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Abstract 

 

In this paper, we proposed the Modified Fuzzy Hypersphere Neural Network 
(MFHSNN) for the discrimination of acute lymphoblastic leukemia (ALL) and 
acute myeloid leukemia (AML) in leukemia dataset. Dimensionality reduction me-
thods, such as Spearman Correlation Coefficient and Wilcoxon Rank Sum Test 
are used for gene selection. The performance of the MFHSNN system is encour-
aging when benchmarked against those of Support vector machine (SVM) and 
the K-nearest neighbor (KNN) classifiers. A classification accuracy of 100% has 
been achieved using the MFHSNN classifier using only two genes. Furthermore, 
MFHSNN is found to be much faster with respect to training and testing time. 
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1. INTRODUCTION 

Microarrays [1], also known as gene chips or DNA chips, provide a convenient way of obtaining 
gene expression levels for a large number of genes simultaneously. Each spot on a microarray 
chip contains the clone of a gene from a tissue sample. Some mRNA samples are labeled with 
two different kinds of dyes, for example, Cy5 (red) and Cy3 (blue). After mRNA interacts with the 
genes, i.e., hybridization, the color of each spot on the chip will change. The resulted image re-
flects the characteristics of the tissue at the molecular level. Microarrays can thus be used to help 
classify and predict different types of cancers. Traditional methods for diagnosis of cancers are 
mainly based on the morphological appearances of the cancers; however, sometimes it is ex-
tremely difficult to find clear distinctions between some types of cancers according to their ap-
pearances. Hence the microarray technology stands to provide a more quantitative means for 
cancer diagnosis. For example, gene expression data have been used to obtain good results in 
the classifications of Lymphoma, Leukemia [2], Breast cancer, and Liver cancer etc. It is challeng-
ing to use gene expression data for cancer classification because of the following two special as-
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pects of gene expression data. First, gene expression data are usually very high dimensional. 
The dimensionality ranges from several thousands to over ten thousands. Second, gene expres-
sion data sets usually contain relatively small numbers of samples, e.g., a few tens. If we treat 
this pattern recognition problem with supervised machine learning approaches, we need to deal 
with the shortage of training samples and high dimensional input features. 
 
Recent approaches to solve this problem include unsupervised methods, such as Clustering [3] 
and Self-Organizing Maps (SOM) [4] and  supervised methods, such as Support Vector Machines 
(SVM)[5], Multi-Layer Perceptrons (MLP) [6], Decision Trees (DT) [7] and K-Nearest Neigh-
bor(KNN) [8, 9]. Su et al [10] employs modular neural networks to classify two types of acute leu-
kemia’s and the best 75% correct classification was reached. Xu et al [11] adopted the ellipsoid 
ARTMAP to analyze the AAL/AML data set and the best result was 97.1%. But most of the cur-
rent methods in microarray analysis can not completely bring out the hidden information in the 
data. Meanwhile, they are generally lacking robustness with respect to noisy and missing data. 
Some studies have shown that a small collection of genes [12] selected correctly can lead to 
good classification results [13]. Therefore gene selection is crucial in molecular classification of 
cancer. Although most of the algorithms mentioned above can reach high prediction rate, any 
misclassification of the disease is still intolerable in acute leukemia’s treatment. Therefore the 
demand of a reliable classifier which gives 100% accuracy in predicting the type of cancer there-
with becomes urgent.  

