Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(414.97KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Hand Segmentation Techniques to Hand Gesture Recognition for Natural Human Computer Interaction
Archana S. Ghotkar, Gajanan K. Kharate
Pages - 15 - 25     |    Revised - 15-03-2012     |    Published - 16-04-2012
Volume - 3   Issue - 1    |    Publication Date - February 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Human Computer Interface, Hand Tracking and Segmentation, Hand Gesture Recognition
ABSTRACT
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm where three algorithms for hand segmentation using different color spaces with required morphological processing have were utilized. Hand tracking and segmentation algorithm (HTS) is found to be most efficient to handle the challenges of vision based system such as skin color detection, complex background removal and variable lighting condition. Noise may contain, sometime, in the segmented image due to dynamic background. An edge traversal algorithm was developed and applied on the segmented hand contour for removal of unwanted background noise.
CITED BY (40)  
1 Darwish, S. M., Madbouly, M. M., & Khorsheed, M. B. (2016). Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach. International Journal of Engineering and Technology, 8(3), 157.
2 Nazaran, A., Wisco, J. J., Hageman, N., Schettler, S. P., Wong, A., Vinters, H. V., ... & Bangerter, N. K. (2016). Methodology for computing white matter nerve fiber orientation in human histological slices. Journal of neuroscience methods, 261, 75-84.
3 Zhao, M. Y., Ong, S. K., & Nee, A. Y. C. (2016). An Augmented Reality-assisted Therapeutic Healthcare Exercise System Based on Bare-hand Interaction. International Journal of Human-Computer Interaction, (just-accepted).
4 Kharate, G. K., & Ghotkar, A. S. (2016). VISION BASED MULTI-FEATURE HAND GESTURE RECOGNITION FOR INDIAN SIGN LANGUAGE MANUAL SIGNS. International Journal on Smart Sensing & Intelligent Systems, 9(1).
5 Hassanat, A. B., Alkasassbeh, M., Al-awadi, M., & Esra'a, A. A. (2016). Color-based object segmentation method using artificial neural network. Simulation Modelling Practice and Theory, 64, 3-17.
6 Shrawankar, U., & Dixit, S. S. (2016). Listening deaf through Tactile sign language. In Proceedings of the 10th INDIACom, 3rd International Conference on Computing for Sustainable Global Development, New Delhi (INDIA), IEEE, 16th–18th March.
7 Rungruangbaiyok, S., Duangsoithong, R., & Chetpattananondh, K. (2015, June). Ensemble Threshold Segmentation for hand detection. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015 12th International Conference on (pp. 1-5). IEEE.
8 Kovalenko, M., Antoshchuk, S., & Sieck, J. (2015, May). Human action recognition using a semantic-probabilistic network. In Emerging Trends in Networks and Computer Communications (ETNCC), 2015 International Conference on (pp. 67-72). IEEE.
9 Ma, F., Wang, H., & Sun, Z. (2015). The Design and Implementation of Natural Human-Robot Interaction System Based on Kinect Sensor.
10 Kovalenko, M., Antoshchuk, S., & Hodovychenko, M. (2015, October). Event recognition using a semantic-probabilistic network. In Information Technologies in Innovation Business Conference (ITIB), 2015 (pp. 35-38). IEEE.
11 Sonkusare, J. S., Chopade, N. B., Sor, R., & Tade, S. L. (2015, February). A Review on Hand Gesture Recognition System. In Computing Communication Control and Automation (ICCUBEA), 2015 International Conference on (pp. 790-794). IEEE.
12 Megha, J. V., Padmaja, J. S., & Doye, D. D. Radially Defined Local Binary Patterns for Hand Gesture Recognition.
13 Sheth, K., & Futane, P. R. Indian Sign Language Recognition using Hybrid Video Segmentation Approach.
14 Han, B. (2015). The Multimodal Interaction through the Design of Data Glove (Doctoral dissertation, Université d'Ottawa/University of Ottawa).
15 Polash, M. M., Bhuiyan, N. A., & Kabir, M. H. Secured Dynamic Hand Gestures Detection System.
16 Escalona Neira, I. F. (2014). Interfaz humano máquina controlada por gestos.
17 Sharma, K., & Garg, N. K. (2014). International Journal of Computer Application and Technology.
18 Hasija, K., & Mehna, R. Analysis of various methodology of hand gesture recognition system using Matlab. International Journal of Advanced Engineering Research and Science, (5), 28-32.
