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Abstract 

Researchers have developed finite element (FE) models from preoperative medical images to simulate 
intraoperative breast compression. Applications for these FE models include mammography, non-rigid 
image registration, and MRI guided biopsy. Efficient FE breast models have been constructed that model 
suspect lesions as a single element or node within the FE breast mesh. At the expense of efficiency, 
other researchers have modeled the actual lesion geometry within the FE breast mesh (conformal breast-
lesion mesh). Modeling the actual lesion geometry provides lesion boundary spatial information, which is 
lost in FE breast models that model suspect lesions as a single element or node within the FE breast 
mesh. 

In this paper, we used a commercial finite element analysis (FEA) program to construct a biomechanical 
breast model from patient specific MR volumes. A laterally situated lesion was identified in the diagnostic 
MRI. We used the FE model to simulate breast compression during an MRI guided biopsy. Our objective 
was to investigate the efficacy of independently discretizing the breast and lesion geometries and using a 
kinematic constraint to associate the lesion nodes to the nodes in the breast mesh based on their 
isoparametric position. 

This study showed that it is possible to construct an accurate and efficient FE breast model that considers 
the actual lesion geometry. With 61 mm of breast compression, the lesion centroid was localized to within 
3.8 mm of its actual position. As compared to a conformal breast-lesion FE mesh, the element count was 
also reduced by 53%. 

These findings suggest that it is possible to predict the position of a suspect lesion's centroid and 
boundary within clinical time constraints (< 30 minutes). 

Keywords: Breast, Finite Element Analysis, Breast Compression, lesions, MRI Guided Biopsy. 

 
 
1. INTRODUCTION 
An MRI guided biopsy requires the radiologist to localize the suspect lesion with the breast compressed 
between rigid plates.  However, the suspect lesion is generally identified from a diagnostic MRI exam with 
breast freely hanging under the force of gravity. There are several potential challenges associated with 
localizing a suspect breast lesion including patient positioning, visibility of the lesion may fade after 
contrast injection, menstrual cycles, and lesion deformation. Researchers have constructed FE models 
that simulate breast compression with the intent of minimizing these challenges [1]. Other applications for 
these FE breast models included mammography [2], and non-rigid medical image registration [3], [4], [5]. 
For the researchers selected in this study, three FE lesion modeling methods were considered: 1) the 
suspect lesion was modeled as an element within the breast mesh, 2) researchers modeled suspect 
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lesions as point or node within the FE breast mesh, and 3) the actual geometry of the suspect lesion was 
modeled within the FE breast mesh, conformal breast-lesion mesh. 

First, Azar et al. [1] constructed a FE breast model from MRI data of a healthy volunteer using an all 
hexahedral mesh. The breast contained a cyst, and it was modeled as a single element within the FE 
breast mesh. These researchers proposed discretizing the breast geometry with an average element size 
equal to the size of the suspect lesion. The error between the actual and predicted cyst position was (4.4, 
1.9, 1.3), in mm. 

Second, Zhang et al. [5] constructed a FE breast model from patient specific MRI data using an all 
tetrahedral mesh, 2

nd
 order tetrahedral. A suspect feature was indentified in corresponding 

mammography images. They modeled the suspect feature by tracking a point in the FE breast model. A 
suspect lesion was identified in the CC (cranio-caudal) view, and projected to the corresponding 
compressed FE model. The FE model was decompressed followed by compressing it into the MLO 
(mediolateral oblique) direction. The predicted position of the suspect lesion was within 2.3 mm of its 
actual position in the MLO view.  

Third, the actual geometry of the suspect lesion was modeled within the solid breast mesh. Maintaining 
nodal connectivity, the lesion geometry was captured into the breast solid mesh by increasing the mesh 
density in the vicinity of the lesion and manipulating the position of these nodes to match the lesion's 
surface profile [3]. This FE modeling method was used to develop a non-rigid image registration validation 
procedure. 

