E-Cordial Labeling of Some Mirror Graphs

S. K. Vaidya
Department of Mathematics,
Saurashtra University,
RAJKOT – 360005, Gujarat (India).
samirkvaidya@yahoo.co.in

N. B. Vyas
Department of Mathematics,
Atmiya Institute of Technology & Science,
RAJKOT – 360003, Gujarat (India).
niravbvyas@gmail.com

Abstract

Let G be a bipartite graph with a partite sets V_1 and V_2 and G' be the copy of G with corresponding partite sets V_1' and V_2'. The mirror graph $M(G)$ of G is obtained from G and G' by joining each vertex of V_1 to its corresponding vertex in V_2 by an edge. Here we investigate E-cordial labeling of some mirror graphs. We prove that the mirror graphs of even cycle C_n, even path P_n and hypercube Q_k are E-cordial graphs.

Keywords: E-Cordial labeling, Edge graceful labeling, Mirror graphs.

AMS Subject Classification Number(2010): 05C78

1. INTRODUCTION

We begin with finite, connected and undirected graph $G = (V(G), E(G))$ without loops and multiple edges. For standard terminology and notations we refer to West[1]. The brief summary of definitions and relevant results are given below.

Definition 1.1

If the vertices of the graph are assigned values subject to certain condition(s) then it is known as graph labeling.

Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa[3] and Golomb[4] which is defined as follows.

Definition 1.2

A function f is called graceful labeling of graph G if $f : V(G) \rightarrow \{0, 1, 2, \ldots, q\}$ is injective and the induced function $f^*(e = uv) = f(u) - f(v)$ is bijective. A graph which admits graceful labeling is called a graceful graph.

Definition 1.3

A graph G is said to be edge-graceful if there exists a bijection $f : E(G) \rightarrow \{1, 2, \ldots, |E|\}$ such that the induced mapping $f^* : V(G) \rightarrow \{0, 1, 2, \ldots, |V| - 1\}$ given by $f^*(x) = \sum_{xy \in E(G)} f(xy)(mod |V|)$, $xy \in E(G)$.

Definition 1.4

A mapping $f : V(G) \rightarrow \{0, 1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of vertex v of G under f.
Notations 1.5
For an edge $e = uv$, the induced edge labeling $f^* : E(G) \to \{0,1\}$ is given by $f^*(e = uv) = f(u) - f(v) \mod 2$. Let $v_f(0), v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and let $e_f(0), e_f(1)$ be the number of edges of G having labels 0 and 1 respectively under f^*.

Definition 1.6
A binary vertex labeling of graph G is called a cordial labeling if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$. A graph G is called cordial if admits cordial labeling.

The concept of cordial labeling was introduced by Cahit[6]. He also investigated several results on this newly introduced concept.

Definition 1.7
Let G be a graph with vertex set $V(G)$ and edge set $E(G)$ and let $f : E(G) \to \{0,1\}$. Define f on $V(G)$ by $f(v) = \sum_{uv \in E(G)} f(uv) \mod 2$. The function f is called an E-cordial labeling of G if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$. A graph is called E-cordial if admits E-cordial labeling.

In 1997 Yilmaz and Cahit[7] introduced E-cordial labeling as a weaker version of edge-graceful labeling and having flavour of cordial labeling. They proved that the trees with n vertices, K_n, C_n are E-cordial if and only if $2(4n + 4) \equiv 0 \mod 4$ while K_m,n admits E-cordial labeling if and only if $m + n \equiv 2 \mod 4$.

Definition 1.8
For a bipartite graph G with partite sets V_1 and V_2. Let G' be the copy of G and V'_1 and V'_2 be the copies of V_1 and V_2. The mirror graph $M(G)$ of G is obtained from G and G' by joining each vertex of V_2 to its corresponding vertex in V'_2 by an edge.

