Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(655.63KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Thin Film Pressure Estimation of Argon and Water using LAMMPS
Sumith Yesudasan
Pages - 1 - 10     |    Revised - 31-03-2019     |    Published - 30-04-2019
Volume - 12   Issue - 1    |    Publication Date - April 2019  Table of Contents
MORE INFORMATION
KEYWORDS
Molecular Dynamics, MDPD, Dissipative Particle Dynamics, Local Pressure, Thin Films.
ABSTRACT
In this work, we investigate the pressure and density characteristics of water film when simulated using the emerging technique called many body dissipative particle dynamics method. This work also layout the methodology of estimating local pressure from LAMMPS simulation using Harasima scheme. Using the triangular shaped cloud interpolation function, pressure and density are estimated at local bins and compared with the experimental database. Our results show good agreement for the molecular dynamics results of the argon system, while the many body dissipative particle model fails to simulate the water properties at room temperature. In its current form, the many body dissipative particle method cannot be used for accurate liquid vapor interfacial simulations and heat transfer studies.
1 Google Scholar 
2 Academia 
3 ResearchGate 
4 Scribd 
5 SlideShare 
1 Allen, M. 2004. "Introduction to molecular dynamics simulations". Computational Soft Matter (2004). DOI:https://doi.org/10.1016/j.cplett.2006.06.020.
2 Chen, C. et al. 2010. "A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage". Langmuir. [On-Line]. DOI: https://doi.org/10.1021/la100105f.
3 Cupelli, C. et al. 2008. "Dynamic capillary wetting studied with dissipative particle dynamics". New Journal of Physics. [On-Line]. DOI:https://doi.org/10.1088/1367-2630/10/4/043009.
4 Daisy, S.Y. "Molecular Dynamics Study of Solid-Liquid Heat Transfer and Passive Liquid Flow". Ph.D. Thesis, Syracuse University, Syracuse, USA, 2016
5 Fletcher, R. 1964. "Function minimization by conjugate gradients". The Computer Journal. [On-Line]. DOI:https://doi.org/10.1093/comjnl/7.2.149.
6 F�chslin, R.M. et al. 2009. "Coarse graining and scaling in dissipative particle dynamics. Journal of Chemical Physics". [On-Line]. DOI:https://doi.org/10.1063/1.3143976.
7 Groot, R.D. and Warren, P.B. 1997. "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation". Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.474784.
8 Groot, R.D. and Warren, P.B. 1997. "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation". Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.474784.
9 Hansen, J.P. and Verlet, L. 1969. "Phase transitions of the Lennard-Jones system". Physical Review. [On-Line]. DOI:https://doi.org/10.1103/PhysRev.184.151.
10 Hockney, R.W. and Eastwood, J.W. "Computer Simulation Using Particles". 1983.
11 Irving, J.H. and Kirkwood, J.G. 1950. "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics". The Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.1747782.
12 Lemmon, E.W. et al. 2017. "NIST Chemistry WebBook, NIST Standard Reference Database Number 69". NIST Chemistry WebBook. [On-Line]. DOI:https://doi.org/10.1016/0021-9290(94)90039-6.
13 Liu, N. et al. 2017. "Mechanical performance of graphene-based artificial nacres under impact loads: A coarse-grained molecular dynamic study". Polymers. [On-Line]. DOI:https://doi.org/10.3390/polym9040134.
14 Maiti, A. and McGrother, S. 2004. "Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension." Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.1630294.
15 Martys, N.S. and Mountain, R.D. 1999. "Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions". Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. [On-Line]. DOI:https://doi.org/10.1103/PhysRevE.59.3733.
16 MathWorks, I. 2004. "MATLAB The Language of Technical Computing". Components. [On-Line]. DOI:https://doi.org/10.1007/s10766-008-0082-5.
17 Nose, S.. b 1984. "A unified formulation of the constant temperature molecular dynamics methods". The Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.447334.
18 Plimpton, S. et al. 2007. "LAMMPS-large-scale atomic/molecular massively parallel simulator". 2007, 18, 43-43. Sandia National Laboratories. [On-Line]. DOI:https://doi.org/10.1002/ejoc.201200111.
19 Sonne, J. et al. 2005. "Methodological problems in pressure profile calculations for lipid bilayers". Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.1862624.
20 Stukowski, A. 2010. "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool". Modelling and Simulation in Materials Science and Engineering. [On-Line]. DOI:https://doi.org/10.1088/0965-0393/18/1/015012.
21 Tosenberger, A. et al. 2013. "Modelling of thrombus growth in flow with a DPD-PDE method". Journal of Theoretical Biology. [On-Line]. DOI:https://doi.org/10.1016/j.jtbi.2013.07.023.
22 Tu, J. et al. 2015. "Simulating the rheology of suspensions using dissipative particle dynamics". Procedia Engineering (2015).
23 Warren, P.B. 2003. "Vapor-liquid coexistence in many-body dissipative particle dynamics". Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. [On-Line]. DOI:https://doi.org/10.1103/PhysRevE.68.066702.
24 Warren, P.B. 2003. "Vapor-liquid coexistence in many-body dissipative particle dynamics". Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. [On-Line]. DOI:https://doi.org/10.1103/PhysRevE.68.066702.
25 Weng, J.G. et al. 2000. "Molecular dynamics investigation of thickness effect on liquid films". Journal of Chemical Physics. [On-Line]. DOI:https://doi.org/10.1063/1.1290698.
26 YD, S. 2015. "An efficient algorithm for contact angle estimation in molecular dynamics simulations". International Journal of Engineering (IJE). 9, 1 [On-Line].
27 YD, S. and Maroo, S.C. 2018. "A direct two-dimensional pressure formulation in molecular dynamics". Journal of Molecular Graphics and Modelling. 79, 230�234. [On-Line] DOI: https://doi.org/10.1016/j.jmgm.2017.12.006.
28 Yd, S. and Maroo, S.C. 2015. "A New Algorithm for Contact Angle Estimation in Molecular Dynamics Simulations". ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels [On-Line], V001T04A007.
29 Yd, S. and Maroo, S.C. 2016. "Origin of Surface-Driven Passive Liquid Flows". Langmuir. 32, 34, 8593�8597. [On-Line] DOI: https://doi.org/10.1021/acs.langmuir.6b02117.
30 Yd, S. and Maroo, S.C. 2015. "Surface-Heating Algorithm for Water at Nanoscale". Journal of Physical Chemistry Letters. 6, 18, 3765�3769. [On-Line] DOI: https://doi.org/10.1021/acs.jpclett.5b01627.
31 Yesudasan, S. et al. 2018. "Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure". Journal of Molecular Modeling. 24, 5 [On-Line]. DOI:https://doi.org/10.1007/s00894-018-3642-7.
32 Yesudasan, S. et al. 2018. "Fibrin polymerization simulation using a reactive dissipative particle dynamics method. Biomechanics and Modeling in Mechanobiology". 17, 5, 1389�1403. [On-Line] DOI: https://doi.org/10.1007/s10237-018-1033-8.
33 Yesudasan, S. et al. 2018. "Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior". Journal of Biomolecular Structure and Dynamics. 36, 6, 1417�1429. [On-Line] DOI: https://doi.org/10.1080/07391102.2017.1323674.
34 Yesudasan, S. and Chacko, S. 2018. "Fast Local Pressure Estimation for Two Dimensional Systems From Molecular Dynamics Simulations". Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition, [On-Line] V002T10A004.
Dr. Sumith Yesudasan
Department of Mechanical Engineering, University of Jamestown, USA - United States of America
sumith.yesudasan@uj.edu