There are pros and cons associated with these lesion modeling methods. Discretizing the breast 
geometry and differentiating suspect lesions by assigning lesion material properties to elements in the 
vicinity of the actual lesion is computational efficient; the average element edge length is a function of 
only the breast geometry's length scale.  However, the lesion's length scale is much smaller.  The lesion's 
centroid may be accurately predicted, but the details regarding the boundary of the lesion are lost. In 
contrast modeling the actual geometry, conformal breast-lesion mesh, eliminates the shortfalls stated 
above, but it is more computationally expensive. The overall size of the FE breast mesh depends on both 
the breast and lesion length scales. 

The objective of this paper was to investigate the efficacy of independently discretizing the breast and 
lesion geometries and using a kinematic constraint to associate the lesion nodes to the nodes in the 
breast mesh based on their isoparametric position. We developed a patient specific biomechanical FE 
breast model from a diagnostic breast MR volume and the corresponding localizing MR volume from an 
MRI guided biopsy. The model was used to simulate the associated intraoperative breast compression. 
The following assumptions were considered in this study: 

• Fat and fibroglandular tissues are the primary contributors to the kinematic behavior of the female 
breast [6] 

• Breast tissue is homogeneous, isotropic, nonlinear, and nearly incompressible [7], [8]  

• The Neo-Hookean material model adequately models the constitutive relationships of breast 
tissue [2], [4]  

• The breast was allowed to freely hang during the diagnostic MRI 

• Prior to compressing the breast in preparation for the biopsy, the breast was allowed to freely 
hang 

• The sternum is stable and reproducible  
• The breast coupled with the rigid plates form a conservative system 

• For clinical use, predicted results should be available within 30 minutes [1] 
 
Our FEA methodology was verified by visual inspection of the deformed surface profile, calculating the 
difference between the simulated and actual lesion travel, and overlaying the actual lesion onto the 
numerical results.  

The major contributions to the published literature from this study include: 
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• Ability to independently discretize the breast geometry and the actual lesion geometry 

• Ability to replicate surface boundary conditions including the compression and immobilization 
plates, and the introducer sheath (biopsy equipment) 

• A FE breast model verification method that uses only the  breast diagnostic and biopsy MR 
volumes 

2. FINITE ELEMENT METHOD AND ELASTICITY FOR MODELING BREAST TISSUE 
Constructing a FE model of the female breast requires the analyst to consider nonlinear characteristics. 
Since the intraoperative breast compression was finite, 61 mm, and the breast tissue material behavior 
was assumed hyperelastic, nonlinear geometry and nonlinear material theory was considered in this 
investigation. An overview of nonlinear geometry and nonlinear material theory, applicable to this 
research, is presented in this section.  This section begins with a brief discussion on the linear tetrahedral 
Herrmann formulated FE element which was used to discretize the computational domain. 
 
2.1 GOVERNING FUNCTIONAL 
Finite elements that are formulated based on linear elastic theory are not valid for Poisson's ratio (�) 
approaching 0.5 due to volumetric locking. Volumetric or element locking is a condition that occurs when 
the element is unable to distort while simultaneously meeting the incompressibility constraint [9]. The 
numerical solution of these equations may result in large errors due the corresponding kinematic 
constraints on the admissible displacement fields.  
 
Herrmann formulated finite elements overcome this limitation for incompressible and nearly 
incompressible materials. In addition to nodal displacement, hydrostatic pressure is an independent 
variable in the element formulation.  

In this research, the FE breast mesh was discretized using the linear tetrahedral Herrmann formulated 
finite element. This is a 5 node isoparametric element with an additional pressure degree of freedom at 
each of the four corner nodes [10], Fig. (1). The shape function for the center node is a bubble function. 
For this reason, the displacements and the coordinates for the element are linearly distributed along the 
element boundaries. The stiffness of this element is formed using four Gaussian integration points. The 
degrees of freedom of the center node are condensed out of the element before being assembled in the 
global matrix [10]. Because of this, it does not add to the computational expense of the FE model.  