  
In this paper, we apply a robust MFHSNN classifier which is an extension of Fuzzy Hypersphere 
Neural Network (FHSNN) proposed by Kulkarni et al [14] to the problem of cancer classification 
based on gene expression data. To reduce the dimensionality of genes correlation method such 
as Spearman Correlation Coefficient and statistical method such as Wilcoxon Rank Sum Test are 
used.  The MFHSNN utilizes fuzzy sets as pattern classes in which each fuzzy set is a union of 
fuzzy set hyperspheres. The fuzzy set hypersphere is an n-dimensional hypersphere defined by a 
center point and radius with its membership function. We first experiment the classifier with 38 
leukemia samples and test the classifier with another 34 samples to obtain the accuracy rate. 
Meanwhile, this study reveals that the classification result is greatly affected by the correlativity 
with the class distinction in the data set. The remainder of the paper is organized as follows. The 
gene selection methods for choosing effective predictive genes in our work are introduced in Sec-
tion 2. Then Sections 3 gives a brief introduction for the architecture of the MFSHNN, followed by 
its learning algorithm in section 4. Section 5 examines the experimental results of the classifiers 
operated on leukemia data set. Conclusions are made in Section 6. 
 

2. GENE SELECTION METHODS 

Among the large number of genes, only a small part may benefit the correct classification of can-
cers. The rest of the genes have little impact on the classification. Even worse, some genes may 
act as noise and undermine the classification accuracy. Hence, to obtain good classification accu-
racy, we need to pick out the genes that benefit the classification most. In addition, gene selection 
is also a procedure of input dimension reduction, which leads to a much less computation load to 
the classifier. Maybe more importantly, reducing the number of genes used for classification can 
help researchers put more attention on these important genes and find the relationship between 
the genes and the development of the cancer. 
 

2.1. Correlation Analysis for Gene Selection 

In order to score the similarity of each gene, an ideal feature vector [15] is defined. It is a vector 
consisting of 0’s in one class (ALL) and 1’s in other class (AML). It is defined as follows:  

iideal = (0,0,0,0,0,0,1,1,1,1,1,1)                                                                            (1)  

The ideal feature vector is highly correlated to a class. If the genes are similar with the ideal vec-
tor (the distance from the ideal vector and the gene is small), we consider that the genes are in-
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formative for classification. The similarity of ig  and idealg using similarity measure such as the 

Spearman coefficient is defined as follows 

SC=  
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Where n is the number of samples; ig is the thi   real value of the gene vector and ideali  is the 

corresponding thi  binary value of the ideal feature vector. 

2.2. Wilcoxon Rank-Sum Test (WRST) for Gene Selection  

The Wilcoxon rank-sum test [16, 17] is a big category of non-parametric tests. The general idea is 
that, instead of using the original observed data, we can list the data in the value ascending or-
der, and assign each data item a rank, which is the place of the item in the sorted list. Then, the 
ranks are used in the analysis. Using the ranks instead of the original observed data makes the 
rank sum test much less sensitive to outliers and noises than the classical (parametric) tests [18]. 
The WRST organizes the observed data in value ascending order. Each data item is assigned a 
rank corresponding to its place in the sorted list. These ranks, rather than the original observed 
values are then used in the subsequent analysis. The major steps in applying the WRST are as 
follows: 
(i) Merge all observations from the two classes and rank them in value ascending order. 
(ii) Calculate the Wilcoxon statistics by adding all the ranks associated with the observations from 
the class with a smaller number of observations. 
 

3. MODIFIED FUZZY HYPERSPHERE NEURAL NETWORK CLASSIFIER 

The MFHSNN consists of four layers as shown in Figure 1(a). The first, second, third and fourth 

layer is denoted as RF , MF , NF  and OF  respectively. The RF layer accepts an input pattern and 

consists of n processing elements, one for each dimension of the pattern. The MF  layer consists 

of q processing nodes that are constructed during training and each node represents hyper-
sphere fuzzy set characterized by hypersphere membership function. The processing performed 

by each node of MF layer is shown in Figure 1(b). The weights between RF  and MF  layer 

represent centre points of the hyperspheres. As shown in Figure 1(b), 

( )1 2 3, , .........j j j j jnC c c c c= represents center point of the hypersphere jm . In addition to this each 

hypersphere takes one more input denoted as threshold T, which is set to one and the weight 

assigned to this link is jξ . The jξ  represents radius of the hypersphere jm , which is updated dur-

