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Abstract 

 
Segmentation of high quality brain MR images using a priori knowledge about brain structures 
enables a more accurate and comprehensive interpretation. Benefits of applying a priori 
knowledge about the brain structures may also be employed for image segmentation of specific 
brain and neural patients. Such procedure may be performed to determine the disease stage or 
monitor its gradual progression over time. However segmenting brain images of patients using 
general a priori knowledge which corresponds to healthy subjects would result in inaccurate and 
unreliable interpretation in the regions which are affected by the disease. In this paper, a 
technique is proposed for extracting a priori knowledge about structural distribution of different 
brain tissues affected by a specific disease to be applied for accurate segmentation of the 
patients’ brain images. For this purpose, extracted a priori knowledge is gradually represented as 
disease specific probability maps throughout an iterative process, and then is utilized in a 
statistical approach for segmentation of new patients’ images. Experiments conducted on a large 
set of images acquired from patients with a similar neurodegenerative disease implied success of 
the proposed technique for representing meaningful a priori knowledge as disease specific 
probability maps. Promising results obtained also indicated an accurate segmentation of brain 
MR images of the new patients using the represented a priori knowledge, into three tissue 
classes of gray matter, white matter, and cerebrospinal fluid. This enables an accurate estimation 
of tissues’ thickness and volumes and can be counted as a substantial forward step for more 
reliable monitoring and interpretation of progression in specific brain and neural diseases. 
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1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) [1] of brain is well known as a powerful technique for 
diagnosis which is widely used by many clinicians to detect structural abnormalities that cause 
neurological disorders. Until a few years ago, most of the neurologist just employed their personal 
expertise to inspect a number of cross sections of the patient's brain MRI to diagnosis the 
disorder or monitor the effects of a specific therapy. Swift progresses in medical image 
processing [2] have introduced automatic and semi-automatic methods to enable more precise 
and reliable diagnosis and treatments. Image segmentation [3] is an example for such methods 
which is widely used in many biomedical applications.  A popular application of image 
segmentation in neurology is partitioning a specific brain structure into three major tissues of gray 
matter, white matter, and cerebrospinal fluid. Such a segmentation process makes it possible to 
estimate distributions of different tissue types in the brain in addition to calculate their volumes 
accurately. This information is very beneficial to make an accurate diagnosis or monitor the 
treatment progress precisely.  
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Either manual or automatic Interpretation of brain's high quality images can benefit from utilizing 
atlases as well as a priori knowledge represented as comprehensive probabilistic maps [4, 5]. 
Brain atlases are three dimensional (3D) images produced by averaging on a large number of 
brain images of healthy subjects. Probabilistic maps which are frequently represented as 3D 
images are structures which determine the probabilities by which each voxel of a typical brain 
image corresponds to any of the major tissue type. Developing advantageous atlases and/or a 
priori knowledge in the forms of inclusive probabilistic maps requires collecting and processing a 
large set of brain images [6] in addition to utilizing suitable strategies for image registration and 
warping [7].  
 
Great benefits of employing atlases as well as a priori knowledge hidden in probabilistic maps 
can be extended for analyzing brain images of specific patients with a similar neurological 
disorder such as neurodegenerative diseases. Neurodegenerative diseases including mild 
cognitive impairment, Alzheimer [8], and major depression [9, 10], are disorders caused by 
progressive deterioration of neurons that eventually leads to their death. Clinical symptoms of 
neurodegenerative diseases include disabilities and dysfunctions resulting in dementia (memory 
dysfunctions) and/or ataxia (movement disabilities) [11]. Progressive death of neurons in 
neurodegenerative disease results in atrophy of the brain structures. Such gradual effects can be 
monitored or even quantified using MRI [12]. The quantification is performed via MR image 
segmentation and estimating distribution of different brain tissues. Segmentation is usually 
performed through parametric methods [13] and its precision can be improved using a priori 
knowledge of probabilistic maps registered on the image of patient’s brain [14, 15].  
 
