath S. Abdul-Majeed, Jaime H. Lozano Parada & William. Anal Bioanal Chem, 401, 2713-2722.
75 Han Xiao Chen. (2011). Non-thermo-mechanical pulp bonded sorbent isopropanol desorption efficacy discussed. Thesis Environmental Engineering Research Institute, Central University, 1-96.
76 Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., ... & Weltmann, K. D. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002.
77 Faculty, F. (2002). Thesis.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 Academic Index 
5 CiteSeerX 
6 refSeek 
7 iSEEK 
8 ResearchGATE 
9 Libsearch 
10 Bielefeld Academic Search Engine (BASE) 
11 Scribd 
12 WorldCat 
13 SlideShare 
14 PdfSR 
1 J. R. Roth. “Industrial Plasma Engineering: vol. 1–Principles”, IOP, Bristol and Philadelphia, (1995)
2 J. R. Roth. “Industrial plasma engineering: vol. 2, Application to non thermal plasma processing”, IOP, Bristol and Philadelphia, (2001)
3 R. Hippler, S. Pafu and M. Schmidt. “Low temperature plasma physics: Fundamental aspect and applications”, WILEY- VCH Verlag Berlin GmbH, Berlin, (2001)
4 E. E. Kunhardt. “Generation of large volume, atmospheric pressure, non equilibrium plasmas”. IEEE Trans Plasma Sci, 28: 189-199, 2000
5 A. P. Napartovich. “Overview of atmospheric pressure discharges producing non thermal plasma”. Plasmas & Polymers, 6: 1-14, 2001
6 K. H. Becker, U. Kogelschatz, R. J. Barker and K. H. Schoenbach. “Non equilibrium air plasma at atmospheric pressure”, IOP Publishing, (2004).
7 A. A. Fridman and L. A. Kennedy. “Plasma physics and engineering”, Taylor and Francis, (2004).
8 V. B. Herman. “Plasma Science and technology”, Cornell University press Ltd., London, (1982).
9 H. Conards and M. Schmidt. “Plasma generation and plasma sources”. Plasma Sources Sci. Technol., 9: 441-454, 2000
10 P. I. John. “Plasma science and creation of wealth”. Tata McGraw Hill, India 2005.
11 A. Bogaerts, E. Neyts, R. Gijbels and J. V. Mullen. “Gas discharge plasma and their applications”. Spectrochemica Acta Part B, 57: 609-658, 2002
12 M. I. Boulos, P. Fauchais and E. Pfender. “Thermal plasma: Fundamental and applications”, vol. 1, Plenum Press, New York, (1994).
13 E. Pfender. “Thermal plasma processing in nineties”. Pure Appl. Chem., 60: 591-606, 1988
14 M. I. Boulos. “Thermal plasma processing”. IEEE Trans. Plasma Sci., 19: 1078-1089, 1991
15 M. I. Boulos. “New frontiers in thermal plasma processing”. Pure Appl. Chem., 68:1007- 1010, 1996
16 P. Fauchais and A. Vardelle. “Thermal plasmas”. IEEE Tran Plasma Sci, 25: 1258-1270, 1997
17 E. Pfender. “Thermal plasma technology: Where do we stand and where are we going”. Plasma Chem. Plasma Proc., 19: 1-31, 1999
18 N. Venkatramani. “Industrial plasma torches and applications”. Current Science, 83: 254- 262, 2002
19 J. Heberlein. “New approaches in thermal plasma technology”. Pure Appl. Chem. 74: 327-335, 2002
20 G. Bonnizzoni and E. Vassallo. “Plasma physics and technology; industrial applications”. Vacuum, 64:327-336, 2002.
21 B. Gupta, “Plasma processing: Some basic considerations. In: Plasma Physics”, Wiley Eastern Limited, 170-211, 1992.
22 N St J Braithwaite. “Introduction to gas discharges”. Plasma Sources Sci. Technol., 9:517-527, 2000
23 S. N. Sen. “Plasma Physics”. Pragati Prakashan, India, 8-12, (2006).
24 A. Fridman, A. Chirokov and A. Gutsol. “Non-thermal atmospheric pressure discharges”. J. Phys D: Appl Phys, 38: R1-R24, 2005.
25 J. S. Chang, P. A. Lawless and T. Yamamoto. “Corona discharge processes”. IEEE Trans. Plasma Sci., 19:1152-1166, 1991.
26 U. Kogelschatz. “Atmospheric-pressure plasma technology”. Plasma Phys. Control. Fusion, 46: B63-B75, 2004
27 A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R.F. Hicks. “The atmospheric-pressure plasma jet: A review and comparison to other plasma sources”. IEEE Trans Plasma Sci., 26:1685-1694, 1998.
28 J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks and G. S. Selwyn.. “Etching materials with an atmospheric pressure plasmas jet”. Plasma Sources Sci Technol, 7: 282-285, 1998
29 H. W. Herrmann, I. Henins, J. Park and G. S. Selwyn. “Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)”. Physics of Plasmas, 6: 2284-2289, 1999
30 J. Park, I. Henins, H. W. Hermann, G. S. Selwyn. “Gas breakdown in atmospheric radiofrequency capacitive plasma source”. J. Appl. Phy., 89:15-19, 2001
31 G. S. Selwyn, H. W. Herrmann, J. Park and I. Henins. “Material processing using an atmospheric pressure RF-generated plasma source”. Contrib Plasma Phys., 6:610-619, 2001
32 S. E. Babayan, J. Y. Jeong, A. Schutze, V. J. Tu, M. Moravej and G. S. Selwyn “Deposition of silicon dioxide films with a non–equilibrium atmospheric pressure plasma jet”. Plasma Sources Sci Technol, 10:573-578, 2001
33 A. D. White. “New hollow cathode glow discharge”. J. Appl. Phy., 30:711-719, 1959
34 K. H. Schoenbach, A. E. Habachi, W. Shi and M. Ciocca. “High- pressure micro hollow cathode discharges”. Plasma Sources Sci Technol, 6: 468-477, 1997
35 J. W. Frame, D. J. Wheeler, T. A. DeTemple and J. G. Eden. “Micro discharge fabricated in silicon”. Appl. Phys. Lett., 71:1165-1167, 1997
