Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(410.93KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Image Registration for Recovering Affine Transformation Using Nelder Mead Simplex Method for Optimization
Mehfuza Suleman Holia, V.K.Thakar
Pages - 218 - 228     |    Revised - 30-10-2009     |    Published - 30-11-2009
Volume - 3   Issue - 5    |    Publication Date - November 2009  Table of Contents
MORE INFORMATION
KEYWORDS
Vector Quantization, Multi-core, Shared Memory, Clustering
ABSTRACT
This paper proposes a parallel approach for the Vector Quantization (VQ) problem in image processing. VQ deals with codebook generation from the input training data set and replacement of any arbitrary data with the nearest codevector. Most of the efforts in VQ have been directed towards designing parallel search algorithms for the codebook, and little has hitherto been done in evolving a parallelized procedure to obtain an optimum codebook. This parallel algorithm addresses the problem of designing an optimum codebook using the traditional LBG type of vector quantization algorithm for shared memory systems and for the efficient usage of parallel processors. Using the codebook formed from a training set, any arbitrary input data is replaced with the nearest codevector from the codebook. The effectiveness of the proposed algorithm is indicated.
CITED BY (14)  
1 Madhuri, G. S., & Indra Gandhi, M. P. (2015, April). Image registration quality assessment with similarity measures-A research study. In Communications and Signal Processing (ICCSP), 2015 International Conference on (pp. 0084-0088). IEEE.
2 Holia, M. S., & Thakar, V. K. (2014, February). Image registration for multi focus and multi modal images using windowed PCA. In Advance Computing Conference (IACC), 2014 IEEE International (pp. 1104-1109). IEEE.
3 Ansari, S. M., & Kale, K. V. (2014). Mapping and analysis of crime in Aurangabad city using GIS. IOSR-Journal of Computer Engineering, July-Aug, 16(4), 67-76.
4 Sperling, D. (2014). MRI-ultrasound fusion imaging. In Image Guided Prostate Cancer Treatments (pp. 115-123). Springer Berlin Heidelberg.
5 Hazra, J., Chowdhury, A. R., & Dutta, P. (2013). An approach for determining angle of rotation of a gray image using weighted statistical regression. International Journal of Scientific and Engineering Research, 1006.
6 Machálek, T., & Olševicová, K. (2013). Decentralized multi-agent algorithm for translational 2d image alignment. In Multimedia and Internet Systems: Theory and Practice (pp. 15-24). Springer Berlin Heidelberg.
7 Guo Jia, Li, Wang, Li Si & congregation. (2013). An image registration algorithm based on mutual information. Sensing Technology, 26 (7), 958-960.
8 Dutta, P. K., Mishra, O. P., & Naskar, M. K. (2013). A Method for Post-hazard Assessment Through Topography Analysis using Regional Segmentation for Multi-temporal Satellite Imagery: A Case Study of 2011 Tohuku Earthquake Region. International Journal of Image, Graphics and Signal Processing, 5(10), 63.
9 Athavale, N. P., & Talele, K. T. (2013). Comparison of various Image Registration Techniques with the Proposed Hybrid System.
10 Machálek, T. Vyuziti metody Particle Swarm Optimization pri vzájemném zarovnáváni 2D obrázku Diplomová práce.
11 Ahmed, M. M. (2012). Two-Dimensional Block of Spatial Convolution Algorithm and Simulation. International Journal of Image Processing (IJIP), 6(4), 243.
12 Bhowmik, M. K., De, B. K., Bhattacharjee, D., Basu, D. K., & Nasipuri, M. (2012, May). Multisensor fusion of visual and thermal images for human face identification using different SVM kernels. In Systems, Applications and Technology Conference (LISAT), 2012 IEEE Long Island (pp. 1-7). IEEE.
13 Chadha, A., Jyoti, D., & Roja, M. M. (2011). Rotation, Scaling and Translation Analysis of Biometric Signature Templates. arXiv preprint arXiv:1110.1208.
14 Sarvaiya, J., Patnaik, S., & Goklani, H. (2010). Image registration using NSCT and invariant moment. International Journal of Image Processing (IJIP), 4(2), 119.
1 Google Scholar
2 ScientificCommons
3 Academic Index
4 CiteSeerX
5 refSeek
6 iSEEK
7 Socol@r
8 ResearchGATE
9 Bielefeld Academic Search Engine (BASE)
10 OpenJ-Gate
11 Scribd
12 WorldCat
13 SlideShare
14 PDFCAST
15 PdfSR
1 A. Goshtasby, G.C. Stockman, A region-based approach to digital image registration with sub pixel accuracy, IEEE Transactions on Geoscience and Remote Sensing 24 (1986) 390-399.
2 Barbara Zitova, Jan Flusser ,Image registration methods: a survey.Academy of Sciences of the Czech Republic, Image and vision computing 21(2003) 977-1000.
3 R.N. Bracewell, the Fourier Transform and Its Applications, McGraw-Hill, New York, 1965.
4 E.D. Castro, C. Morandi, Registration of translated and rotated images using finite Fourier transform, IEEE Transactions on Pattern Analysis and Machine Intelligence 9 (1987) 700–703.
5 J. B. Antoine Maintz_ and Max A. Viergever, A Survey of Medical Image Registration. Image Sciences Institute, Utrecht University Hospital, Utrecht, the Netherlands
6 Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image Processing Using MATLAB, Pearson Education.
7 Jamal T. Manassah , Elementary Mathematical and Computational Tools for electrical and Computer engineers, CRC Press, Boca Raton London New York Washington
8 J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal 7 (1965), 308-313.
9 Jeffrey C. Lagariasy, James A. Reedsz, Margaret H. Wrightx, And Paul E. Wright,Convergence properties of the NELDER-MEAD Simplex method in low dimensions. SIAM J Optimization, 1999, Vol. 9, pp 112-1247.
10 P.Viola, W.M.Wells, Alignment by maximization of mutual information,International Journal of Computer Vision 24 (1997) 137-154.
11 P.The´venaz, M. Unser, “An efficient mutual information optimizer for multi resolution image registration”, Proceedings of the IEEE International Conference onImage Processing ICIP’98, Chicago,IL, 2000 833-837.
12 A. Roche, G. Malandain, N. Ayache, Unifying maximum likelihood approaches in medical image registration, International Journal of Imaging Systems and Technology 11(2000) 71-80.
13 W.K. Pratt, Correlation techniques of image registration, IEEE Transactions on Aerospace and Electronic Systems 10 (1974) 353-358.
14 Raman Maini, Himanshu Aggarwal, Study and Comparison of Various Image Edge Detection Techniques International Journal of Image Processing (IJIP), 3(1):1-12, 2009
Miss Mehfuza Suleman Holia
- India
mehfuza_1@yahoo.com
Dr. V.K.Thakar
- India