This element was formulated from the perturbed Lagrangian variational principle,  
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which is based on the on Herrmann variational theorem [11] [12].  In equation (1), the variables  Wdev., 
Wvol., P, K, fi, and ui are the deviatoric strain energy density, volumetric strain energy density, hydrostatic 
pressure, bulk modulus, nodal load vector, and nodal displacement vector, respectively. Herrmann's 
variational theorem, 
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and the corresponding differential equation are applicable over the entire range of admissible Poisson's 
ratios, 0 ≤ � ≥ 0.5. The symbols G, I1, and I2 are the shear modulus of elasticity, 1st strain invariant, and 
2nd strain invariant, respectively. This functional and the corresponding governing differential equation 
both describe the same physical problem. The governing differential equation can be derived by 
considering Euler equations [13], [14].  Equation (2) and its Euler equation counterpart are typically called 
the weak and strong forms of the governing equation, respectively.  
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2.2 Nonlinear Geometry 
An MRI guided breast biopsy results in finite breast deformation which means that geometric changes 
between the undeformed and compressed breast are not negligible. When finite deformations are 
present, geometric non-linearity should be considered for accurate FE modeling.  Geometric non-linearity 
is usually resolved by writing the equilibrium equations in incremental form [K]{�D} = {�R}. In this 
mathematical relationship [K], {D}, and {R} are the stiffness matrix, element displacement vector, and 
nodal load vector, respectively.  The [K] is a function of {D} which is computed iteratively. Iterating 
continues until the magnitude of the residual force vector is smaller than the specified tolerance.  The 
residual force vector is defined by the difference between the external and internal force vectors. Once 
the convergence tolerance is satisfied, the current {D} becomes the sum of the preceding {�D}'s, and the 
current [K] is used to calculate the next displacement increment. The displacement vector and stiffness 
matrix are updated and the process is repeated until the specified external loading condition is applied. 
Simply stated, the load-displacement curve is approximated as a series of line segments [13].  

 
In this research, large displacement-large strain theory is assumed. Breast tissue displacements were 
analyzed in Lagrangian coordinates. The displacement, differentiation, and integration are referenced 
back to the original domain in the Lagrangian approach. As the displacement increases higher order 
terms are added to the strain-displacement relationship in order to account for geometric non-linearity. 
Lagrangian coordinates are typically used where large strains are present [15].   
 
 
2.3 Material Non-linearity 
The breast tissue constitutive relationships were modeled using the Neo-Hookean hyperelastic material 
model. The stress-strain relationship for a hyperelastic material is defined by a strain energy density 
function, 
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were Si, W, and �i are the second Piola-Kirchoff stress, strain energy density, and principle stretches, 
respectively [15]. Depending on the type of hyperelastic model, the strain energy function is written as a 
function of strain invariants or stretch ratios, defined in by: 
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The terms in equation (4) are derived from the deformation gradient, Fij. The deformation gradient maps 
position vectors in the reference (undeformed) configuration, Xi, to the corresponding location in the 
deformed geometry, xi [9], 
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FIGURE 1:  1 Linear tetrahedral Herrmann formulated element 
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The finite deformation formulation defines the current position of a point, xi, by adding the displacement, 
ui, to the corresponding reference (undeformed) position of the point, Xi [9], 
 
 .uXx iii +=  (6) 

 
The Neo-Hookean (W

NH
) material model assumes that the strain energy density, elastically stored energy 

per unit volume, is a polynomial function of the principle strain invariants.  This strain energy density 
function contains only the first order strain invariant term [11], 
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The variable C10 is the material parameter which is derived from curve fitting the stress-strain data. 
Equation (7) is derived by expanding I1, equation (4), into a power series and neglecting higher order 
terms [15], deviatoric component. 

3.0 MRI Derived Finite Element Breast Model 
Three commercial computer programs were used as our primary research tools. 1) ANALYZE [16] was 
used to view and manipulate the MR images. ANALYZE is a biomedical image viewing software 
developed by the Mayo Clinic. 2) The computational domain was discretized using HyperMesh [17]. 
HyperMesh is a FEA pre-processor, Altair Engineering, Inc. 3) Except for meshing, our FEA model was 
constructed and processed using MARC/Mentat which is a multi-purpose nonlinear FEA software 
package, MSC Software Corporation. 
 