36 K. H. Schoenbach and R. H. Stark. “Direct current high-pressure glow discharges”. Appl Phys Lett, 72:13-15, 1998.
37 V. Nehra, C. L. Mittal and H. K. Dwivedi. “Micro hollow Cathode Plasma Applications: From Excimer Source to Flat TV Screens”. ICFAI Journal of Science & Technology, 1: 50-62, 2005.
38 K. H. Becker, K. H. Schoenbach and J. G. Eden. “Microplasmas and applications”. J. Phys. D: Appl. Phys., 39: R55-R70, 2006
39 B. Eliasson and U. Kogelschatz. “Non-equilibrium volume plasma chemical processing”. IEEE Trans. Plasma Sci., 19:1063-1077, 1991
40 G. J. Pietsch. “Peculiarities of dielectric barrier discharges”. Contrib. Plasma Phys., 41:620-628, 2001
41 U. Kogelschatz. “Industrial innovation based on fundamental physics”. Plasma Sources Sci. Technol, 11: A1-A6, 2002
42 U. Kogelschatz. “Dielectric-barrier discharges: Their history, discharge physics, and industrial applications”. Plasma Chem. Plasma Proc., 23:1-46, 2003
43 A. Chirokov, A. Gutsol and A. Fridman. “Atmospheric pressure plasma of dielectric barrier discharges”. Pure Appl Chem, 77: 487-495, 2005
44 G. J. Pietsch and C. Humpert. “Discharge mechanism and ozone generation by surface discharges depending on polarity.” In HAKONE 8th International Symposium on High Pressure Low Temperature Plasma Chemistry, Puhajarve Estonia, 2002.
45 L. Hulka and G. J. Pietsch. “On the ignition voltage and structure of coplanar barrier discharges”. In HAKONE 8th International Symposium on High Pressure Low Temperature Plasma Chemistry, Puhajarve Estonia, 2002.
46 V. I. Gibalov, T. Murata and G. J. Pietsch. “Parameters of barrier discharges in coplanar arrangements”. In HAKONE 8th International Symposium on High Pressure Low Temperature Plasma Chemistry, Puhajarve Estonia, 2002.
47 Y. H. Lee and G. Y. Yeom. “Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure”. Jpn. J. Appl. Phys., 44: 1076-1080, 2005.
48 U. Kogelschatz. “Filamentary, patterned and diffuse barrier discharges”. IEEE Trans. Plasma Sci., 30:1401-1407, 2002.
49 T. Nozaki, Y. Unno, Y. Miyazaki and K.Okazaki. “A clear distinction of plasma structure between APG and DBD, paper” presented to 15th International Symposium on Plasma Chemistry, Orleans, France, 2001.
50 X. Xu. “Dielectric barrier discharge-properties and applications”. Thin Solid Films, 390: 237-242, 2001.
51 U. Kogelschatz, B. Eliasson and E. Walter. “From ozone generator to flat television screens: history and future potential of dielectric barrier discharges”. Pure Appl. Chem., 71:1819-1828, 1999.
52 U. Kogelschatz, M. Hirth and B. Eliasson. “Ozone synthesis from oxygen in dielectric barrier discharges”. J. Phys. D: Appl. Phy., 20: 1421-1437, 1987.
53 U. Kogelschatz. “Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation”. Pure Appl. Chem, 62:1667-1674, 1990.
54 El Dakrouri, J. Yan, M. C. Gupta, M. Laroussi and Y. Badr “VUV emission from a novel DBD based radiation source”. J Phys D Appl Phys, 35:L109-L114, 2002.
55 H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, J. F. Behnke. “The barrier discharge: basic properties and application to surface treatment”. Vacuum, 71: 417-436, 2003.
56 I. W. Boyd, Z. Y. Zhang U. Kogelschatz. “ Development and applications of UV excimer lamps, Photo-Excited Processes, Diagnostics and Applications.”, A. Peled, Ed., 161-199, Kluwer Academic, The Netherlands, (2003).
57 U. Kogelschatz. “Excimer lamp: Their history, discharge physics and industrial applications”. In Proceedings of the SPIE, 5483:.272-286, 2004.
58 M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts V.S. Skakun and M. V. Erofeev. “Capacitive and barrier discharge excilamps and their applications”. Instruments & experimental technique, 49:595-746, 2006.
59 V. F. Tarasenko. “Excilamps as efficient UV-VUV light sources”. Pure Appl. Chem., 74: 465-469, 2002.
60 M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts and M. V. Erofeev.“Exciplamps: efficient sources of spontaneous UV and VUV radiation”. Instruments and methods of investigation, 28:1-17, 2002.
61 T Oppenlander, “Potentials and Applications of Excimer Lamps (Incoherent Vacuum- UV/VUV Sources) in Photochemistry and in Photochemical Technology” http://www.stpgateway. de/start/start2.html
62 J. Y. Zhang, I. W. Boyd. “Lifetime investigation of excimer UV source”. Appl. Surf. Sci., 168:296-299, 2000.
63 T. Oppenlander and E. Sosnin. “Mercury free (VUV) and UV excil lamps: lamps of the future”. IUVA news, 7: 16-20, 2005.
Mr. Vijay Nehra
- India
Mr. Ashok Kumar
- India
Mr. H K Dwivedi
- India