Analyzing images of patients’ brain using general a priori knowledge extracted from brain images 
of healthy subjects would result in inaccurate and unreliable interpretation in the regions which 
are affected by the disease [16]. For example in image segmentation of patients’ brain, this may 
result in misclassification of brain tissues and consequently inaccurate measurement of their 
volumes. As such presentencing a systematic method for development of a priori knowledge 
about structural distribution of brain tissues which is affected by a specific disease and maps is a 
paramount necessity for more reliable studies on progression of the specific neurologic disorders, 
and monitoring their gradual affects on different brain tissues. 
 
In this paper a novel technique is proposed for systematically representation of a priori knowledge 
about effects of a specific neurological disease on different tissue structures of the brain. The 
initial application proposed for the developed knowledge in this paper is segmentation of patients’ 
brain images into its three major tissue types. Such customized segmentation process can also 
accurately calculate the volumes of each tissue type accurately. Experiments conducted on a 
large set of images acquired from patients with a similar neurodegenerative disease implied 
success of the proposed technique for representing meaningful a priori knowledge as disease 
specific probability maps. Promising results obtained also indicated an accurate segmentation of 
brain MR images of the new patients using the represented a priori knowledge, into three tissue 
classes of gray matter, white matter, and cerebrospinal fluid. This can pave the way for a more 
precise disease diagnosis, mentoring its gradual growth, and following the treatment progress. 
 
This paper is organized as follows. The required preliminaries are presented in the next section. 
Section 3 introduces the iterative method used in this paper for development of the disease 
specific a priori knowledge and the segmentation of the brain image of the patients. The 
experiments conducted and the results obtained are presented in section 4. Finally section 5 
discusses the obtained results and concludes this paper. 

 
2. PRELIMINARIES 
 

2.1 Medical Image Registration 
In image registration, a one-to-one mapping or transformation is determined between the 
coordinates of one image space to those in the other. In rigid registration the transformation is 
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limited to translation and rotation while in affine registration the transformation may also include 
scaling and shearing. Eq. (1) shows the general form of 3D affine transformation. In this equation 
TShear, TScale, and TRigid are 4×4 matrices and the aij parameters are coefficients related to rotation, 
scaling and shearing, while the t parameters determine translation [17]. 

 

(1) 

 
While rigid and affine registration are suitable for modeling global motion, they are not capable of 
modeling local motion which usually occurs in deformable objects such as soft tissue. To model 
the local motion, non-rigid or deformable registration approaches have been developed. 
 
A Free-Form Deformation (FFD) technique was introduced by Ruckert et al. for registering breast 
MR images [18]. Later, this FFD technique and its modified versions were widely used in other 
applications of non-rigid image registration by several research groups [19, 20, 21, 22].  FFD 
models the global and local deformations within the object separately, and then combines them to 
form an overall smooth deformation. In practice this translates into a global transformation 
followed by a local transformation: 
 

)),,((),,( zyxTTzyxT globallocal=  (2) 

 
where Tglobal is a rigid or affine transformation and Tlocal is a deformation model based on B-
splines [23]. 
  
A modified implementation of the FFD was used in this paper as the non-rigid registration method 
in the algorithm proposed for generating disease specific probability maps described in Section 3-

1. Following the original version of the FFD, let Φ denote an nx×ny×nz size mesh of control points 

(φi,j,k) with a uniform spacing �� in direction d. Also suppose that ��,�,� denotes the displacement 

of the corresponding control point. Hence, the local transformation can be formulated as a 3D 
tensor product of 1D cubic B-splines: 
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As such, the algorithm uses an optimization technique to find the optimum displacements of the 
control points that yield the best registration in some sense (e.g. maximum similarity). 
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Considering Eq. 3, the derivative of the deformation field with respect to the B-spline coefficients 
can be given by: 
 
5�	
��	�, �, ��

5��,�,�
� �	���������� (5) 
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"#

$ � 1, 7 � ' % ( )
"*

+ � 1, 8 � , %  -
".

$ � 1 and �	�� � 0 for l < 0 and l > 3. This 

implies that the derivative term is nonzero only in the neighbourhood of the corresponding control 
point. Having such a derivative equation for the transformation, the optimization part of the 
registration process can be implemented efficiently using an iterative gradient descent or other 
derivative-based optimization techniques. 
 
