Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(601.86KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Filtering Corrupted Image and Edge Detection in Restored Grayscale Image Using Derivative Filters
Chandra Sekhar Panda, Srikanta Patnaik
Pages - 105 - 119     |    Revised - 05-08-2009     |    Published - 01-09-2009
Volume - 3   Issue - 3    |    Publication Date - June 2009  Table of Contents
MORE INFORMATION
KEYWORDS
Derivative filter, Image denoising, Edge finding
ABSTRACT
In this paper, different first and second derivative filters are investigated to find edge map after denoising a corrupted gray scale image. We have proposed a new derivative filter of first order and described a novel approach of edge finding with an aim to find better edge map in a restored gray scale image. Subjective method has been used by visually comparing the performance of the proposed derivative filter with other existing first and second order derivative filters. The root mean square error and root mean square of signal to noise ratio have been used for objective evaluation of the derivative filters. Finally, to validate the efficiency of the filtering schemes different algorithms are proposed and the simulation study has been carried out using MATLAB 5.0.
CITED BY (20)  
1 Liu, C. (2016). Digits Recognition on Medical Device (Doctoral dissertation, The University of Western Ontario).
2 Nguyen, T. K. H. (2015). Conception faible consommation d'un système de détection de chute (Doctoral dissertation, Nice).
3 Nguyen, T. K. H. (2015). Low power architecture for fall detection system (Doctoral dissertation, Université Nice Sophia Antipolis).
4 Ngondya, D., Anatory, J., & Mohamed, A. R. Performance of Un-coded MC-CDMA-based Broadband Power Line Communications.
5 Yu, Q., Vegh, V., Liu, F., & Turner, I. (2015). A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging. PloS one, 10(7), e0132952.
6 Khairnar, d. d., kharche, v., & agarkar, s. international journal of pure and applied research in engineering and technology.
7 EKOMBO, P. L. E., Oumsis, M., & Meknassi, M. Motion tracking in MRI by Harmonic State Model: Case of heart left ventricle. International Journal of Computer Science and Security (IJCSS), 3(5), 428.
8 TK, H. N., Belleudy, C., & Pham, T. V. Performance and Evaluation Sobel Edge Detection on Various Methodologies.
9 Yu, Q., Liu, F., Turner, I., Burrage, K., & Vegh, V. (2013). The use of a Riesz fractional differential-based approach for texture enhancement in image processing. ANZIAM Journal, 54, 590-607.
10 Varade, M. R. R., Dhotre, M. R., & Pahurkar, A. B. (2013). A Survey on Various Median Filtering Techniques for Removal of Impulse Noise from Digital Images. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(2), pp-606.
11 Yu, Q. (2013). Numerical simulation of anomalous diffusion with application to medical imaging.
12 Karsoliya, S. Importance of Shape and Weight towards the Recital of Simple Adaptive Median Filter in Plummeting Impulse Noise Level from Digital Images.
13 Punjabi, V. D., Kumar, S., Gupta, N., Sinhal, A., & Basal, G. P. (2012). An Alternative Approach to Remove Impulse Noise from Digital Images to Reduce Execution Time. International Journal of Computer Applications, 46(13).
14 Madabusi, S., & Gangashetty, S. V. (2012, November). Edge detection for facial images under noisy conditions. In Pattern Recognition (ICPR), 2012 21st International Conference on (pp. 2689-2693). IEEE.
15 Khaire, P. A., & Thakur, N. V. (2012). Image Edge Detection based on Soft Computing Approach. International Journal of Computer Applications, 51(8).
16 Ladgham, A. (2012). Real time implementation of detection of bacteria in microscopic images using system generator. Journal of Biosensors & Bioelectronics, 2012.
17 Khaire, P. A., & Thakur, N. V. (2012). A Fuzzy Set Approach for Edge Detection. International Journal of Image Processing (IJIP), 6(6), 403-412.
18 Mathew, S. P., & Samuel, P. (2010). A novel Image Retrieval System using an effective region based shape representation technique. International Journal of Image Processing (IJIP), 4(5), 509.
19 Kathavarayan, R. S., & Karuppasamy, M. (2010). Preserving Global and Local Features for Robust Face Recognition under Various Noisy Environments. International Journal of Image Processing (IJIP), 3(6), 328.
20 Rastegar, S., Ghaderi, R., Ardeshipr, G., & Asadi, N. (2009). An intelligent control system using an efficient License Plate Location and Recognition Approach. International Journal of Image Processing (IJIP) Volume (3), (5), 252-264.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 OpenJ-Gate 
11 Scribd 
12 WorldCat 
13 SlideShare 
14 PDFCAST 
15 PdfSR 
1 Q.Ji, R.M.Haralick, “Quantitative Evaluation of Edge Detectors using the Minimum Kernel Variance Criterion”, In Proceedings of the IEEE International Conference on Image Processing ICIP 99., volume: 2, pp.705-709, 1999.
2 E. Argyle., “Techniques for edge detection”, In Proceedings of the IEEE, vol. 59, pp. 285-286, 1971.
3 H.Chidiac, D.Ziou, “Classification of Image Edges”, In Proceedings of the Vision Interface’99, Troise-Rivieres, Canada, pp. 17-24, 1999.
4 Rital, S.; Bretto, A., Cherifi, H., Aboutajdine, D.; "A combinatorial edge detection algorithm on noisy images", In Proceedings of the Video/Image Processing and Multimedia Communications 4th EURASIP-IEEE Region 8 International Symposium on VIPromCom, pp.351 – 355, June, 2002.