Lee and Liu[8] have introduced mirror graph during the discussion of k - graceful labeling. Devaraj[9] has shown that $M(m,n)$, the mirror graph of $K_{m,n}$ is E-cordial when $m + n$ is even while the generalized Petersen graph $P(n,k)$ is E-cordial when n is even.

In the following section we have investigated some new results on E-cordial labeling for some mirror graphs.

2. Main Results
Theorem 2.1 Mirror graph of even cycle C_n is E-cordial.

Proof: Let v_1, v_2, \ldots, v_n be the vertices and e_1, e_2, \ldots, e_n be the edges of cycle C_n, where n is even and $G = C_n$. Let $V_1 = \{v_2, v_3, \ldots, v_n\}$ and $V_2 = \{v_1, v_3, \ldots, v_{n-1}\}$ be the partite sets of C_n. Let G' be the copy of G and $V'_1 = \{v'_2, v'_3, \ldots, v'_n\}$ and $V'_2 = \{v'_1, v'_3, \ldots, v'_{n-1}\}$ be the copies of V_1 and V_2 respectively. Let e'_1, e'_2, \ldots, e'_n be the edges of G'. The mirror graph $M(G)$ of G is obtained from G and G' by joining each vertex of V_2 to its corresponding vertex in V'_2 by additional edges e'_1, e'_2, \ldots, e'_n.

We note that $|V(M(G))| = 2n$ and $|E(M(G))| = 2n + \frac{n}{2}$. Let $f : E(M(G)) \to \{0,1\}$ as follows:

For $1 \leq i \leq n$:
$$f(e_i) = 1; \quad i \equiv 0, 1 \pmod{4}.$$
$$f(e_i) = 0; \quad otherwise.$$

$$f(e'_i) = 1; \quad i \equiv 1, 2 \pmod{4}.$$
$$f(e'_i) = 0; \quad otherwise.$$

For $1 \leq j < \frac{n}{2}$:

$$f(e'_j) = 1; \quad j \equiv 1 \pmod{2}.$$
$$0; \quad otherwise.$$

For $j = \frac{n}{2}$:

$$f(e'_j) = 0.$$

In view of the above defined labeling pattern f satisfies conditions for E-cordial labeling as shown in Table 1. That is, the mirror graph of even cycle C_n is E-cordial.

<table>
<thead>
<tr>
<th>vertex condition</th>
<th>edge condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \pmod{4}$</td>
<td>$v_j(0) = v_{j+1}(1) = n$</td>
</tr>
<tr>
<td>$n \equiv 2 \pmod{4}$</td>
<td>$v_j(0) = v_{j+1}(1) = n$</td>
</tr>
</tbody>
</table>

Table 1

Illustration 2.2: The E-cordial labeling for the mirror graph of cycle C_6 is shown in Figure 1.

Theorem 2.3: Mirror graph of path P_n is E-cordial for even n.

Proof: Let v_1, v_2, \ldots, v_n be the vertices and $e_1, e_2, \ldots, e_{n-1}$ be the edges of path P_n where n is even and $G = P_n$. P_n is a bipartite graph. Let $V'_1 = \{v_2, v_4, \ldots, v_n\}$ and $V'_2 = \{v_1, v_3, \ldots, v_{n-1}\}$ be the bipartition of P_n. Let G' be a copy of G and $V'_1 = \{v'_2, v'_4, \ldots, v'_n\}$ and $V'_2 = \{v'_1, v'_3, \ldots, v'_{n-1}\}$ be the copies of V'_1 and V'_2. Let $e'_1, e'_2, \ldots, e'_{n-1}$ be the edges of G'. The mirror graph $M(G)$ of G is obtained from G and G' by
joining each vertex of \(V_2 \) to its corresponding vertex in \(V'_2 \) by additional edges \(e'_1, e'_2, \ldots, e'_n \).