ing training. The center points and radii of the hyperspheres are stored in matrix C and vector ξ  

respectively. The maximum size of hypersphere is bounded by a user defined value λ , 

where 0 1λ≤ ≤ . The λ  is called as growth parameter that is used for controlling maximum size of 

the hypersphere and it puts maximum limit on the radius of the hypersphere. Assuming the train-

ing set defined as { }1, 2,.....hR R h P∈ = , where ( )1 2 3, , ..... n
h h h h hnR r r r r I= ∈  is the thh  pattern the, 

membership function of the hypersphere node jm  is ( ) ( ), , 1 , ,        (3)j h j j jm R C f lζ ζ γ= −                             

where ( )f  is three-parameter ramp threshold function defined as 
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and the argument l  is defined as,         ( )
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The membership function returns jm =1, if the input pattern hR  is contained by the hypersphere. 

The parameter ,  0 1γ γ≤ ≤ , is a sensitivity parameter, which governs how fast the membership 

value decreases hR  outside the hypersphere when the distance between hR and jC  increases. 

 

 
         FIGURE 1: (a) Modified Fuzzy Hypersphere Neural Network (b) Implementation of Fuzzy Hypersphere 
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FIGURE 2: Plot of Modified Fuzzy Hypersphere Membership Function   for γ = 1 

 

The sample plot of membership function for MFHSNN with centre point [0.5 0.5] and radius equal 
to 0.3 is shown in Figure 2. It can be observed that the membership values decrease steadily with 
increasing distance from the hypersphere. 

Each node of  NF  and OF  layer represents a class. The NF  layer gives fuzzy decision and output 

of thk  NF  node represents the degree to which the input pattern belongs to the class kn .The 

weights assigned to the connections between MF  and NF  layers are binary values that are 

stored in matrix U and updated during learning as 
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For 1,2,3,..  and  1,2,3,...k p j q= =  

where jm   is the thj   MF   node and kn  is the thk  NF node. Each NF  node performs the union of 

fuzzy values returned by the fuzzy set hyperspheres of same class, which is described by equa-
tion (7). 
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Each OF  node delivers non-fuzzy output, which is described by equation (8). 

0 if n
 for   1,2,3,....                                                                                  (8)

1 if n

k
k

k

T
o k p

T

≤
= =

=
 

Where ( )max   for  1,2,3,....kT n k p= =  

 

4. MFHSNN Learning Algorithm 

The supervised MFHSNN learning algorithm for creating fuzzy hyperspheres in hyperspace con-
sists of three steps 
1. Creation of hyperspheres 
2. Overlap test, and 
3. Removing overlap. 
These three steps are described below in detail. 
 



B. B. M. Krishna Kanth, U. V. Kulkarni  &  B. G. V. Giridhar 

International Journal of Biometrics and Bioinformatics, (IJBB), Volume (4): Issue (4)                                                                                      141 

4.1 Creation of Hyperspheres 

Given the thh training pair ( ),h hR d  find all the hyperspheres belonging to the class hd . These 

hyperspheres are arranged in ascending order according to the distances between the input pat-
tern and the center point of the hyperspheres. After this following steps are carried sequentially 

for possible inclusion of input pattern hR . 

 

Step 1: Determine whether the pattern hR  is contained by any one of the hyperspheres. This can 

be verified by using modified fuzzy hypersphere membership function defined in equation (3). 

If hR  is contained by any of the hypersphere then it is included, therefore in the training process 

all the remaining steps are skipped and training is continued with the next training pair. 
 

