Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(198.78KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Frequency based criterion for distinguishing tonal and noisy spectral components
Maciej, Andrzej
Pages - 1 - 16     |    Revised - 25-01-2010     |    Published - 26-03-2010
Volume - 4   Issue - 1    |    Publication Date - March 2010  Table of Contents
MORE INFORMATION
KEYWORDS
tonal components detection, psychoacoustic modeling, instantaneous frequency estimation
ABSTRACT
A frequency-based criterion for distinguishing tonal and noisy spectral components is proposed. For considered spectral local maximum two instantaneous frequency estimates are determined and the difference between them is used in order to verify whether component is noisy or tonal. Since one of the estimators was invented specially for this application its properties are deeply examined. The proposed criterion is applied to the stationary and nonstationary sinusoids in order to examine its efficiency.
CITED BY (3)  
1 Kraft, S., Lerch, A., & Zölzer, U. (2013). The tonalness spectrum: feature-based estimation of tonal components. In 16th International Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland (p. 8).
2 Borkowski, J. (2011). Metody interpolacji widma i metoda LIDFT w estymacji parametrów sygnalu wieloczestotliwosciowego.Oficyna Wydawnicza Politechniki Wroclawskiej.
3 Disse, D. el Est Spec dio C.
1 Google Scholar
2 ScientificCommons
3 Academic Index
4 CiteSeerX
5 refSeek
6 iSEEK
7 Socol@r
8 ResearchGATE
9 Bielefeld Academic Search Engine (BASE)
10 Scribd
11 WorldCat
12 slideshare
13 PDFCAST
14 PdfSR
1 ISO/IEC MPEG, “IS11172-3 Coding of moving pictures and associated audio for digital storage media up to 1.5 Mbit/s”, Part 3: Audio, Annex D. ISO/IEC JTCI, 1992.
2 ISO/IEC “13818-7 Information technology — Generic coding of moving pictures and associated audio information”, Part 7: Advanced Audio Coding (AAC), 4th edition, 2006.
3 M.G. Christensen, A. Jakobsson, “Multi-Pitch Estimation”. Synthesis Lectures on Speech and Audio Processing, 5(1):1-160, 2009.
4 J. D. Johnston, “Transform coding of audio signals using perceptual noise criteria”. IEEE J. on Selected Areas in Comm., 6:314-323, 1988.
5 O. Hellmuth, E. Allamanche, J. Herre, T. Kastner, M. Cermer, W. Hirsch, “Advanced audio identification using MPEG-7 content description”. In proceedings of 111th Audio Eng. Soc. Int. Conf., New York, USA, 2001.
6 R. J. McAulay, T. F. Quatieri, “Speech analysis/synthesis based on a sinusoidal representation”. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34:744-754, 1986.
7 S. Levine, J. O. Smith III, “Improvements to the switched parametric & transform audio coder”. In proceedings of IEEE Workshop on Application of Signal Processing to Audio and Acoustics, New York, USA, 1999.
8 T. Painter, A. Spanias, “Perceptual coding of digital audio”. In proceedings of. of IEEE, 88:451- 513, 2002.
9 S.-U. Ryu, K. Rose, “Enhanced accuracy of the tonality measure and control parameter extraction modules in MPEG-4 HE-AAC”. In proceedings of 119th Audio Eng. Soc. Int. Conf., New York, USA, 2005.
10 K. Lee, K. Yeon, Y. Park, D. Youn, “Effective tonality detection algorithm based on spectrum energy in perceptual audio coder”. In proceedings of 117th Audio Eng. Soc. Int. Conf., San Francisco, USA, 2004.
11 X. Rodet, “Musical sound signal analysis/synthesis: sinusoidal+residual and elementary waveform models”. In proceedings of IEEE Time-Frequency and Time-Scale Workshop, Coventry, Grande Bretagne, 1997.
12 A. J. S. Ferreira, “Tonality detection in perceptual coding of audio”. In proceedings of 98th Audio Eng. Soc. Int. Conf., Paris, France, 1995.
13 M. Kulesza, A. Czyzewski, „Audio codec employing frequency-derived tonality measure”. In proceedings of 127th Audio Eng. Soc. Int. Conf., New York, USA, 2009.