2.2 Medical Image Segmentation 
Image segmentation is the process of partitioning an image into a number of regions or classes 
with similar properties based on pre-defined criteria. For example a brain image may be 
segmented into three soft tissue regions of gray matter, white matter, and cerebrospinal fluid 
where a more precise qualitative and/or quantitative analysis is made possible. According to [13] 
segmentation methods are categorized into four major classes: 

1) Thresholding methods 
2) Deformable models 
3) Fuzzy connectivity methods 
4) Statistical techniques 

The segmentation technique applied in this paper is a statistical method known as expectation 
maximization [24, 25]. It is an iterative method through which the maximum likelihood parameters 
are estimated for segmentation. In summary, the expectation maximization is consists of two 
iterative steps of calculating the expectation and maximizing it. In the first step, the expectation of 
the complete data log-likelihood is calculated. In the next step maximum likelihood parameters 
which maximize the expectation are estimated. These parameters are then applied in the first 
step of the next iteration. As such, parameters which result in a segmentation with maximum 
likelihood are progressively obtained via this iterative loop. More details on this method can be 
found in [24, 25, 26].  

 
3. METHOD 
The method proposed in this paper dynamically segment brain MR images of a group of patients 
with a similar neurological disorder in an iterative process where the disease specific a priori 
knowledge is also extracted concurrently. The extracted a priori knowledge corresponds to the 
distribution of different brain tissues affected by the disease. It would be represented in the form 
of separate probability maps for gray matter, white matter, and cerebrospinal fluid. The 
conventional approach for generating brain atlases and probability maps usually perform this task 
in one single step and by averaging on a number of brain images segmented previously. In the 
technique proposed in this paper, current simple methods are substituted with an iterative image 
segmentation process which aims for both enhancing the quality of newly generated probability 
maps in each iteration a well as improving the precision of input images segmentation 
simultaneously. The technique applies deformable image registration for adjusting the input 
images in a reference coordinate, and employs expectation maximization technique for 
segmenting the patient's brain images. The new probability maps in each iteration are generated 
by averaging on intensity distribution of images for each specific tissue type. More details on the 
proposed technique have been provided in the following section. 
 

3.1 Developing Disease Specific A Priori Knowledge for Brain Image Segmentation 
Expectation Maximization as a parametric approach for image segmentation estimates the 
intensity distribution for each tissue type in a MR image. Such estimation is performed using a 
priori knowledge represented as probability maps. As such gradual enhancement of probability 
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maps' quality would progressively results in improving the accuracy of image segmentation as 
well.  
 
Figure 1 demonstrates schematic structure of the proposed technique for generating disease 
specific probability maps for each tissue type. As can be seen in this figure the method receives a 
set of brain MR images of patients with a similar neurological disorder along with a reference 
brain atlas and its corresponding probability maps as the inputs and consequently goes through 
the following processing steps:   
 

1) Loading input data including brain MR images of patients as well as reference atlas and 
probability maps. 
2) Initial segmentation for each input image: 

2.1) Registering the reference atlas into the patient's image space. 
2.2) Mapping the probability maps for gray matter, white matter, and cerebrospinal fluid into 

patient's image space using  the transformation function obtained in the previous step. 
2.3) Soft segmentation of the patient's image via expectation maximization method which 

outputs a patient specific probability map for each tissue type. 
3) Entering to the iterative loop for disease specific probability maps generation: 

3.1) Registering each patient's image into the reference atlas space. 
3.2) Mapping each set of patient specific probability maps (obtained in step 2.3 or 3.5) to 

the reference atlas space using the corresponding transformation function obtained in 
step 3.1. 

3.3) Averaging patient specific probability maps for each tissue type in the reference space 
to generate/update the disease specific probability map for the corresponding brain 
tissue. 

3.4) Transferring new probability maps into each patient's image space using inverse of the 
transformation function obtained in step 3.1. 

3.5) Soft segmentation of patients' images via expectation maximization method using the 
new probability maps transformed in step 3.4. The output is a specific set of probability 
maps for each patient. 

3.5) Return step to 3.2. 
 