Step 2: If the pattern hR  falls outside the hypersphere, then the hypersphere is expanded to in-

clude the pattern if the expansion criterion is satisfied. For the hypersphere jm   to include hR  the 

following constraint must be met defined as: 
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If the expansion criterion is met then the pattern hR  is included as 
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Step 3: If the pattern hR  is not included by any of the above steps then new hypersphere is 

created for that class, which is described as 

 and 0new h newC R ζ= =                                                                                            (11) 

 

4.2 Overlap Test 

The learning algorithm allows overlap of hyperspheres from the same class and eliminates the 
overlap between hyperspheres from different classes. Therefore, it is necessary to eliminate over-
lap between the hyperspheres that represent different classes. Overlap test is performed as soon 
as the hypersphere is expanded by step 2 or created in step 3. 
 

(a)Overlap test for step 2: Let the hypersphere um  is expanded to include the input pattern hR   

and expansion has created overlap with the hypersphere vm , which belongs to other class. Sup-

pose ( )1 2, .......u nC x x x=   and uζ  represents center point and radius of the expanded hypersphere 

and ' ' '
1 2, ........v nC x x x =

 
 and vζ , are centre point and radius of the hypersphere of other class as 

depicted in Figure 3(a). Then if 
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means those hyperspheres from separate classes are overlapping. 
(b) Overlap test for step 3: If the created hypersphere falls inside the hypersphere of other class 

means there is an overlap. Suppose pm  represents created hypersphere to include the input pat-

tern hR  and qm  represents the hypersphere of other class as shown in Figure 4(a). The pres-

ence of overlap in this case can be verified using the membership function defined in the equation 



B. B. M. Krishna Kanth, U. V. Kulkarni  &  B. G. V. Giridhar 

International Journal of Biometrics and Bioinformatics, (IJBB), Volume (4): Issue (4)                                                                                      142 

(3). If ( ) ( ), , , , 1p h p p q h q qm R C m R Cζ ζ= =   means two hyperspheres from different classes are over-

lapping. 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

FIGURE 3: (a) Status of the hyperspheres before removing an overlap in step 2. (b) Status of the hyper-
spheres after removing an   overlap in step 2 

 
 

 

 

 

 

 

 

 

 

                      

 

 

 

 

 
FIGURE 4: (a) Status of the hyperspheres before removing an overlap in step 3. (b) Status of the hyper-

spheres after removing an   overlap in step 3 

4.3 Removing Overlap 

If step 2 has created overlap of hyperspheres from separate classes then overlap is removed by 

restoring the radius of just expanded hypersphere. Let, um  be the expanded hypersphere then it 

is contracted as  new old
u uζ ζ=                                                                                 (13) 

and new hypersphere is created for the input pattern as described by equation (11). This situation 
is shown in Figure 3(b). If the step 3 creates overlap then it is removed by modifying the hyper-

sphere of other class. Let ( )1 2, .......p nC x x x= and pζ   represents centre point and radius of the 
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created hypersphere, ' ' '
1 2, ........q nC x x x =

 
 and  qζ   are center point and radius of the hypersphere 

of other class. Then overlap is removed as 
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where ∂ is a small number selected just enough to remove the overlap. In our experiments the 

value of ∂  chosen is 0.0001. Hence, the hypersphere qm  is contracted just enough to remove 

the overlap as shown in Figure 4(b). 
 

5. EXPERIMENTAL RESULTS 

Dataset that we have used is a collection of expression measurements reported by Golub et al 
[2]. Gene expression profiles have been constructed from 72 people who have either acute lym-
phoblastic leukemia (ALL) or acute myeloid leukemia (AML). Each person has submitted one 
sample of DNA microarray, so that the database consists of 72 samples. Each sample is com-
posed of 7129 gene expressions, and finally the whole database is a 7129 X  72 matrix. The 
number of training samples in AAL/AML dataset is 38 which of them contain 27 samples of AAL 
class and 11 samples of AML class; here we randomly applied the training samples to the 
MFSHNN classifier. The number of testing samples is 34 where 20 samples belong to AAL and 
remaining 14 samples belongs to AML class respectively.  This well-known dataset often serves 
as bench mark for microarray analysis methods. Before the classification, we need to find out 
informative genes (features) that are related to predict the cancer class out of 7129.  
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

FIGURE 5: Comparison of classification accuracy among SVM, KNN(k= 5 neighbors) and MFHSNN classifi-
ers with all the top 10 genes of  Leukemia test data set selected by using  Wilcoxon Rank Sum Test . 

