Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(637.58KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Design Adaptive Fuzzy Inference Sliding Mode Algorithm: Applied to Robot Arm
Farzin Piltan, N. Sulaiman, Abbas Zare, Sadeq Allahdadi, Mohammadali Dialame
Pages - 283 - 297     |    Revised - 01-11-2011     |    Published - 15-12-2011
Volume - 2   Issue - 5    |    Publication Date - November / December 2011  Table of Contents
MORE INFORMATION
KEYWORDS
mechatronic system, , robot arm, , adaptive method, , sliding mode fuzzy algorithm, , fuzzy sliding mode algorithm,, adaptive sliding mode fuzzy algorithm fuzzy slidi
ABSTRACT
The developed control methodology can be used to build more efficient intelligent and precision mechatronic systems. Three degrees of freedom robot arm is controlled by adaptive sliding mode fuzzy algorithm fuzzy sliding mode controller (SMFAFSMC). This plant has 3 revolute joints allowing the corresponding links to move horizontally. Control of robotic manipulator is very important in field of robotic, because robotic manipulators are Multi-Input Multi-Output (MIMO), nonlinear and most of dynamic parameters are uncertainty. Design strong mathematical tools used in new control methodologies to design adaptive nonlinear robust controller with acceptable performance in this controller is the main challenge. Sliding mode methodology is a nonlinear robust controller which can be used in uncertainty nonlinear systems, but pure sliding mode controller has chattering phenomenon and nonlinear equivalent part in uncertain system therefore the first step is focused on eliminate the chattering and in second step controller is improved with regard to uncertainties. Sliding function is one of the most important challenging in artificial sliding mode algorithm which this problem in order to solved by on-line tuning method. This paper focuses on adjusting the sliding surface slope in fuzzy sliding mode controller by sliding mode fuzzy algorithm.
CITED BY (52)  
1 Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications, 5(2), 59.
2 Jalali, A., Piltan, F., Gavahian, A., & Jalali, M. (2013). Model-free adaptive fuzzy sliding mode controller optimized by particle swarm for robot manipulator. International Journal of Information Engineering and Electronic Business, 5(1), 68.
3 Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
4 Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(5), 1.
5 Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business, 5(1), 1.
6 Jalali, A., Piltan, F., Keshtgar, M., & Jalali, M. (2013). Colonial Competitive Optimization Sliding Mode Controller with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(7), 50.
7 Haghighi, S. T., Soltani, S., Piltan, F., Kamgari, M., & Zare, S. (2013). Evaluation Performance of IC Engine: linear tunable gain computed torque controller Vs. Sliding mode controller. International Journal of Intelligent Systems and Applications, 5(6), 78.
8 Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(12), 135.
9 Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F. A. T. E. M. E. H., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering, 3(2), 171.
10 Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
11 Piltan, F., Mansoorzadeh, M., Akbari, M., Zare, S., & ShahryarZadeh, F. (2013). Management of Environmental Pollution by Intelligent Control of Fuel in an Internal Combustion Engine. Global Journal of Biodiversity Science And Management, 3(1).
12 Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science, 5(10), 53.
13 Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation, 2(4), 149.
14 Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
15 Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business, 5(5), 57.
16 Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
17 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184.
18 Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 167-191.
19 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
20 Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. Methodology, 5(1).
21 Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
22 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
23 Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
24 Piltan, F., Keshavarz, M., Badri, A., & Zargari, A. (2012). Design Novel Nonlinear Controller Applied to RobotManipulator: Design New Feedback Linearization Fuzzy Controller with Minimum Rule Base Tuning Method. International Journal of Robotics and Automation, 3(1), 1-12.
25 Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
26 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications, 4(11), 40.
27 Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
28 Piltan, F., Sulaiman, N., Marhaban, M. H., & Ramli, R. (2011). Design On-Line Tunable Gain Artificial Nonlinear Controller. Journal of Advances In Computer Research, 2(4), 75-83.
29 Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
30 Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
31 Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
32 Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
33 Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
34 Piltan, F., Rahmdel, S., Mehrara, S., & Bayat, R. (2012). Sliding mode methodology vs. Computed torque methodology using matlab/simulink and their integration into graduate nonlinear control courses. International Journal of Engineering, 6(3), 142-177.
35 Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation, 1(4), 175.
36 Piltan, F., Haghighi, S. T., Sulaiman, N., Nazari, I., & Siamak, S. (2011). Artificial control of PUMA robot manipulator: A-review of fuzzy inference engine and application to classical controller. International Journal of Robotics and Automation, 2(5), 401-425.
37 Piltan, F., Sulaiman, N., Zargari, A., Keshavarz, M., & Badri, A. (2011). Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator. International Journal of Artificial intelligence and expert system, 2(4), 184-195.