Figure 2 gives a general overview on how we constructed our FE model.  This section is arranged into 6 
subsections that discuss the components of our FE model which include: 1) MRI data and geometry 
construction, 2) rigid registration, 3) geometry discretization, 4) material properties and material model 
selection, 5) boundary conditions, and 6) numerical solution methods. 
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3.1 MRI Data and Geometry Construction 
For this study, the left breast was considered. It contained a single lesion, situated laterally, and was 
diagnosed as non-invasive cancer. T1-weighted diagnostic and biopsy MR images were acquired. The 
voxel sizes in the diagnostic and biopsy MR volumes were 0.94x0.94x2.5 mm

3
 and 0.66x0.66x2 mm

3
, 

respectively. The biopsy was performed 18 days after the diagnostic MRI exam. Figure 3 contains the 3D 
rendering of the left breast and a maximum intensity projection (MIP) highlighting the suspect lesion. 
Figure 4 shows the corresponding biopsy volume.  
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FIGURE 2:  Overview of the proposed FE breast model construction 
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FIGURE 3:  Breast diagnostic MR volume and a MIP highlighting the suspect lesion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4:  Breast biopsy MR volume: immobilization plate side (left), compression plate side (right) 

 
3.2 MR Volume Rigid Registration 
Since the diagnostic and biopsy MR volumes were not aligned, we took an anatomical landmark based 
registration approach to align these 3D medical images [18]. The sternum was used as the anatomical 
landmark due to its constant nature [19]. Anatomically, the breast architecture was assumed constant due 
to scaffolding support by Cooper's ligaments [20]. With sternum alignment, the difference between the 
two MR volumes was breast compression. 
 
The rigid registration tool in ANALYZE was used to align the two MR volumes, (Fig. 5). This allowed for 
an independent measurement of lesion displacement (lesion travel from the diagnostic MRI to the biopsy 
MRI). 
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FIGURE 5:  A 2D MR slice of the biopsy MRI volume (white) overlaid on the diagnostic MR volume (grey), 

registered at the sternum 
 
3.3 Breast and Lesion Geometry Discretization 

Figure 6 is a flowchart that describes how the FE breast mesh was constructed; the mesh development 
process was divided into 5 steps. 1) The diagnostic breast MR images were rendered into a 3D image. 2) 
Using ANALYZE, we segmented the breast and lesion surfaces from the MR volume. 3) Since the surface 
mesh quality was insufficient for FEA, these two surfaces were imported into hyperMesh and refined. 4) 
The breast and lesion surfaces were then independently discretized. The breast surface mesh was 
discretized resulting in 10,915 tetrahedral elements. The average edge length of the surface elements 
was 7 mm. The lesion geometry was meshed with a surface element edge length of 0.85 mm resulting in 
1,562 tetrahedral elements. 5) We used a kinematic constraint that tied the lesion nodes to the breast 
nodes based on their isoparametric locations within the breast mesh.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 6: Breast and lesion geometry discretization process 
 
3.4 Elastic Material Properties and Material Model Selection 
In this paper, we assumed that the effects of different normal breast tissue types other than the fat and 
fibroglandular tissues were negligible. In addition, the normal breast tissues were modeled as one tissue 
type consisting of the volume fractions of the fat and fibroglandular tissues. These volume fractions were 
calculated by segmenting the fat tissue from the diagnostic MRI and calculating its volume. The total 
breast volume was also calculated.  The fat tissue/total breast volume ratio was 0.67. 
Our elastic material properties for the homogeneous breast tissue model were derived by first considering 
the volume fraction rule, 
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( ) ( ) ( ) ( ) .V1EVEE fatularfibroglandfatfatbreast −ε+ε=ε
 

(8) 

 
The variable Vfat is the volume fraction of fat tissue. The functions E(�)fat and E(�)fibroglandular were derived 
by fitting Wellman's [7] experimental derived elastic modulus versus strain data for fat and fibroglandular 
tissues to third order polynomials. Equation (8) was then integrated with respect to strain (�) resulting in 
the constitutive relationship for the homogeneous breast tissue model, (Fig. 7).   

 
Using Wellman's [7] material property data for lobular cancer, the constitutive relationship for the suspect 
lesion was similarly derived. The elastic modulus versus strain data was fitted to a third order polynomial 
and integrated with respect to strain.  The corresponding stress versus strain relationship is also shown in 
(Fig. 7). 
 
