Home   >   CSC-OpenAccess Library   >    Manuscript Information
A modified free decay test apparatus for the characterization of soft magnetic gels in the presence of magnetic fields
Venkateswara Rao. P, Maniprakash. S, Srinivasan. S.M
Pages - 179 - 190     |    Revised - 30-04-2010     |    Published - 10-06-2010
Volume - 4   Issue - 2    |    Publication Date - May 2010  Table of Contents
MORE INFORMATION
KEYWORDS
Free decay test in Shear mode, Magnetorheological gel / elastomer, vibration control, damping applications
ABSTRACT
This paper presents the development of a simple free decay test apparatus that can be a cost effective alternative to the popular expensive dynamical mechanical analyzers useful for characterization of the dynamic characteristics of soft magnetic composite gels in the presence of variable magnetic field. This apparatus also addresses the common difficulty faced in dynamical mechanical analyzers to conduct the characteristics of deformation dependent mechanical characteristics especially for large deformations, sometimes to the order of 100% that may be necessary for highly compliant polymeric materials. In addition, this apparatus can easily be fitted or modified to facilitate the application of magnetic field. The apparatus is designed to test thin sheet specimens of the magnetic gels in the shear mode at room temperature. As an example, magnetic composite gels prepared with micron sized polarizable particles (carbonyl iron particles) interspersed in a polymer matrix gel are used to show the effectiveness of the apparatus. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Deviations from the linear material behavior can be captured using the appropriate equations that relate the linear assumptions made. Such deviations can then be used in determining the large deformation dependent characteristics of the gel specimen. Thus, it is demonstrated that the apparatus is a cost effective and useful tool for purposes of testing soft and compliant magnetic composite gels used for damping applications.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 CiteSeerX 
5 refSeek 
6 ResearchGATE 
7 Libsearch 
8 Scribd 
9 WorldCat 
10 SlideShare 
11 PDFCAST 
12 PdfSR 
13 Chinese Directory Of Open Access 
Abramchuk S S, D.A. Grishin, E.Yu. Kramarenko, G.V. Stepanov and A.R. Khokhlov (2006). Effect of Homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression. Polymer science, 48, 138-145.
Beskok, A., and Srinivasa, A. R.,“Simulation and analysis of a magnetoelastically driven micro-pump”, J. Fluid Eng-T, ASME, 123 (2): 435-438, 2001.
Carlson, J. D. and M. R. Jolly (2000). MR fluid, foam and elastomer devices. Mechatronics, 10, 555-569.
Chen, L, X. L Gong, W. Q. Jiang, J. J. Yao, H. X. Deng and W. H. Li (2007). Investigation on magnetorheological elastomers based on natural rubber. J. mater.sci.,.42, 483-5489.
Deng, H. X. and X. L. Gong (2008). Application of magnetorheological elastomer to vibration absorber. Communication in nonlinear science and numerical simulation, 13,1938-1947.
Fuchs, A, Q. zhang, J. Elkins, F. Gordaninejad and C.Evrensel (2007). Development and characterization of magnetorheological elastomers. J. Applied polymer science, vol.105,2497-2508.
G. Y. Zhou . (2003). Shear properties of a magnetorheological elastomer. Smart materials and structures, 12, 139-146.
Gong, X. L., X. Z. Zhang, and P. Q. Zhang (2005). Fabrication and characterization of isotropic magnetorheological elasomers. Polymer testing 24, 669-676.
H. Bose and R. Roder (2009). Magnetorheological elastomers with high variability of their mechanical properties. Journal of physics: Conference series 149, 012090, 1-6.
Hu, Y., Y. L. Wang, X. L. Gong, X. Q. Gong, X. Z. Zhang, W. Q. Jiang, P. Q. Zhang and Z. Y. Chen (2005). New magnetorheological elastomers based on polyurethane/Si- rubber hybrid. Polymer testing, 24, 324-329.
Ibrahim,R.A. (2008). Recent advances in nonlinear passive vibration isolators. Journal of sound and vibration, 314, 371-452.
J. Venkataraghavan, Compliant mechanisms, Master’s thesis, Mechanical Engineering, Texas A&M University, College Station, Texas, 2001.
J.Travis and J. Kring.(2006). LabVIEW for Everyone: Graphical programming made easy and fun ed.3. Prentice Hall.
Lokander. M and B. Stenberg (2003). Performance of isotropic magnetorheological rubber materials. Polymer testing, 22, 245-251.
Popp. K.M, X.Z. Zhang, W.H Li and P.B. Kosasih (2009). MRE properties under shear and squeeze modes and applications. Journal of physics: Conference series 149, 012095, 1-4.
Shen.Y, M.F. Golnaraghi and G.R. Heppler (2004). Experimental research and modeling of magnetorheological elastomers. Journal of intelligent material systems and structures, 15, 27-35.
Stepanov, G. V., S. S. Abramchuk, D. A. Grishin, L. V. Nikitin, E. Yu. Kramarenko and A.R.Khokhlov (2007). Effect of a homogeneous Magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 48 (2007) 488-495.
Sun.T. L., Gong, X. L., Jiang. W. Q., Li.J.F., Xu. Z. B., and Li. W. H. (2008). Study on the damping properties of magnetotheological elastomers based on cis-polybutadiebe rubber. Polymer testing, 27, 520-526.
Terry V.Pearce. (2006). “Jelly Blocks and Jelly Letters”, U.S. Patent. 7,101,247 B2.
Thomson W.T and Dahleh M.D. (2003). Theory of vibration with applications, fifth edition, Pearson Education Pvt. Ltd. ,Singapore.
Yinling wang, Yuan Hu, Xinglong Gong, Wanquan Jiang, Peiqiang Zhang, Zuyao Chen (2007). Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix. Journal of applied polymer science, Vol.103, 3143-3149.
Mr. Venkateswara Rao. P
- India
pvbn.rao@gmail.com
Mr. Maniprakash. S
- India
Professor Srinivasan. S.M
- India


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS