Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(283.66KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Improving Performance of Multileveled BTC Based CBIR Using Sundry Color Spaces
H.B.Kekre, Sudeep D.Thepade, Srikant Sanas
Pages - 620 - 630     |    Revised - 31-01-2011     |    Published - 08-02-2011
Volume - 4   Issue - 6    |    Publication Date - January / February  Table of Contents
MORE INFORMATION
KEYWORDS
Gender Recognition, Feature Extraction, Edges
ABSTRACT
The paper presents an extension of content based image retrieval (CBIR) techniques based on multilevel Block Truncation Coding (BTC) using nine sundry color spaces. Block truncation coding based features is one of the CBIR methods proposed using color features of image. The approach basically considers red, green and blue planes of an image to compute feature vector. This BTC based CBIR can be extended as multileveled BTC for performance improvement in image retrieval. The paper extends the multileveled BTC using RGB color space to other nine color spaces. The CBIR techniques like BTC Level-1, BTC Level-2, BTC Level-3 and BTC Level-4 are applied using various color spaces to analyze and compare their performances. The CBIR techniques are tested on generic image database of 1000 images spread across 11 categories. For each CBIR technique, 55 queries (5 per category) are fired on extended Wang generic image database to compute average precision and recall for all queries. The results have shown the performance improvement (ie., higher precision and recall values) with BTC-CBIR methods using luminance-chrominance color spaces (YCgCb, Kekre’s LUV, YUV, YIQ, YCbCr) as compared to non-luminance (RGB, HSI, HSV, rgb , XYZ) Color spaces. The performance of multileveled BTC-CBIR increases gradually with increase in level up to certain extent (Level 3) and then increases slightly due to voids being created at higher levels. In all levels of BTC Kekre’s LUV color space gives best performance
CITED BY (18)  
1 YAO Court, in Yan & East (2016). Image retrieval method based on features of interest points. Jilin University (Science Edition), 54 (02), 323-328.
2 Nalini, M. P., & Malleswari, B. L. Review on Content Based Image Retrieval: From Its Origin to the New Age.
3 Feng Li, & Zhao Jianfei. (2014). LLE algorithm and relevance feedback A medical image retrieval TV technology, 38 (1), 190-194.
4 Shi Xiaoyan, Liu Xia Huai, water & Juan. (2014). Based Medical Image Retrieval IAFSA optimized weights. Computer Engineering and Design, 35 (11), 3961-3966.
5 Yao, Q. A., Zheng, H., Xu, Z. Y., Wu, Q., Li, Z. W., & Yun, L. (2014). Massive medical images retrieval system based on Hadoop. Journal of Multimedia, 9(2), 216-222.
6 Fan Min, & Xu wins only. (2013). Cloud-based medical image retrieval system. Computer Engineering and Applications, 49 (21).
7 Thepade, S. D., Kekre, H. B., & Lohar, A. T. International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS).
8 Mehta, A. Review and Comparison of BTC Based Feature Extraction Techniques in CBIR.
9 Fan Min, & Xu wins only. (2013). Hadoop massive medical image retrieval system. Journal of Computer Applications, 33 (12), 3345-3349.
10 Wang, G., & Sun, J. (2013, October). Image retrieval based on color and texture. In Computer Science and Network Technology (ICCSNT), 2013 3rd International Conference on (pp. 222-225). IEEE.
11 Licai Qiu, Zhou Jian Asia, & more Wei Yu. (2013). Research and Improvement FTP protocol information hiding methods. Computer Engineering and Applications, 49 (21), 111-113.
12 Kekre, H. B., Thepade, S. D., & Lohar, A. T. (2013, January). Image retrieval using Block Truncation Coding Extended to Color Clumps. In Advances in Technology and Engineering (ICATE), 2013 International Conference on (pp. 1-6). IEEE.
13 Gong Miao, Fu-zheng, Zhang & sai. (2012). Comprehensive BTC color image retrieval algorithm moments and GLCM of television technology, 36 (11), 30-33.
14 Bharatkar, P. S., & Patel, R. (2012). A survey on RSI classification techniques. International Journal of Advanced Research in Computer Science, 3(6).
15 Kekre, H. B., Thepade, S. D., & Sanas, S. (2011). Performance Appraise of Assorted Thresholding Methods in CBIR using Block Truncation Coding. International Journal of Computer Science and Information Security, 9(6), 249.
16 Kekre11, H. B., Thepade, S. D., Banura, V. K., & Khandelwal, A. (2011). Introducing Global and Local Walsh Wavelet Transform for Texture Pattern Based Image Retrieval. IJCSNS, 11(9), 65.
17 Kekre, H. B., Thepade, S. D., & Banura, V. K. (2011). Performance Comparison of Texture Pattern Based Image Retrieval Methods using Walsh, Haar and Kekre Transforms with Assorted Thresholding Methods. International Journal of Computer Science and Information Security, 9(3), 76.
18 Kekre, H. B., Thepade, S. D., & Banura, V. K. (2011). Amelioration of Walsh-Hadamard Texture Patterns based Image Retrieval using HSV Color Space. International Journal of Computer Science and Information Security, 9(3), 64.
1 Google Scholar
2 CiteSeerX
3 refSeek
4 iSEEK
5 Socol@r
6 Scribd
7 WorldCat
8 SlideShare
9 PdfSR
1 Dr.H.B.Kekre, Sudeep D. Thepade, Shrikant P. Sanas ‘Improved CBIR using Multileveled Block Truncation Coding’ International Journal of Computer Science and Engineering (IJCSE), Volume 2, Number 7, October 2010 Edition, pp2471-2476.http://www.enggjournals.com/ijcse.