 
 

FIGURE 1: Schematic structure of the proposed technique for generating disease specific probability maps 
as well as segmenting the patients' images. 
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As mentioned earlier, the processes of generating/updating new disease specific probability maps 
and improving the precision of patients' image segmentation have been tied together. In other 
words, for generating/updating disease specific probability maps segmentation of patients' 
images is a prerequisite, and on the other hand, for a more accurate segmentation of patients' 
images high quality disease specific probability maps are required. As such, the proposed 
algorithm employs an iterative loop for generating/updating the disease specific probability maps 
and in the same loop, applies these new maps for improving the accuracy of segmentation of the 
patients' brain images. Eventually and after a number of iteration, high quality and precise 
disease specific probability maps are obtained. Such maps can then be applied for segmenting 
brain images of new patients accurately where it enables more reliable qualitative and/or 
quantitative analysis for diagnosis and/or monitoring the disease progress.  

 

4. EXPERIMENTS AND RESULTS 
The proposed technique was evaluated on a large set of brain MR images of patients with a 
similar neurodegenerative disease. The dataset consisted of 108 T1 weighted images of different 
patients where it was randomly partitioned into two sets of training (98 images) and testing (10 
images). The images of training set were used for generating a set of disease specific probability 
maps for different tissue type, while the never seen images of the testing set were applied for 
evaluating the performance and accuracy of the generated maps for segmenting brain images of 
new patients. 
 
Quality of generated probability maps at each iteration of the proposed algorithm was examined 
by a medical imaging expert. After 6 iterations no major improvement was observed on the quality 
of generated maps. As such the algorithm's loop was stopped at the end of this iteration and its 
output was used as the disease specific probability maps for segmentation of new patients' 
images.  
 
Figure 2 shows the probability maps obtained for the gray matter. The Figure 2(a) demonstrate 
the initial probability map used as the input of the algorithm in coronal and sagittal planes. Figure 
2(b)-(g) present the disease specific probability maps obtained in successive iterations, 
respectively. As it can be observed, the process of disease specific probability maps generation 
implies a progressive sharpening of the edges and clarification of the maps. More details may be 
detected in the probability map images after passing each iteration of the proposed algorithm. 
Such enhancement may be more appreciated for the images of rows three and four (outputs of 
second and third iterations). These observations confirm that the generated probability maps 
enriched with disease specific a priori knowledge have rapidly converged toward a similar 
structure which conforms the disease progress. 
 
In the next stage, the generated disease specific probability maps were applied in the process of 
image segmentation for new patients' images of the testing set. These never seen brain images 
had not been presented to the algorithm before. Figure 3 illustrates the typical results obtained for 
segmentation of gray matter, white matter, and cerebrospinal fluid in one patient's brain image. 
The figure shows those results obtained by applying the initial probability maps (obtained from 
healthy subjects' brain images) in the expectation maximization segmentation methods, as well 
as those obtained through the same segmentation technique by applying the generated disease 
specific probability maps. Qualitative evaluation performed on the results obtained using the two 
sets of probability maps suggests that a more precise segmentation has been done using the 
generated disease specific probability maps. In this case brain tissue structures have been 
revealed with more meaningful details as well as with less undesirable artifacts via the 
segmentation process. This can be more appreciated by comparing the two rows of images in 
Figure 3, and specially in Figure 3(C).   
 
The accuracy of the results obtained for testing set images segmentation using the two sets of 
initial and generated probability maps was then analyzed quantitatively. For this purpose, the 
segmentation results obtained using the initial set of probability maps are first corrected manually 
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in a time consuming process and by a medical imaging expert. The manually corrected 
segmentation was then used as the reference for evaluating the precision of the segmentation 
processes performed using the initial and generated probability maps. Two criteria of True 
Positive Volume Fraction (TPVF) and False Positive Volume Fraction (FPVF) were utilized for the 
quantitative analysis and evaluations. The average results obtained for gray matter, white matter 
and cerebrospinal fluid have been reported in Tables 1. The results given in this table imply a 
considerable increase in the segmentation accuracy of the gray matter, white matter and 
cerebrospinal fluid by applying the disease specific probability maps generated using the 
proposed algorithm. In the case of gray matter segmentation, the disease specific a priori 
knowledge could increase TPVF while decreasing the FPVF. Similar results obtained in the case 
of white matter segmentation as well. In the case of cerebrospinal fluid segmentation, the TPVF 
has been increase substantially. However it also resulted in a slight increase in FPVF 
simultaneously. Such increase seems negligible considering the excellent performance of the 
probability maps in all other cases. 
 