14 M. Kulesza, A. Czyzewski, “Novel approaches to wideband speech coding”. GESTS Int. Trans. On Computer Science and Engineering, 44(1):154-165, 2008.
15 D. Schulz, “Improving audio codecs by noise substitution”. J. Audio Eng. Soc., 44:593-598, 1996.
16 P. J. B. Jackson, C. H. Shadle, “Pitch-scaled estimation of simultaneously voiced and turbulence-noise components in speech”. IEEE Trans. On Speech and Audio Processing, 9:713- 726, 2001.
17 Y. Wang, R. Kumaresan, “Real time decomposition of speech into modulated components”. J. Acoust. Soc. Am., 119(6):68-73, 2006.
18 B. Yegnanarayana, C. Alessandro, V. Darisons, “An iterative algorithm for decomposition of speech signals into periodic and aperiodic components”. IEEE Trans. on Speech and Audio Proc., 6: 1-11, 1998.
19 M. Kulesza, A. Czyzewski, “Tonality Estimation and Frequency Tracking of Modulated Tonal Components”. J. Audio Eng. Soc., 57(4):221–236, 2009.
20 G. Peeters, X. Rodet, “Signal characterization in terms of sinusoidal and non-sinusoidal components”. In proceedings of Digital Audio Effects (DAFx) Conf., Barcelona, Spain, 1998.
21 G. Peeters, X. Rodet, “SINOLA: a new analysis/synthesis method using spectrum peak shape distortion, phase and reassigned spectrum”. In proceedings of the Int. Computer Music Conf., Beijing, China, 1999.
22 U. Zolzer, “DAFX Digital Audio Effects”. John Wiley & Sons, United Kingdom, 2002.
23 M. Abe, J. O. Smith III, “Design criteria for simple sinusoidal parameter estimation based on quadratic interpolation of FFT magnitude peaks”. In proceedings of 117th Audio Eng. Soc. Int. Conf., San Francisco, USA, 2004.
24 F. Keiler, S. Marchand, “Survey on extraction of sinusoids in stationary sound”. In proceedings of the 5th Int. Conf. on Digital Audio Effects (DAFx-02), Hamburg, Germany, 2002.
25 D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations”. IEEE Trans. Info. Theory, 20(5):591-598, 1974.
26 M. Betser, P. Collen, G. Richard, B. David, “Preview and discussion on classical STFT-based frequency estimators. In proceedings of 120th Audio Eng. Soc. Int. Conf., Paris, France, 2006.
27 J.C. Brown, M.S. Puckette, “A high resolution fundamental frequency determination based on phase changes of the Fourier transform”. J. Acoust. Soc. Am., 94(2):662-667, 1998.
28 J. Flanagan, R. Golden, “Phase vocoder”. Bell Syst. Tech. J., 45:1493–1509, 1966.
29 F.J. Charpentier, “Pitch detection using the short-term Fourier transform”. In proceedings of Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 11:113-116, Tokyo, 1986.
30 S.W. Lang, B.R Musicus, “Frequency estimation from phase difference”. In proceedings of Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 4:2140-2143, United Kingdom, 1989.
31 M.S. Puckette, J.C. Brown, “Accuracy of frequency estimates using the phase vocoder”. IEEE Trans. On Speech and Audio Processing, 6(2):166-176, 1998.
32 M. Lagrange, S. Marchand, “Estimating the instantaneous frequency of sinusoidal components using phase-based methods”. J. Audio Eng. Soc., 55:385-399, 2007.
33 M. Betser, P. Collen, G. Richard, B. David, “Estimation of frequency for AM/FM models using the phase vocoder framework”. IEEE Trans. On Signal Processing, 56(2):505-517, 2008.
34 M. Lagrange, S. Marchand, J.B. Rault, “Sinusoidal parameter extraction and component selection in non stationary model”. In proceedings of Digital Audio Effects (DAFx) Conf., Hamburg, Germany, 2002.
Mr. Maciej
- Poland
maciej_k@sound.eti.pg.gda.pl
Professor Andrzej
- Poland