The constitutive relationships for the breast and lesion tissues were imported into Mentat and fitted to the 
Neo-Hookean material model. C10, the Neo-Hookean material parameter, was 1.1 kPa and 4.2 kPa for the 
breast and lesion tissues, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boundary 
conditions 
Fig. 8 is a flowchart that shows how we prescribed a Direchlet boundary condition, displacement vector, 
to each surface node. The process that we developed to define the nodal displacement vectors contained 
5 steps. 1) With the diagnostic and biopsy MR volumes aligned at the sternum, we segmented the breast 
surface from the biopsy MR volume. Since the mesh quality was inadequate for FE modeling, it was 
imported into HyperMesh for refinement. 2) The refined surface mesh was then converted into the Initial 
Graphics Exchange Specification (IGES) surface format using HyperMesh's mesh to geometry surface 
modification tool. 3) The uncompressed breast surface mesh, which was used to create the FE breast 
mesh, was morphed onto the deformed breast IGES surface. 4)  From the undeformed and morphed 
breast surface meshes, the displacement vector for each surface node was calculated by subtracting its 
position vector on the morphed surface mesh from its position vector on the uncompressed surface mesh. 
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A node versus displacement vector table was created from these calculations. 5) A script was written that 
converted the node versus displacement table into MARC input deck format. The output from the script 
was appended to the input deck of the FE breast model.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In this study, it was assumed that the nodes at the pectoral fascia and rib interface do not move. 
 
3.6 Finite Analysis Solution  
 
Our FEA methodology for simulating breast compression is summarized here: 

• Element Type: 12,477  linear tetrahedral, full integration Herrmann formulation   

• Contact: None 

• Links:  insert kinematic constraint (lesion-breast nodes) 
• Boundary Conditions: displacement controlled 

• Dynamic Effects: none (quasi static) 

• Solution Control: large displacement, large strain, Lagrangian, Newton-Raphson 
• Stepping Procedure: Constant time step 

• Convergence Criteria: Relative residual force magnitude, criteria ≤  0.1 
 
4.0 RESULTS 
We constructed 3 additional FE models that differ only in how the suspect lesion was modeled. 1) The 
lesion was modeled as a rectangular prism made up of 77 tetrahedrals. The suspect lesion was bound by 
the rectangular prism, similar to the work of Azar et al. [1]  2) A single node representing the centroid of 
the suspect lesion within the FE breast mesh. Zhang et al. [5] used this method to track a suspect breast 
feature that was identified on mammographic images. The normal and lesion breast tissue were modeled 
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as one tissue type consisting of the volume fractions of the fat and fibroglandular tissues. 3) The actual 
lesion geometry was modeled within the FE breast mesh; a conformal breast-lesion mesh; this method 
was proposed by Schnabel et al. [3]. The results of these models were compared to the proposed FE 
model. 
 
The results are arranged into 3 subsections: 1) Deformation contour plots, 2) suspect lesion travel, and 3) 
suspect lesion overlaid onto the FEA results.  

 
4.1 Deformation Contours Plots  
As expected, the displacement contour plots for the four FE lesion models were similar. Figure 9 shows 
the common displacement contour plot overlaid on the deformed FE breast model after the surface 
boundary conditions were applied. The deformed surface profile replicates the surface profile of the 
biopsy MR volume. The peak compression and immobilization plate travel was 46 mm and 15 mm, 
respectively. 
 
In comparison to the conformal breast-lesion FE mesh, the element count for the proposed FE breast 
mesh was reduced by 53%, from 26,299 to 12,4777 elements. The corresponding time required to apply 
the surface boundary conditions was reduced from 42 minutes to 3 minutes. The FE model size and 
processing time differences between models 1, 2, and the proposed FE breast model were negligible. 
 
 

 

FIGURE 9: Displacement contour plots: view from the compression plate side (top) view from the 
immobilization plate side (bottom) 
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4.2 Suspect Lesion Travel 
ANALYZE was used to calculate the position coordinates of the suspect lesion's centroid in the 
undeformed and compressed breast volumes.  The lesion's displacement vector was calculated by 
subtracting the lesion's position vector in the biopsy MR volume from the lesion's position vector in the 
diagnostic MR volume.  The centroidal coordinates, in mm, of the lesion from the diagnostic and biopsy 
MR volumes were (79.7, 219.3, 44.5) and (68.7, 218, 40.1), respectively. From this, the lesion 
displacement vector was (11, 1.3, 4.3); the corresponding magnitude was 11.9 mm.  
 