38 Piltan, F., Sulaiman, N., Talooki, I. A., & Ferdosali, P. (2011). Control of IC Engine: Design a Novel MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control. International Journal of Robotics and Automation, 2(5), 360-380.
39 Piltan, F., Jalali, A., Sulaiman, N., Gavahian, A., & Siamak, S. (2011). Novel artificial control of nonlinear uncertain system: design a novel modified PSO SISO Lyapunov based fuzzy sliding mode algorithm. International Journal of Robotics and Automation, 2(5), 298-316.
40 Piltan, F., Sulaiman, N., Nasiri, H., Allahdadi, S., & Bairami, M. A. (2011). Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method. International Journal of Engineering, 5(5), 399-418.
41 Piltan, F., Sulaiman, N., Jalali, A., & Narouei, F. D. (2011). Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System. International Journal of Robotics and Automation, 2(4), 232-244.
42 Piltan, F., Sulaiman, N., Ferdosali, P., & Talooki, I. A. (2011). Design Model Free Fuzzy Sliding Mode Control: Applied to Internal Combustion Engine. International Journal of Engineering, 5(4), 302-312.
43 Piltan, F., Sulaiman, N., Allahdadi, S., Dialame, M., & Zare, A. (2011). Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control. International Journal of Artificial intelligence and Expert System, 2(5), 208-228.
44 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Evolutionary Design of Backstepping Artificial Sliding Mode Based Position Algorithm: Applied to Robot Manipulator. International Journal of Engineering, 5(5), 419-434.
45 Piltan, F., Sulaiman, N., Rashidi, M., Tajpaikar, Z., & Ferdosali, P. (2011). Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review. International Journal of Robotics and Automation, 2(5), 265-282.
46 Piltan, F., Sulaiman, N., Jalali, A., & Aslansefat, K. (2011). Evolutionary Design of Mathematical tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied to Robot Manipulator. International Journal of Robotics and Automation, 2(5), 317-343.
47 Piltan, F., Sulaiman, N., Ferdosali, P., Rashidi, M., & Tajpeikar, Z. (2011). Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System. International Journal of Engineering, 5(5), 380-398.
48 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Artificial Chattering Free on-line Fuzzy Sliding Mode Algorithm for Uncertain System: Applied in Robot Manipulator. International Journal of Engineering, 5(5), 360-379.
49 Piltan, F., Sulaiman, N., Gavahian, A., Roosta, S., & Soltani, S. (2011). On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Sliding Mode Controller Based on Lyaponuv Theory. International Journal of Robotics and Automation, 2(5), 381-400.
50 Piltan, F., Sulaiman, N., Zare, A., Allahdadi, S., & Dialame, M. (2011). Design adaptive fuzzy inference sliding mode algorithm: applied to robot arm. International Journal of Robotics and Automation, 2(5), 283-297.
51 Piltan, F., Sulaiman, N. A. S. I. R. I., & AsadiTalooki, I. (2011). Evolutionary Design on-line Sliding Fuzzy Gain Scheduling Sliding Mode Algorithm: Applied to Internal Combustion Engine. International Journal of Engineering Science and Technology, 3(10), 7301-7308.
52 Piltan, F., Sulaiman, N., Roosta, S., Marhaban, M. H., & Ramli, R. (2011). Design a new sliding mode adaptive hybrid fuzzy controller. Journal of Advanced Science & Engineering Research, 1(1), 115-123.
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 SlideShare
6 PdfSR
1 T. R. Kurfess, Robotics and automation handbook: CRC, 2005.
2 J. J. E. Slotine and W. Li, Applied nonlinear control vol. 461: Prentice hall Englewood Cliffs, NJ,1991.
3 K. Ogata, Modern control engineering: Prentice Hall, 2009.
4 B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc, 2008.
5 I. Boiko, et al., "Analysis of chattering in systems with second-order sliding modes," IEEE Transactions on Automatic Control, vol. 52, pp. 2085-2102, 2007.
6 J. Wang, et al., "Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching," Fuzzy Sets and Systems, vol. 122, pp. 21-30, 2001.
7 V. Utkin, "Variable structure systems with sliding modes," Automatic Control, IEEE Transactions on, vol. 22, pp. 212-222, 2002.
8 R. A. DeCarlo, et al., "Variable structure control of nonlinear multivariable systems: a tutorial,"Proceedings of the IEEE, vol. 76, pp. 212-232, 2002.
9 K. D. Young, et al., "A control engineers guide to sliding mode control," 2002, pp. 1-14.
10 O. Kaynak, "Guest editorial special section on computationally intelligent methodologies and sliding-mode control," IEEE Transactions on Industrial Electronics, vol. 48, pp. 2-3, 2001.
11 J. J. Slotine and S. Sastry, "Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators†," International Journal of Control, vol. 38, pp. 465-492, 1983.
