Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(669.09KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Reconstructing Vehicle License Plate Image from Low Resolution Images using Nonuniform Interpolation Method
Shih-Chieh Lin, Chih-Ting Chen
Pages - 21 - 28     |    Revised - 15-08-2008     |    Published - 30-08-2008
Volume - 1   Issue - 2    |    Publication Date - August 2007  Table of Contents
MORE INFORMATION
KEYWORDS
image enhancement, image registration, license plate recognition
ABSTRACT
In this study, non-uniform interpolation method was adopted to reconstruct license plate image from a series of low resolution vehicle license plate images. Several image registration methods which were used to estimate the position and orientation differences between these low resolution images are tested in this study. It was found that the Fourier method is superior to other methods. The non-uniform interpolation method is then used to reconstruct vehicle license plate images from images with a character size as small as 3 × 6 pixels. Results show that although the number or character is still not easy to read, the reconstructed image shows a better readability than the original image. Keywords: image enhancement, image registration, license plate recognition.
CITED BY (12)  
1 Fernndez-Garcia, D., Barahona-Palomo, M., Henri, C. V., & Sanchez-Vila, X. (2015). A locally adaptive kernel regression method for facies delineation. Journal of Hydrology, 531, 62-72.
2 Wang, Y., Cai, C., & Zou, Y. X. (2015, July). Single image super-resolution via adaptive dictionary pair learning for wireless capsule endoscopy image. In Digital Signal Processing (DSP), 2015 IEEE International Conference on (pp. 595-599). IEEE.
3 Walha, R., Drira, F., Lebourgeois, F., Garcia, C., & Alimi, A. M. (2014, August). Sparse coding with a coupled dictionary learning approach for textual image super-resolution. In 2014 22nd International Conference on Pattern Recognition (ICPR) (pp. 4459-4464). IEEE.
4 Mallikarachchi, L., & Dharmaratne, A. (2014, August). Super Resolution to Identify License Plate Numbers in Low Resolution Videos. In Proceedings of the 7th International Symposium on Visual Information Communication and Interaction (p. 220). ACM.
5 Su Heng, Zhou Jie, Zhang Zhihao &. (2013). Methods of image super-resolution reconstruction Automatica Sinica, 39 (8), 1202-1213.
6 Cao, W., & Liu, L. (2013). Research on local mean decomposition algorithms in harmonic and voltage flicker detection of microgrid. Sensors & Transducers, 158(11), 384.
7 Liao, Y. C. (2013). Identification of low analytical license plate image. Jiaotong University Dissertation Institute of Multimedia Engineering, 1-43.
8 Liao Yu Jia, & Chen Linghui. (2012). Identification of low analytical license plate image (Doctoral dissertation).
9 Islam, M. M., Asari, K. V., & Karim, M. A. Wavelet Decomposed Edge Directed Interpolation.
10 Cao, W., & Liu, J. (2012). A License Plate Image Enhancement Method in Low Illumination Using BEMD. Journal of Multimedia, 7(6), 401-407.
11 Liang, F. F., Liu, Y., Wu, X. Y., & Yao, G. (2011, April). Automatic Extraction Method for License Plate Character Blurred by Translucent Object. In Advanced Materials Research (Vol. 204, pp. 1884-1890).
12 Paunwala, C. N., & Patnaik, S. (2010). A novel multiple license plate extraction technique for complex background in Indian traffic conditions. International Journal of Image Processing (IJIP), 4(2), 106.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 OpenJ-Gate 
11 Scribd 
12 WorldCat 
13 SlideShare 
14 PDFCAST 
15 PdfSR 
1 C. A. Rahman, W. Badawy, A. Radmanesh, A real time vehicle's license plate recognition system, Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, Miami, Florida 2003.
2 S. Z. Wang and H. J. Lee, Detection and Recognition of License Plate Characters with Different Appearances, Proc. IEEE 6th Intern. Conf. On Intelligent Transportation Systems, Shanghai, China, 2003.
3 S. L. Chang, L. S. Chen, Y. C. Chung, S. W. Chen, Automatic License Plate Recognition, IEEE Transactions on Intelligent Transportation Systems, 5(1):42-53, 2004.
4 H. F. Zhang, W. J. Jia, X. J. He, Q. Wu, "Learning-Based License Plate Detection Using Global and Local Features," 18th International Conference on Pattern Recognition, 2006.
5 T. Naito, T. Tsukada, K. Yamada, K. Kozuka, S. Yamamoto, Robust License-Plate Recognition Method for Passing Vehicles Under Outside Environment, IEEE Transactions on Vehicular Technology, 49(6):2309 2319, 2000.
6 B. Zitova, J. Flusser, Image Registration Methods: A Survey, Image and Vision Computing, 21(11):977-1000, 2003.
7 E. D. Castro, C. Morandi, Registration of translated and rotated images using finite Fourier transform, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:700703, 1987.
8 P. Vandewalle, S. Susstrunk, M. Vetterli, A Frequency Domain Approach to Registration of Aliased Images with Application to Super-Resolution," URASIP Journal on Applied Signal Processing, Article ID 71459, 2006.
9 X. Li, J. Chen, An Algorithm for Automatic Registration of Image, International Conference on Microwave and Millimeter Wave Technology(ICMMT 2004), Beijing, China, 2004.
10 L. Kitchen, A. Rosenfeld, Gray-level corner detection, Pattern Recognition Letters, 1: 95- 102, 1982.
11 R. Berthilsson, Affine correlation, Proceedings of the International Conference on Pattern Recognition ICPR98, Brisbane, Australia, 1998.
12 H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, H.C. Wolf., Parametric correspondence and chamfer matching: Two new techniques for image matching, Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, 1977.
13 C. Harris, M. stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 1988.
14 G. Borgefors, Hierarchical chamfer matching: a parametric edge matching algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:849865, 1988.
15 W.H. Wang, Y.C. Chen, Image registration by control points pairing using the invariant properties of line segments, Pattern Recognition Letters, 18:269281, 1997.
16 R. Y. Tsai, T. S. Huang, Multiframe image restoration and registration, Advances in Computer Vision and Image Processing (R. Y. Tsai, T. S. Huang, Eds.), 1: 317-339, JAI Press, London, 1984.
17 S. C. Park, M. K. Park, M. G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Processing Magazine, 20(3): 21-36, 2003.
18 N. R. Shah, A. Zakhor, Resolution Enhancement of Color Video Sequences, IEEE Transactions on Image Processing, 8(6): 879-885, 1999.
19 M.S. Alam, J.G. Bognar, R.C. Hardie, and B.J. Yasuda, Infrared image registration and highresolution reconstruction using multiple translationally shifted aliased video frames, IEEE Trans. Instrum. Meas., 49: 915-923, 2000.
20 N. Nguyen and P. Milanfar An efficient wavelet-based algorithm for image superresolution, Proceedings of the IEEE International Conference on Image Processing, Vancouver, Canada, 2000, pp.
Mr. Shih-Chieh Lin
- Taiwan
sclin@pme.nthu.edu.tw
Mr. Chih-Ting Chen
- Taiwan