Table 1 shows the lesion displacement error from each of the 4 methods used to model the suspect 
lesion. With 61 mm of breast compression, the proposed FE breast model localized the suspect lesion to 
within 3.8 mm of its actual position. The accuracy limit for adequate registration is 5 mm [2]. As compared 
to previously published lesion modeling techniques, the simulation results from the proposed method 
were provides similar accuracy. Thus, our method for modeling breast lesions may offer the combined 
benefits of previous researchers without the inherent limitations. 

 
TABLE 1: Lesion Centroid Position Error (mm) 

 

 
 

4.3 Suspect Lesion Overlaid Onto the FEA Results 
Figure 10 shows the actual lesion (right) segmented from the biopsy MR volume, overlaid onto the FEA 
results (left) from the proposed FE model. The surface areas of the lesion segmented from the diagnostic 
and biopsy MRI's were 310 mm

2
 and 353 mm

2
, respectively. The overlapping surface area was 165 mm

2
. 

Using the lesion surface area from the diagnostic MR volume, this resulted in 45% overlap. CAD tools 
were used to calculate the lesion surface areas. The overlapping surface area was created from the 
intersection of the lesion surfaces.   
 
It is hypothesized that the deviation between these surfaces was due, primarily, to the anisotropic nature 
of breast tissue [21] and the difference in lesion visualization between the diagnostic and biopsy MR 
volumes. Breast tissue anisotropy is beyond the scope this paper; modeling anisotropic material behavior 
may increase the amount of overlap between the actual and predicted lesion positions and should be 
considered in future research. 

 

 

 

Lesion FE Model X Y Z
Lesion Centroid 

Position Error

1
Specific Elements within the FE

breast Mesh
2.7 1.1 2.3 3.7

2

Single node representing the lesion's centroid 

within the FE breast 

Mesh

2.7 1.1 2.4 3.8

3
Actual Lesion geometry within the FE breast 

Mesh (Confromal breast-lesion mesh)
2.2 1.5 2.3 3.5

4
Actual Lesion geometry within the FE breast 

Mesh (kinematic constraint)
2.8 1.2 2.3 3.8
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5. 0 DISCUSSION 
Potentially, radiologists would use our method for modeling suspect lesions, in combination with FEA 
methods developed by previous researchers, to assist in targeting suspect lesions that are difficult to 
localize with the breast compressed between rigid plates. Previous researchers have developed stand 
alone algorithms for segmenting and discretizing the breast surface, lesions, and the fibroglandular tissue 
region. The physician would simulate breast compression in 3 stages: 1) with the sternum used as a rigid 
registration feature, they would align the diagnostic and biopsy MR volumes, 2) patient specific suspect 
lesions would be independently discretized based on their own length scales, and 3) with the lesion 
meshes kinematically constrained to the corresponding breast mesh, the patient specific FE breast model 
would then be used to predict the position of the suspect lesion (centroid and boundary positions).  
 
6.0 CONCLUSION 
In conclusion, this research made three points. 1) The breast and lesion geometries can be independently 
discretized. A kinematic constraint that tied the lesion nodes to the corresponding nodes in the breast 
mesh based on their isoparametric position was an enabler for independent breast and lesion meshing. 2) 
Constructing the surface from the biopsy MR volume and using it to define displacement vectors for the 
surface of the breast mesh is a viable alternative to prescribing boundary conditions. With this method, 
the effects of external contacting bodies are considered without having to directly model them. 3) As 
compared to the conformal breast-lesion mesh, the FE model sized was reduced by 53%. 
 
Since our FEA method was demonstrated on a single case, our evidence is limited to this patient. For this 
reason, we will use our proposed FEA method to study additional cases.  These additional cases will 
include different types of suspect lesion tissue, lesions situated in different quadrants of the breast, and 
multiple suspect lesions (dual biopsy). 
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