19 Kovalenko, M., Antoshchuk, S., & Sieck, J. (2014, March). Real-Time Hand Tracking and Gesture Recognition Using Semantic-Probabilistic Network. In Computer Modelling and Simulation (UKSim), 2014 UKSim-AMSS 16th International Conference on (pp. 269-274). IEEE.
20 Shi, Y., Yan, Z., Ge, H., & Mei, L. (2014). Visual Objects Location Based on Hand Eye Coordination. In Future Information Technology (pp. 403-408). Springer Berlin Heidelberg.
21 Potnis, S. S., Jahagirdar, A. P. A. S., & Jahagirdar, A. P. A. S. Nav view search.
22 Bidgar, G., Autade, M., Marathe, P., & Aher, S. Hand Gesture Recognition for HCI (Human-Computer Interaction) using Artificial Neural Network.
23 Potnis, S. S., & Jahagirdar, A. P. A. S. Real Time Hand Gesture Recognition for Smart Classroom Environment.
24 Singhai, S., & Satsangi, C. S. (2014). Hand Segmentation for Hand Gesture Recognition.
25 Konwar, A. S., Borah, B. S., & Tuithung, C. T. (2014, April). An American Sign Language detection system using HSV color model and edge detection. In Communications and Signal Processing (ICCSP), 2014 International Conference on (pp. 743-747). IEEE.
26 Muttena, S., Sriram, S., & Shiva, R. (2014, November). Mapping gestures to speech using the kinect. In Science Engineering and Management Research (ICSEMR), 2014 International Conference on (pp. 1-5). IEEE.
27 Kaur, S., Banga, V., & Amritsar, I. (2014). Boltay Hath for Indian Sign Language Recognition. International Journal of Applied Information Systems, 7(1), 1-7.
28 Kaur, S., & Banga, V. K. Article: Boltay Hath for Indian Sign Language Recognition}. International Journal of Applied, 7, 1-7.
29 Ghotkar, A. S., & Kharate, G. K. (2014). Study of vision based hand gesture recognition using Indian sign language. Computer, 55, 56.
30 Al-Tairi, Z. H., Rahmat, R. W. O., Saripan, M. I., & Sulaiman, P. S. (2014). Skin Segmentation Using YUV and RGB Color Spaces. JIPS, 10(2), 283-299.
31 Bakminseon, gangseunghun, and chaeoksam. (2013). Robust hand detection and tracking using sensor fusion. Journal of Information Science: Software and Applications, 40 (9), 558-566.
32 Feng, K. P., Wan, K., & Luo, N. (2013, July). Natural Gesture Recognition Based on Motion Detection and Skin Color. In Applied Mechanics and Materials (Vol. 321, pp. 974-979).
33 Boughnim, N., Marot, J., Fossati, C., & Bourennane, S. (2013). Hand posture recognition using jointly optical flow and dimensionality reduction. EURASIP Journal on Advances in Signal Processing, 2013(1), 1-22.
34 Tumkor, S., Esche, S. K., & Chassapis, C. (2013, November). Hand Gestures in CAD Systems. In ASME 2013 International Mechanical Engineering Congress and Exposition (pp. V012T13A008-V012T13A008). American Society of Mechanical Engineers.
35 Priyadharshni, V., Jose, M. J., Anand, M. S., Kumaresan, A., & Kumar, N. M. (2013). Hybrid Image Segmentation Using Edge Detection With Fuzzy Thresholding For Hand Gesture Image Recoginition. International Journal of Innovative Research and Development, 2(5).
36 Ghotkar, A. S., & Kharate, G. K. (2013). Vision based Real Time Hand Gesture Recognition Techniques for Human Computer Interaction. International Journal of Computer Applications, 70(16).
37 Patidar, S., & Satsangi, D. C. (2013). Hand Segmentation and Tracking Technique using Color Models. Hand, 1(2).
38 Pansare, J. R., Dhumal, H., Babar, S., Sonawale, K., & Sarode, A. (2013). Real Time Static Hand Gesture Recognition System in Complex Background that uses Number system of Indian Sign Language. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), 2(3), 1086-1090.
39 Dhruva, N., Rupanagudi, S. R., & Kashyap, H. N. (2013). Novel Algorithm for Image Processing based Hand Gesture Recognition and its Application in Security. In Advances in Computing, Communication, and Control (pp. 537-547). Springer Berlin Heidelberg.
40 Sarkar, A. R., Sanyal, G., & Majumder, S. (2013). Hand gesture recognition systems: a survey. International Journal of Computer Applications, 71(15).
