Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(375.6KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Towards Semantic Clustering – A Brief Overview
Phei-Chin Lim, Narayanan Kulathuramaiyer, Dayang NurFatimah Awg. Iskandar
Pages - 557 - 566     |    Revised - 31-01-2011     |    Published - 08-02-2011
Volume - 4   Issue - 6    |    Publication Date - January / February  Table of Contents
MORE INFORMATION
KEYWORDS
Image Clustering, Semantic Clustering, Content Description
ABSTRACT
Image clustering is an important technology which helps users to get hold of the large amount of online visual information, especially after the rapid growth of the Web. This paper focuses on image clustering methods and their application in image collection or online image repository. Current progress of image clustering related to image retrieval and image annotation are summarized and some open problems are discussed. Related works are summarized based on the problems addressed, which are image segmentation, compact representation of image set, search space reduction, and semantic gap. Issues are also identified in current progress and semantic clustering is conjectured to be the potential trend. Our framework of semantic clustering as well as the main abstraction levels involved is briefly discussed.
CITED BY (2)  
1 Lim, P. C., Kulathuramaiyer, N., Awang Iskandar, D. N. F., & Chiew, K. L. (2015, August). EFA for structure detection in image data. In IT in Asia (CITA), 2015 9th International Conference on (pp. 1-5). IEEE.
2 Masaharu Hirota. (2014). A Study on the image search results of clustering method that takes into account the heterogeneity of the meta-data (Doctoral dissertation, Shizuoka University).
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 iSEEK 
5 Socol@r  
6 Scribd 
7 WorldCat 
8 SlideShare 
9 PdfSR 
1 ACM – Association for Computing Machinery, http://www.acm.org. Accessed November 2010.
2 IEEE – Institute of Electronic and Electrical Engineers, http://ieeexplore.ieee.org. Accessed November 2010.
3 ScienceDirect, http://www.sciencedirect.com. Accessed November 2010.
4 SpringerLink, http://www.springerlink.com. Accessed November 2010.
5 B.S. Everitt. “Cluster Analysis” (3rd Edition), Edward Arnold, Ltd., London, UK, 1993.
6 A.K. Jain, M.N. Murty and P.J. Flynn. “Data Clustering: A Review”. ACM Computing Survey, 31 (3): 264-323, 1999.
7 R. Xu and D. Wunsch. “Survey of Clustering Algorithms”. IEEE Transactions on Neural Networks, 16 (3): 645-678, 2005.
8 H. Pan, J. Li and W. Zhang. “Medical Image Clustering with Domain Knowledge Constraint”. W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739: 719 – 724, 2005.
9 W. Liu, F. Peng, S. Feng, J. You, Z. Chen, J. Wu, K. Yuan and D. Ye. “Semantic Feature Extraction for Brain CT Image Clustering using Nonnegative Matrix Factorization”. D. Zhang (Ed.): ICMB 2008, LNCS 4901: 41–48, 2007.
10 Y. Song, C. Xie, Y. Zhu, C. Li and J. Chen. “Density Function Based Medical Image Clustering Analysis and Research”. K. Elleithy et al. (eds.): Advances in Computer, Information, and Systems Sciences, and Engineering, 149–155, 2006.
11 M. Torres, G. Guzman, R. Quintero, M. Moreno and S. Levachkine. “Semantic Decomposition of LandSat TM Image”. B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part I, LNAI 4251: 550 – 558, 2006.
12 M.S. Hossain, K.A. Rahman, M. Hasanuzzaman and V.V. Phoha. “A Simple and Efficient Video Image Clustering Algorithm for Person Specific Query and Image Retrieval”. ICIMCS’09. Kunming, Yunnan, China, November 23-25, 2009.
13 E. Han, J. Yang, H. Yang and K. Jung. “Automatic Mobile Content Conversion using Semantic Image Analysis”. J. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2007, LNCS 4552: 298–307, 2007.
14 L. Wilkinson and M. Friendly. “The History of the Cluster Heat Map”. The American Statistician, 63(2):179-184, 2009.
15 X. He, D. Cai, H. Liu and J. Han. “Image Clustering with Tensor Representation”. MM’05. Singapore, 132-140, November 6-11, 2005.
16 L. Wang and L. Khan. “A New Hierarchical Approach for Image Clustering”. V. Petrushin and L. Khan (Eds.), Multimedia Data Mining and Knowledge Discovery, 41-57, Springer, London, 2006.
17 S. Xia and E.R. Hancock. “Clustering using Class Specific Hyper Graphs”. N. da Vitora Lobo et al. (Eds.): SSPR&SPR 2008, LNCS 5342: 318–328, 2008.
18 Y. Liu, X. Chen, C. Zhang and A. Sprague. “Semantic Clustering for Region-based Image Retrieval”. Journal of Visual Communication and Image Representation, 20 (2): 157-166, February 2009
19 C. Zhang and X. Chen. “OCRS: An Interactive Object-based Image Clustering and Retrieval System”. Multimedia Tools Application, 35: 71-89, 2007.