We note that \(|V(M(G))| = 2n \) and \(|E(M(G))| = 2(n-1) + \frac{n}{2} \). Let \(f : E(M(G)) \to \{0,1\} \) as follows:

For \(1 \leq i < n-1 \):

\[
f(e_i) = \begin{cases} 1; & i \equiv 0,1 \pmod{4} \\ 0; & \text{otherwise}\end{cases}
\]

For \(i = n-1 \):

\[
f(e_{n-1}) = 1.
\]

For \(1 \leq i \leq n-1 \):

\[
f(e'_i) = \begin{cases} 1; & i \equiv 0,3 \pmod{4} \\ 0; & \text{otherwise}\end{cases}
\]

For \(1 \leq j \leq \frac{n}{2} \):

\[
f(e'_j) = \begin{cases} 1; & j \equiv 0 \pmod{2} \\ 0; & \text{otherwise}\end{cases}
\]

In view of the above defined labeling pattern \(f \) satisfies the conditions for E-cordial labeling as shown in Table 2. That is, the mirror graph of path \(P_n \) is E-cordial for even \(n \).

<table>
<thead>
<tr>
<th>vertex condition</th>
<th>edge condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{4})</td>
<td>(v_j(0) = v_j(1) = n)</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{4})</td>
<td>(v_j(0) = v_j(1) = n)</td>
</tr>
</tbody>
</table>

Illustration 2.4: The E-cordial labeling for mirror graph of path \(P_8 \) is shown in Figure 2.

![Figure 2](image-url)
Theorem 2.5: Mirror graph of hypercube Q_k is E-cordial.

Proof:
Let $G = Q_k$ be a hypercube with n vertices where $n = 2^k$. Let V_1 and V_2 be the bipartition of Q_k and G' be a copy of G with V_1' and V_2' be the copies of V_1 and V_2 respectively. Let e_1, e_2, \ldots, e_m be the edges of graph G and e_1', e_2', \ldots, e_m' be the edges of graph G' where $m = \frac{nk}{2}$. The mirror graph $M(G)$ of G is obtained from G and G' by joining each vertex of V_2 to its corresponding vertex in V_2' by additional edges e_1', e_2', \ldots, e_m' then $|V(M(G))| = 2n$ and $|E(M(G))| = \frac{n(2k + 1)}{2}$.

Define $f : E(M(G)) \rightarrow \{0, 1\}$ as follows:

Case 1: $k \equiv 0 \pmod{2}$

Let $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in}\}$ and $V'_i = \{v'_{i1}, v'_{i2}, \ldots, v'_{in}\}$ where $i = 1, 2$. All the edges incident to the vertices v_{ij} and v'_{ij} where $j \equiv 1 \pmod{2}$ are assigned the label 0 while the edges incident to the vertices v_{ij} and v'_{ij} where $j \equiv 0 \pmod{2}$ are assigned label 1.

For $1 \leq j \leq \frac{n}{2}$:

- $f(e_j') = 1$; $j \equiv 0 \pmod{2}$.
- $f(e_j') = 0$; otherwise.

Case 2: $k \equiv 1 \pmod{2}$

For $1 \leq i \leq n$:

- $f(e_i) = 1$.

For $1 \leq i \leq n$:

- $f(e_i') = 0$.

For $1 \leq j \leq \frac{n}{2}$:

- $f(e_j') = 1$; $j \equiv 0 \pmod{2}$.
- $f(e_j') = 0$; otherwise.

In view of the above defined labeling pattern f satisfies the conditions for E-cordial labeling as shown in Table 3.

<table>
<thead>
<tr>
<th>vertex condition</th>
<th>edge condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$v_j(0) = v_j(1) = n$</td>
</tr>
</tbody>
</table>

That is, the mirror graph of hypercube Q_k is E-cordial.

Illustration: 2.6

The E-cordial labeling for mirror graph of hypercube Q_3 is shown in Figure 3.
3. CONCLUDING REMARKS
Here we investigate E-cordial labeling for some mirror graphs. To investigate similar results for other graph families and in the context of different graph labeling problems is an open area of research.

REFERENCES