 

 

 

(a) 

    
        (c)       (b) 

    
        (e)      (d) 

 
        (g)       (f) 

 
FIGURE 2: Sagittal (left) and Coronal (right) planes of the gray matter probability map. (a): initial probability 
map, (b)-(g): the neurodegenerative disease specific probability maps, generated in first to sixth iterations of 

the proposed algorithm, respectively. 
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5. DISCUSSION AND CONCLUSION 
A technique was proposed and evaluated in this paper to extract a priori knowledge about 
structural distribution of different brain tissues affected by a specific neurological disorder from a 
set of brain MR images of the suffering patients and consequently represented as disease 
specific probability maps. The disease specific a priori knowledge was then applied in brain 
image segmentation process of new patients in order to increase the process precision. The 
processes of generating/updating new disease specific probability maps and improving the 
precision of patients' image segmentation are mutually contingent on each other. As such, the 
proposed algorithm utilizes an iterative loop for generating/updating the disease specific 
probability maps and in the same loop, employs these new maps for improving the accuracy of 
segmentation of the patients' brain images. Eventually and after a number of iteration, high 
quality and precise disease specific probability maps are obtained. The obtained maps can then 
be applied for segmenting brain images of new patients precisely where a more meaningful 
qualitative/quantitative analysis for diagnosis/monitoring the disease progress is made possible. 
In addition and utilizing the proposed algorithm, the disease specific probability maps may be 
made more enriched with further a priori knowledge extracted from new sets of patients' images 
whenever such data is available. 
 

   
  

   
          (c)     (b)       (a) 

 
FIGURE 3: Typical results obtained for segmentation of a patient's brain MR image using a priori knowledge 
of the initial probability maps (top row), and the generated disease specific probability maps (bottom row). 

(a): Gray matter segmentation, (b): White matter segmentation, (c): cerebrospinal fluid segmentation 
 

Brain Tissue 

TPVF 
(Initial 

probability 
maps) 

TPVF 
(Disease specific 
probability maps) 

FPVF 
(Initial 

probability 
maps) 

FPVF 
(Disease specific 
probability maps) 

Gray matter 93.9% 97.1% 15.7% 5.4% 

White matter 86.8% 92.0% 5.6% 1.9% 

Cerebrospinal fluid 70.6% 89.2% 1.9% 2.7% 

 
TABLE 1: Accuracy of different brain tissues segmentation by applying a priori knowledge involved in initial 

(general) and generated (disease specific) probability maps in expectation maximization segmentation 
algorithm. 

 
The experiments conducted on a large set of MR brain images of patients suffering from a similar 
neurological disorder confirmed a desirable performance of the proposed method for representing 
disease specific a priori knowledge as well as in employing it for brain image segmentation of 
new patients. Qualitative evaluation of the generated probability maps implied their high quality 
conformance with the disease structural progress. The qualitative examinations carried out on the 
performance of the brain image segmentation of new patients using the generated disease 
specific probability maps showed a more accurate classification in comparison to the case where 
a general set of probability maps was used. In the former case, brain tissue structures were 
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revealed with more meaningful details as well as with less undesirable artifacts throughout the 
segmentation process. The quantitative evaluations performed on brain image segmentation of 
new patients also verified a considerable increase in the segmentation precision in the case 
where the generated disease specific probability maps were applied. Here a favorable increase in 
TPVF was achieved concurrently with an encouraging decrease in FPVF, in most case. 
 
As mentioned earlier, the immediate goal aimed in this paper for generation and representation of 
disease specific a priori knowledge was brain image segmentation for diagnosing the disease and 
monitoring/measuring its gradual effects on different brain tissue structures. As such and 
considering the substantial increase accomplished in the accuracy of the brain image 
segmentation of new patients using the generated disease specific probability maps, a substantial 
step has been taken forward towards this goal. This will pave the way for a more reliable disease 
diagnosis, measuring its progress, and monitoring the treatment response. 
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