5 R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, 2nd ed., Upper Saddle River, New Jersey, Prentice-Hall Inc.( 2002).
6 Pratt, W.K., “Digital Image Processing”, 4 th ed., Hoboken, New Jersey, John Wiley & Sons, Inc (2007).
7 Wiener, N. “Extrapolation, Interpolation, and Smoothing of Stationary Time Series”, MIT Press, Cambridge, Mass (1942).
8 J.W.Tukey, “Exploratory Data Analysis”, Addison-Wesley, Reading, MA (1971).
9 C. W. Helstrom, “Image Restoration by the Method of Least Squares,” Journal of Optical Society of America, 57(3): 297–303, March 1967.
10 J. L. Harris, Sr., “Potential and Limitations of Techniques for Processing Linear Motion- Degraded Imagery,” in Evaluation of Motion Degraded Images, US Government Printing Office, Washington DC, pp.131–138, 1968.
11 J. L. Homer, “Optical Spatial Filtering with the Least-Mean-Square-Error Filter,” Journal of Optical Society of America, 51(5): 553–558, May 1969.
12 J. L. Homer, “Optical Restoration of Images Blurred by Atmospheric Turbulence Using Optimum Filter Theory,” Applied Optics, 9(1): 167–171, January 1970.
13 B. L. Lewis and D. J. Sakrison, “Computer Enhancement of Scanning Electron Micrographs,” IEEE Trans. Circuits and Systems, CAS-22(3): 267–278, March 1975.
14 T. S. Huang, G. J. Yang and G. Y. Tang, “A Fast Two-Dimensional Median Filtering Algorithm,” IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-27(1): 13–18, February 1979.
15 J. T. Astola and T. G. Campbell, “On Computation of the Running Median,” IEEE Trans. Acoustics, Speech and Signal Processing, 37(4): 572–574, April 1989.
16 Hueckel.,M., “ A local visual operator which recognizes edges and line”. Journal of ACM, 20(4): 634-647, Oct. 1973.
17 T. Peli and D. Malah, “A Study of Edge Detection Algorithms” Computer Graphics and Image Processing, vol. 20: 1-21, 1982.
18 Chanda, B., Chaudhuri, B.B. and Dutta Majumder, D., “A differentiation/ enhancement edge detector and its properties”, IEEE Trans. on System, Man and Cybern. SMC- 15: 162-168, 1985.
19 Cyganek, C., and Siebert, J.P., “An Introduction to 3D Computer Vision Techniques and Algorithms”, New York, John Wiley & Sons, Ltd (2009).
20 Ziou, D. and S. Tabbone, “Edge detection techniques an overview”. International Journal of Pattern Recognition Image Analysis, vol. 8: 537-559, 1998.
21 Davis, L. S., "Edge detection techniques", Computer Graphics Image Process., vol. 4: 248- 270, 1995.
22 V.Torre and T. A. Poggio., “On edge detection”, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no.2: 187-163, Mar. 1986.
23 Bovik, A. C., Huaung, T. S. and JR. D. C. M., "Non-parametric tests for edge detection noise", Pattern Recognition, vol.19: 209-219, 1986.
24 M.Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. “A Robust Visual Method for Assessing the Relative Performance of Edge Detection Algorithms”, IEEE Trans. Pattern Analysis and Machine Intelligence, 19(12): 1338-1359, 1997.
25 M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. “Comparison of Edge Detectors: A Methodology and Initial Study “Computer Vision and Image Understanding, 69(1): 38-54, Jan. 1998.
26 M.C. Shin, D. Goldgof, and K.W. Bowyer. “Comparison of Edge Detector Performance through Use in an Object Recognition Task”. Computer Vision and Image Understanding, 84(1): 160-178, Oct. 2001.
27 Umbaugh, S., "Computer Imaging: digital image analysis and processing", CRC press book (2005).
28 Chanda, B., and Dutta Majumder, D. “Digital Image Processing and Analysis”, India, Prentice Hall of India (2008).
29 Forsyth, D.A., and Ponce, J., “A Modern Approach”, India, Prentice Hall of India (2003).
30 F. Bergholm. “Edge focusing,” In Proceedings of the 8th Int. Conf. Pattern Recognition, Paris, France, pp. 597- 600, 1986.
31 Sobel, I.E., “Camera Models and Machine Perception,” Ph.D. dissertation, Stanford University, Palo Alto, California, 1970.
32 Roberts, L.G., Tippet, J.T., “Machine Perception of Three-Dimensional Solids”, Cambridge, Mass, MIT Press (1965).
33 Prewitt, J.M.S., Lipkin, B.S., and Rosenfeld, “A. Object Enhancement and Extraction”, New York, Academic Press (1970).
34 Duda, R.O, Hart, P.E., “Pattern Classification and Scene Analysis”, New York, Wiley Interscience (2001).
35 Marr, D.C. and Hildreth, E., “Theory of edge detection”, Proc. Royal Soc. London, vol. B, pp. 187-217, 1980.
36 Yakimovsky Y., "Boundary and object detection in real world image", Journal ACM, vol. 23: 599-618, 1976.
37 Hueckel, M., “An operator which locates edges in digitized pictures”, J. Assoc. Comput., vol. 18: 113-125, 1971.
38 Gilat, A., “Matlab An Introduction with Applications”, New York, John Wiley & Sons, Inc (2004).
39 “Image Processing Toolbox, User guide for use with MATLAB”, the Math Works Inc., USA (2001).
Mr. Chandra Sekhar Panda
- India
ur_chandra2002@yahoo.co.in
Professor Srikanta Patnaik
- India