20 S. Wang, F. Jing, J. He, Q. Du and L. Zhang. “IGroup: Presenting Web Image Search Results in Semantic Clusters”. CHI’07. San Jose, California, USA, April 28-May 3, 2007.
21 R.H. Leuken, L. Garcia, X. Olivares and R. Zwol. “Visual Diversification of Image Search Results”. WWW 2009. Madrid, Spain, April 20-24, 2009.
22 C. Wang, F. Jing, L. Zhang and H. Zhang. “Scalable Search-based Image Annotation”. Multimedia Systems, 14: 205-220, 2008.
23 B. Tahayna, M. Belkhatir and Y. Wang. “Clustering of Retrieved Images by Integrating Perceptual Signal Features within Keyword-based Image Search Engines”. P. Muneesawang et al. (Eds.): PCM 2009, LNCS 5879: 956–961, 2009.
24 A.W.M. Smeulders, M. Worring, S. Santini A. Gupta and R. Jain. “Content-based image retrieval at the end of the early years”. IEEE Transactions on Pattern Analysis and Machine Intelligent, 22(12): 1349–1380, 2000.
25 Y. Liu, D. Zhang, G. Lu and W. Ma. “Region-based image retrieval with high-level semantic color names”. 11th International Multimedia Modelling Conference. Melbourne, Australia, 180-187, 2005.
26 P.C. Lim, “A Generalized Framework for Mapping Low-level Visual Features to High-level Semantic Features”, Master’s thesis, Universiti Malaysia Sarawak, 2008.
27 P.C. Lim, N. Kulathuramaiyer, F. Abang & Y.C. Wang, “Classification of Butterfly Wing Images”. International Conference on Intelligent Systems. Kuala Lumpur, Malaysia, December 1-3, 2005.
28 Y. Chen, J.Z. Wang & R. Krovetz, “CLUE: Cluster-Based Image Retrieval of Images by Unsupervised Learning”. IEEE Transactions on Image Processing, 14(8): 1187-1201, 2005.
29 Y. Gao, J. Fan, H. Luo and S. Satoh, “A Novel Approach for Filtering Junk Images from Google Search Results”. S. Satoh, F. Nack, and M. Etoh (Eds.): MMM 2008, LNCS 4903: 1–12, 2008.
30 P.A. Moellic, J.E. Haugeard and G. Pitel, “Image Clustering based on a Shared Nearest Neighbours Approach for Tagged Collections”. CIVR’08. Niagara Falls, Ontario, Canada, July 7-9, 2008.
31 L. Cao, J. Luo & T.S. Huang, “Annotating Photo Collections by Label Propagation according to Multiple Similarity Cues”. MM’08. Vancouver, British Columbia, Canada, October 26-31, 2008.
32 M. Ferecatu, N. Boujemaa & M. Crucianu, “Semantic Interactive Image Retrieval Combining Visual and Conceptual Content Description”. Multimedia Systems, 13: 309-322, 2007.
33 W. Lu, R. Xue, H. Li & J. Wang, “A Strategy of Semantic Information Extraction for Web Image”, S. Wang, L. Yu, F. Wen, S. He, Y. Fang & K.K. Lai (Eds.), Business Intelligence: Artificial Intelligence in Business, Industry & Engineering, 2nd International Conference on Business Intelligence and Financial Engineering. Beijing, China, July 24-26, 2009.
34 S. Yang, S. Kim and Y.M. Ro. “Semantic Home Photo Categorization”, IEEE Transactions on Circuits and Systems for Video Technology, 17(3): 324-335, 2007.
35 D.N.F. Awang Iskandar. “Image Retrieval using Automatic Region Tagging”, PhD dissemination, School of Computer Science and Information Technology, Royal Melbourne Institute of Technology University, March 2008.
36 D.N.F. Awang Iskandar, J.A. Thom and S.M.M. Tahaghoghi, “Content-based Image Retrieval Using Image Regions as Query Examples”. A. Fekete and X. Lin (Eds.): 19th Australasian Database Conference (ADC2008). CRPIT, 75: 39-75. Wollongong, NSW, Australia, 2008.
37 M. Park and K. Ramamohanarao. “Automatic extraction of semantic concepts in medical images”. IEEE International Conference on Image Processing. Singapore, October 24-27, 2004.
38 Y. Shin, Y. Kim and E.Y. Kim. “Automatic textile image annotation by predicting emotional concepts from visual features”. Image and Vision Computing, 28(3): 526-537, 2010.
Miss Phei-Chin Lim
UNIVERSITI MALAYSIA SARAWAK - Malaysia
pclim@fit.unimas.my
Mr. Narayanan Kulathuramaiyer
- Malaysia
Mr. Dayang NurFatimah Awg. Iskandar
- Malaysia