Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(1.14MB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
A New Method for Identification of Partially Similar Indian Scripts
Rajiv Kapoor, Amit Dhamija
Pages - 94 - 112     |    Revised - 15-03-2012     |    Published - 16-04-2012
Volume - 6   Issue - 2    |    Publication Date - April 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Indian Scripts, Cumulants, SVM
ABSTRACT
In this paper, the texture symmetry/non symmetry factor has been exploited to get the script texture by using the Bi Wavelants which give the factor of symmetry/non symmetry in terms of the third cumulant and the Bi-spectra gives the quadratically coupled frequencies. The envelope of Bi-spectra (Bi-Wavelant) provides an accurate behavior of the symmetry/non symmetry factor of the script texture. Classification has been better performed by SVM with training set of roots of the envelope found using the Newton-Raphson technique. The method could successfully identify 8 Indian scripts like Devanagari, Urdu, Gujrati, Telugu, Assamese, Gurmukhi, Kannada, and Bangla. The method can segment any kind of document with very good results. The identification results are excellent.
CITED BY (2)  
1 Mathur, p. (2012). study of face recognition techniques using various moments (Doctoral dissertation, DELHI TECHNOLOGICAL UNIVERSITY).
2 Isheawy, N. A. M., & Hasan, H. Optical Character Recognition (OCR) System.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 S. B. Patil and N. V. Subbareddy, “Neural network based system for script identification in Indian documents”, SADHNA, vol. 27, pp. 82-97, Feb. 2002.
2 J. Hochberg, P. Kelly, T. Thomas and L. Kerns, “Automatic script identification from document images using cluster-based templates”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19 (2), pp.176-181, Feb. 1997.
3 D. Dhanaya, A. G. Ramakrishnan and P. B. Pati, “Script identification in printed bilingual documents”, SADHNA, vol. 27, pp. 73-82, Feb. 2002.
4 B. B. Chaudhuri and U. Pal, “Skew angle detection of digitized Indian script documents”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19 (2), pp.182-186, Feb. 1997.
5 S. Chaudhuri and R. Sheth, “Trainable script identification strategies for Indian languages”, International Conference on Document Analysis and Recognition, pp. 657-660, Sep. 1999.
6 U. Pal and B. B. Chaudhuri, “Script line separation from Indian multi-script documents”, International Conference on Document Analysis and Recognition, pp. 406-409, Sep. 1999.
7 A. Spitz, “Determination of the script and language content of document images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19 (3), pp. 235-245, 1997.
8 T. N. Tan, “Rotation invariant texture features and their use in automatic script identification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20 (7), pp. 751-756, Jul. 1998.
9 J. Hochberg, K. Bowers, M. Cannon and P. Kelly, “Script and language identification for handwritten document images”, International Journal on Document Analysis and Recognition, vol. 2, pp. 45-52, Feb. 1999.
10 S. H. Srinivasan, K. R. Ramakrishnan and S. Budhlakoti, “Character decomposition”, Indian Conference on Vision Graphics and Image Processing at ISRO Ahmedabad, 2002.
11 V. Bansal and R. M. K. Sinha, “On how to describe shapes of Devanagari characters and use them for recognition”, International Conference on Document Analysis and Recognition, pp. 410-413, Sep. 1999.
12 S. Antani and L. Agnihotri, “Gujarati character recognition”, International Conference on Document Analysis and Recognition, pp. 418-421, Sep. 1999.
13 A. M. Namboodiri and A. K. Jain, “Online handwritten script recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26 (1), pp. 124-130, Jan. 2004.
14 A. Busch, W. W. Boles and S. Sridharan, “Texture for script identification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27 (11), pp. 1720-1732, Nov. 2005.
15 B. V. Dhandhra, P. Nagabhushan, M. Hangarge, R. Hegadi and V. S. Malemath, “Script identification based on morphological reconstruction in document images”, International Conference on Pattern Recognition, vol. 2, pp. 950-953, 2006.
16 S. Sural and P. K. Das, “Recognition of an Indian script using MLP and Fuzzy features”, International Journal on Document Analysis and Recognition, pp. 1120-1124, 2001.
17 T. K. Bhowmik, P. Ghanty, A. Roy and S. K. Parui, “SVM based hierarchical architectures for handwritten Bangla character recognition”, International Journal on Document Analysis and Recognition, vol. 12(2), pp. 97-108, July, 2009.
18 D. Lopresti, S. Roy, K. Schulz and L. V. Subramaniam, “Special issue on noisy text analytics”, International Journal on Document Analysis and Recognition, vol. 12(3), Sept. 2009.
19 R. Kapoor, D. Bagai and T. S. Kamal, “A new technique for skew detection”, Pattern Recognition Letters, Elsevier Science Direct, vol. 25(11), pp. 1215-1229, 2004.
20 I. O. Kyrgyzov, H. Maitre and M. Campedel, “Kernel mdl to determine the number of clusters”, International Conference on Machine Learning and Data Mining, Jul. 2007.
21 J. M. Combes, A. Grossman and P. Tchamitchan, “Wavelets, time-frequency methods and phase space”, Springer-Verlag, 1989.
22 A. Grossman and R. Kronland-Martinet, “Time and scale representation obtained through
23 continuous wavelet transform”, Signal Processing IV, Theories and Applications, vol. Elsevier Science Pub. B. V. 1988, pp. 475-482.
24 S. G. Mallat, “A theory for multiresolution signal decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11 (7), Jul. 1989.
25 M. Frisch and H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal”, IEEE Transaction on Information Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis, vol. 38(2), pp. 892-897, Mar. 1992.
26 M. Frisch and H. Messer, “Detection of a transient signal of unknown scaling and arrival time using the discrete wavelet transform”, International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 1313-1316, Apr. 1991.
Dr. Rajiv Kapoor
- India
rajivkapoor@dce.edu
Mr. Amit Dhamija
YMCA University of Science and Technology, Faridabad - India