12 J. J. E. Slotine, "Sliding controller design for non-linear systems," International Journal of Control,vol. 40, pp. 421-434, 1984.
13 R. Palm, "Sliding mode fuzzy control," 2002, pp. 519-526.
14 C. C. Weng and W. S. Yu, "Adaptive fuzzy sliding mode control for linear time-varying uncertain systems," 2008, pp. 1483-1490.
15 P. Kachroo and M. Tomizuka, "Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems," Automatic Control, IEEE Transactions on, vol. 41, pp.1063-1068, 2002.
16 L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic," Fuzzy Sets and Systems, vol. 90, pp. 111-127, 1997.
17 L. Reznik, Fuzzy controllers: Butterworth-Heinemann, 1997.
18 J. Zhou and P. Coiffet, "Fuzzy control of robots," 2002, pp. 1357-1364.
19 S. Banerjee and P. Y. Woo, "Fuzzy logic control of robot manipulator," 2002, pp. 87-88.
20 K. Kumbla, et al., "Soft computing for autonomous robotic systems," Computers and Electrical Engineering, vol. 26, pp. 5-32, 2000.
21 C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I," IEEE Transactions on systems, man and cybernetics, vol. 20, pp. 404-418, 1990.
22 R. J. Wai, et al., "Implementation of artificial intelligent control in single-link flexible robot arm,"2003, pp. 1270-1275.
23 R. J. Wai and M. C. Lee, "Intelligent optimal control of single-link flexible robot arm," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 201-220, 2004.
24 M. B. Menhaj and M. Rouhani, "A novel neuro-based model reference adaptive control for a two link robot arm," 2002, pp. 47-52.
25 S. Mohan and S. Bhanot, "Comparative study of some adaptive fuzzy algorithms for manipulator control," International Journal of Computational Intelligence, vol. 3, pp. 303–311, 2006.
26 F. Barrero, et al., "Speed control of induction motors using a novel fuzzy sliding-mode structure,"Fuzzy Systems, IEEE Transactions on, vol. 10, pp. 375-383, 2002.
27 Y. C. Hsu and H. A. Malki, "Fuzzy variable structure control for MIMO systems," 2002, pp. 280-285.
28 Y. C. Hsueh, et al., "Self-tuning sliding mode controller design for a class of nonlinear control systems," 2009, pp. 2337-2342.
29 R. Shahnazi, et al., "Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control," Energy Conversion, IEEE Transactions on, vol. 23, pp. 138-147, 2008.
30 C. C. Chiang and C. H. Wu, "Observer-Based Adaptive Fuzzy Sliding Mode Control of Uncertain Multiple-Input Multiple-Output Nonlinear Systems," 2007, pp. 1-6.
31 H. Temeltas, "A fuzzy adaptation technique for sliding mode controllers," 2002, pp. 110-115.
32 C. L. Hwang and S. F. Chao, "A fuzzy-model-based variable structure control for robot arms:theory and experiments," 2005, pp. 5252-5258.
33 Piltan, F., et al., “Design Adaptive Fuzzy Robust Controllers for Robot Manipulator,” World Applied Science Journal, 12 (12): 2317-2329, 2011.
34 Farzin Piltan, A. R. Salehi and Nasri B Sulaiman.,” Design artificial robust control of second order system based on adaptive fuzzy gain scheduling,” world applied science journal (WASJ), 13 (5):1085-1092, 2011.
35 F. Piltan, et al., "Artificial Control of Nonlinear Second Order Systems Based on AFGSMC,"Australian Journal of Basic and Applied Sciences, 5(6), pp. 509-522, 2011.
36 Piltan, F., et al., “Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain,” International Journal of Robotic and Automation, 2 (3): 205-220, 2011.
37 Piltan, F., et al., “Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule Base,” International Journal of Robotic and Automation, 2 (3): 146-156, 2011.
38 Piltan, F., et al., “Design of FPGA based sliding mode controller for robot manipulator,”International Journal of Robotic and Automation, 2 (3): 183-204, 2011.
39 Piltan, F., et al., “A Model Free Robust Sliding Surface Slope Adjustment in Sliding Mode Control for Robot Manipulator,” World Applied Science Journal, 12 (12): 2330-2336, 2011.
40 Piltan, F., et al., “Design sliding mode controller for robot manipulator with artificial tunable gain,”Canaidian Journal of pure and applied science, 5 (2): 1573-1579, 2011.
Mr. Farzin Piltan
UPM - Malaysia
SSP.ROBOTIC@yahoo.com
Mr. N. Sulaiman
- Malaysia
Mr. Abbas Zare
- Iran
Mr. Sadeq Allahdadi
- Iran
Mr. Mohammadali Dialame
-