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 SlideShare
6 PdfSR
1 V. Pavlovis,R. Sharma and T. huang, “Visual Interpretation of Hand Gesture for HumanComputer Interaction: A Review”, IEEE Transaction on pattern Analysis and Machine Intelligence, Vol. 19, No.7, Jul 1997.pp.,677-695.
2 S. Zhao, W. Tan, C. Wu, L. Wen, “A Novel Interactive Method of Virtual Reality System Based on Hand Gesture Recognition”, IEEE-978-1-4244-2723-9/09,pp., 5879-5882,2009.
3 Y. Guan, M. Zheng, “Real-time 3D pointing gesture recognition for natural HCI”,Proceedings of the world congress on Intilligent Control and Automation, China, pp,.2433-2436.,2008.
4 W. Freeman, C. Weissman, “Television control by hand gesture”, IEEE international workshop on Automatic Face and Gesture Recognition, Zurich, 1995.
5 A. Sepehri, Y. Yacoob, L. Davis, “Employing the Hand as an Interface Device”, Journal of Multimedia, Vol. 1, No.7, pp., 18-2, 2006.
6 A. Erol, G. Bebis, M. Nicolescu, R.Boyle and X.Twombly, “Vision-based hand pose estimation: A review”, Science Direct, Computer Vision and Image Understanding 108,pp., 52-73,2007.
7 P. Bao, N. Binh, T. Khoa, “A new Approach To Hand Tracking and Gesture Recognition By A New Feature Type And HMM”, International Conference on Fuzzy Systems and Knowledge Discovery, IEEE Computer Society, 2009.
8 J. Alon, V. Athitsos, Q. Yuan, S. Sclaroff, “A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation”, IEEE Transaction of Pattern Analysis and Machine Intelligence,2008.
9 E. Stergiopoulou, N. Papamarkos, “A New Technique for Hand Gesture Recognition”,IEEE-ICIP,pp., 2657-2660,2006.
10 C. Burande,R. Tugnayat, N. Choudhary, “Advanced Recognition Techniques for Human Computer Interaction”, IEEE, Vol 2 pp., 480-483,2010
11 L. Howe, F. Wong,A. Chekima, “Comparison of Hand Segmentation Methodologies for Hand Gesture Recognition”,IEEE-978-4244-2328-6,2008
12 V. Vezhnevets, V. Sazonov. and A. Andreeva, “ A Survey on Pixel-Based Skin color Detection Techniques”
13 S. Phung, A. Bouzerdoum and D. Chai, “ Shin Segmentation Using Color Pixel Classification: Analysis and Comparision” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.27, No. 1,pp., 148-154,2005.
14 A. Elgammal, C. Muang and D. Hu, “Skin Detection – a Short Tutorial”, Encyclopedia of Biometrics , Springer-Verlag Berlin Heidelberg, 2009.
15 R. Rokade, D. ,Kokare,“ Gesture Recognition by Thinning Method”, International Conference on Digital Image Processing, IEEE Computer Society, pp., 284-287,2009.
16 A. Ghotkar, “A Novel Approach for Image Segmentation in Real Time Hand Gesture Recognition for HCI”, International Conference(ICSCI-2011),Pentagram Research,Hyderabad ,Jan-2011.
17 D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using mean shift” Computer Vision and Pattern Recognition, 2000.Proceddings. IEEE Conference on, 2:142-149 vol.2,2000.
18 A. Martin and S. Tosunoglu, “Image Processing Techniques for Machine Vision”
19 C.Jung, C.Kim, S.Chae, and S. Oh, “Unsupervised Segmentation of Overlapped Nuclei Using Bayesian Classification”, IEEE Transaction on Biomedical Engineering, Vol. 57,No.12,2010.
20 H. Rahimizadeh,, M. Marhaban, R. Kamil, and N. Ismail, “Color Image Segmentation Based on Bayesian Theorem and Kernel Density Estimation”, European Journal of Scientific Research, ISSN 1450-216 vol.26 No.3, pp., 430-436,2009.
21 R. Hassanpour, A. Shahbahrami, and S. Wong, “Adaptive Guassian Mixture Model for Skin Color Segmentation”, World Academy of science, Engineering and Technology 41,2008.
22 A. Chitade, S. Katiyar, “Color Based Image Segmentation Using K-means Clustering”,International Journal of Engineering Science and Technology, Vol.2(10), pp., 5319-5325,2010.
Mr. Archana S. Ghotkar
- India
archana.ghotkar@gmail.com
Mr. Gajanan K. Kharate
- India