. 

 
Figures 5 and 6 shows the comparison of the classification performance with respect to the fea-
tures and the classifiers. Spearman correlation coefficient and Wilcoxon rank sum test gene se-
lection techniques achieved 100% prediction accuracy on the test data set using MFHSNN clas-
sifier. It should also be noted that this high classification accuracy  has been obtained using only 
two genes with Gene id’s 4847 and 1882 which are selected by using Spearman correlation and 
Wilcoxon rank sum test gene selection methods. 
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FIGURE 6: Comparison of classification accuracy among SVM, KNN (k= 5 neighbors) and MFHSNN   clas-
sifiers of Leukemia test data set by using Spearman Correlation Coefficient. 

 

 

But traditional classifiers such as Support vector machine and K-nearest neighbor produced the 
best accuracy of 97.1% using all the top 10 genes. As shown from Table 1 the average training 
time and testing time of MFHSNN classifier is in the range of 0.25 -0.39 seconds which is very 
fast compared to any other classifier published so far. Meanwhile the average training and testing 
time of SVM and KNN classifiers is around 2.60-3.5 seconds respectively which is very slow 

comparative to MFHSNN classifier. 

 
 

Classifier 
Average Training 

time (seconds) 
Average Testing time 

(seconds) 

MFHSNN 0.25 0.39 

KNN 2.60 2.65 

SVM 3.20 3.50 

TABLE 1: Comparison of training and testing time for the classifiers 

 
The average classification accuracy of the three classifiers with all the 10 genes is shown in Ta-
ble 2. The highest average classification accuracy achieved by MFHSNN is 97.94% which clearly 
dominates the other classifiers. 
 
 

Gene selection\Classifier MFHSNN KNN SVM 

Wilcoxon Rank Sum Test 97.647 87.633 81.176 

Spearman Coefficient 97.941 87.045 76.471 

TABLE 2: Average classification accuracy  
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Gene 
Rank 

Spearman Correlation 
Coefficient 

Wilcoxon Rank 
Sum Test 

1 4847 4847 

2 1882 1882 

3 3320 3320 

4 6218 6218 

5 1834 760 

6 760 1834 

7 2020 1745 

8 5039 2020 

9 1745 4499 

10 4499 5039 
TABLE 3: List of top 10 ranked genes (values are the Gene ids in the columns) 

 

Table 3 shows the list of top 10 ranked genes that are chosen as the features of the input pat-
terns to the classifiers. It is found that these top 10 genes selected by the gene selection methods 
are very informative features for the accurate prediction of cancer. 
 

6. CONCLUSIONS 

In order to predict the class of cancer, we have demonstrated the effectiveness of the MFHSNN 
classifier on Leukemia data set using an informative genes extracted by methods based on their 
correlation with the class distinction, and statistical analysis. Experimental results show that the 
MFHSNN classifier is the most effective in classifying the type of leukemia cancer using only two 
of the most informative genes. MFHSNN yields 100% recognition accuracy and is well suited for 
the AAL/AML classification in cancer treatment. By comparing the performance with previous 
publications that used the same dataset, we confirmed that the proposed method provided the 
competitive, state-of-the-art results. Under the same context, it not only leads to better classifica-
tion accuracies, but also has higher stability and speed. The training and testing time of MFSHNN 
is less than 0.4 seconds which will further drastically reduce if the proposed classifier is imple-
mented in hardware. Our future work will focus on exploring unsupervised methods such as clus-
tering combined with fuzzy classifier and the corresponding feature selection methods. Besides, 
we will further validate the performance of MFSHNN on more data sets. 
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