Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(159.02KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Segmentation of Tumor Region in MRI Images of Brain using Mathematical Morphology
Ashwini Gade, Rekha Vig, Vaishali Kulkarni
Pages - 95 - 102     |    Revised - 10-05-2014     |    Published - 01-06-2014
Volume - 8   Issue - 3    |    Publication Date - June 2014  Table of Contents
MORE INFORMATION
KEYWORDS
Cerebral MRI Images, Mathematical Morphology, Tumor.
ABSTRACT
This paper introduces an efficient detection of brain tumor from cerebral MRI images. The methodology consists of two steps: enhancement and segmentation. To improve the quality of images and limit the risk of distinct regions fusion in the segmentation phase an enhancement process is applied. We applied mathematical morphology to increase the contrast in MRI images and to segment MRI images. Some of experimental results on brain images show the feasibility and the performance of the proposed approach.
CITED BY (3)  
1 Gopi, J., & Nando, G. A Novel Approach to the Image Analysis of the Phase Morphology in Polymer Blends with Droplet/Matrix Morphology.
2 Kumar, K. M. (2014, December). A fully automatic segmentation techniques in MRI brain tumor segmentation using fuzzy clustering techniques. In Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on (pp. 1-6). IEEE.
3 Kuri, S. K., & Rahman, T. (2014). Segmentation of Brain Tumor in MRI Images Using Mathematical Morphology.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 M. Hrebién, P. Stéc, T. Nieczkowski and A. Obuchowicz. "Segmentation of breast cancer Fine needle biopsy cytological images". International Journal of Applied Mathematics and Computer Science, 2008, Vol.18, No.2, 159–170, 2008. http://www.aacr.org/home/public media/for-the-media/factsheets/organ-site-fact/sheets /brain-cancer.asp.
2 http://www.lapresse.tn/archives/archives270205/ societe/grandes.html.
3 S. MIRI, "Segmentation des structures Cérébralesen IRM: intégration decontrainte topologiques". Master, Universite Louis Pasteur Strasbourg, 2007.
4 M. Lee and W. Street "Dynamic learning of shapes for automatic object recognition",Proceedings of the17th Workshop Machine Learning of Spatial Knowledge, Stanford, CA,pp. 44-49, 2000.
5 S. Chabrier, H. Laurent, Ch. Rosenberger and A. rankotomamonjy. "Fusion de critères pour l’évaluation de résultats de segmentation d’images". Actes du 20ème Colloque GRETSI, 2005.
6 C. Wright, E.J. Delp, N. Gallagher, “Morphological based target enhancement algorithms,”Multidimensional Signal Processing Workshop, 1989.
7 H.D. Cheng, Xiaopeng Cai, Xiaowei Chen, Liming Hu, Xueling Lou, "Computer-aided detection and classification of microcalcfications in mammograms: a survey," Pattern Recognition. vol. 36, pp. 2967 – 2991, 2003.
8 P. Soille, "Morphological Image Analysis, Principals and Applications", Springer, 1999.
9 G.M. Matheron, Random Sets and Integral in Geometry, Wiley, New York, 1975.
10 J. Serra, Image Analysis Using Mathematical Morphology, Academic Press, London, 1982.
11 M.J. Golay, Hexagonal parallel pattern transformations, IEEE Trans. Comput. C-18 (1969)733-740.
12 J.C. Klein, J. Serra, The texure analyzer, J. Microscopy 95(1977) 349-356.
13 M. Duff Parallel processors for digital image processing, in: P. Stucki (Ed.), Advances in Digital Image Processing, Plenum, New York 1979.
14 P.F. Leonard, Pipeline architechture for real Time Machine vision, Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, 1985, pp. 502-505.
15 H. Minkowski, Volume and oberflache, Math. Ann. 57 (1903) 447-495.
16 F. Meyer, Contrast feature extraction, in: J.L Chermant (Ed.), Quantitative Analysis of Microstructures in Material Sciences, Biology and Medicine, Riederer Verlag, Stuttgart,Germany, 1978.
17 R.M. Haralick, L.G. Shapiro, " Survey: Image Segmentation techniques," Comp. Vision Graph Image Proc., Vol. 29, pp. 100-132, 1985.
18 J.S.Weszka, "A Survey of threshold selection techniques", Computer Graphics and Image Proc., vol. 7, pp. 259-265, 1978.
19 G Mallat, “A theory for multiresolution signal decomposition: The wavelet representation”,IEEE transactions on pattern analysis and machine intelligence, VOL II. No 7 11(7):674-693 Juillet 1989.
20 Dzung L. Pham, Chenyang Xu, Jerry L. Prince;"A Survey of Current Methods in MedicalMedical Image Segmentation" Technical Report JHU / ECE 99-01,Department of Electrical and Computer Engineering. The Johns Hopkins University, Baltimore MD 21218,1998.
21 Issac N. Bankman, “Handbook of medical image processing and analysis”, Second ediion,Academic press, USA, 2008.
Miss Ashwini Gade
MPSTME, NMIMS - India
ashwinigade036@gmail.com
Mr. Rekha Vig
Department of Electronics and Telecommunication MPSTME, NMIMS Mumbai - India
Dr. Vaishali Kulkarni
MPSTME, NMIMS - India