2 Guoping Qiu, “Color Image Indexing Using BTC,” IEEE Transactions on Image Processing,VOL.12, NO.1, pp.93-101, January 2003.
3 Dr.H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding using Kekre’s LUV Color Space for Image Retrieval”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, Number 3, pp. 172-180, Summer 2008. Available online at http://www.waset.org/ijecse/v2/v2-3-23.pdf
4 Dr.H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Augmented Block Truncation Coding Techniques”, ACM International Conference on Advances in Computing,Communication and Control (ICAC3-2009), pp. 384-390, 23-24 Jan 2009, Fr. Conceicao Rodrigous College of Engg., Mumbai. Is uploaded on online ACM portal.
5 Dr.H.B.Kekre, Sudeep D. Thepade, “Scaling Invariant Fusion of Image Pieces in Panorama Making and Novel Image Blending Technique”, International Journal on Imaging (IJI),www.ceser.res.in/iji.html, Volume 1, No. A08, pp. 31-46, Autumn 2008.
6 B.G.Prasad, K.K. Biswas, and S. K.Gupta, “Region–based image retrieval using integrated color, shape, and location index”, computer vision and image understanding, Oct 2003.
7 Minh N. Do, Member, IEEE, and Martin Vetterli, Fellow, IEEE,” Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance,” IEEE Transactions nn Image Processing, Vol.11, No.2, Feb 2002.
8 Dr.H.B.Kekre, Sudeep D. Thepade, “Rendering Futuristic Image Retrieval System”, National Conference on Enhancements in Computer, Communication and Information Technology,EC2IT-2009, 20-21 Mar 2009, K.J.Somaiya College of Engineering, Vidyavihar, Mumbai-77.
9 Dr.H.B.Kekre, Sudeep D. Thepade, “Using YUV Color Space to Hoist the Performance of Block Truncation Coding for Image Retrieval”, IEEE International Advanced Computing Conference 2009 (IACC’09), Thapar University, Patiala, INDIA, 6-7 March 2009.
10 Dr.H.B.Kekre, Sudeep D. Thepade, Archana Athawale, Anant Shah, Prathmesh Verlekar,Suraj Shirke,“Energy Compaction and Image Splitting for Image Retrieval using Kekre Transform over Row and Column Feature Vectors”, International Journal of Computer Science and Network Security (IJCSNS),Volume:10, Number 1, January 2010, (ISSN: 1738-7906) Available at www.IJCSNS.org.
11 Dr.H.B.Kekre, Sudeep D. Thepade, Archana Athawale, Anant Shah, Prathmesh Verlekar,Suraj Shirke, “Walsh Transform over Row Mean and Column Mean using Image Fragmentation and Energy Compaction for Image Retrieval”, International Journal on Computer Science and Engineering (IJCSE),Volume 2S, Issue1, January 2010, (ISSN:0975–3397). Available online at www.enggjournals.com/ijcse.
12 Dr.H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features Extracted from Walshlet Pyramid”, ICGST International Journal on Graphics, Vision and Image Processing (GVIP), Volume 10, Issue I, Feb.2010, pp.9-18, Available online www.icgst.com/gvip/Volume10/Issue1/P1150938876.html
13 Khalid Sayood ,” Introduction to Data Compression ,” University of Nebraska-Lincoln,Second Edition , ISBN:1-55860-558-4, by Academic Press,2000.
14 Stian Edvardsen,”Classification of Images using color, CBIR Distance Measures and Genetic Programming, “Ph.D. Thesis , Master of science in Informatics, Norwegian university of science and Technology, Department of computer and Information science, June 2006.
15 Rafael C.Gonzalez, Richard E. Woods,” Digital Image Processing,” University of Tennessee,Second Edition, ISBN 81-7808-629-8, Pearson Education Pvt. Ltd.,2002.
16 http://wang.ist.psu.edu/docs/related/Image.orig (Last referred on 23 Sept 2008)
17 Dr.H.B.Kekre, Sudeep D. Thepade, “Color Based Image Retrieval using Amendment Block Truncation Coding with YCbCr Color Space”, International Journal on Imaging (IJI), Volume 2, Number A09, Autumn 2009, pp. 2-14. Available online at www.ceser.res.in/iji.html (ISSN:0974-0627).
18 Dr.H.B.Kekre, Tanuja Sarode, Sudeep D. Thepade, “Color-Texture Feature based Image Retrieval using DCT applied on Kekre’s Median Codebook”, International Journal on Imaging (IJI), Volume 2, Number A09, Autumn 2009,pp. 55-65. Available online at www.ceser.res.in/iji.html (ISSN: 0974-0627).
19 M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, Hafner, D.Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the QBIC system. IEEE Computer, 28(9):23–32, 1995.
20 Dr.H.B.Kekre, Sudeep D. Thepade, A. Athawale, Adib Parkar, “Using Assorted Color Spaces and Pixel Window Sizes for Colorization of Grayscale Images”, ACM-International Conference and Workshop on Emerging Trends in Technology (ICWET 2010), Thakur College of Engg. And Tech., Mumbai, 26-27 Feb 2010, uploaded on online ACM Portal.
21 Dr.H.B.Kekre, Sudeep D. Thepade, Shobhit W., Miti K., Styajit S., Priyadarshini M. “Image Retrieval with Shape Features Extracted using Gradient Operators and Slope Magnitude Technique with BTC”, International Journal of Computer Applications (IJCA), Volume 6,Number 8, pp.28-33, September 2010. Available online at http://www.ijcaonline.org/volume6/number8/pxc3871430.pdf.
Dr. H.B.Kekre
SVKM's NMIMS University - India
Mr. Sudeep D.Thepade
SVKM's NMIMS University - India
sudeepthepade@gmail.com
Mr. Srikant Sanas
SVKM's NMIMS University - India