Discovering and Understanding The Security Issues In IoT Cloud

Abstract

The rapid growth and adoption of IoT technologies in sectors of life are challenged by the resources constrained IoT devices. However, the growth of IoT technologies can be enhanced by integrating them with cloud computing. Hence, a new area of computing called IoT Cloud or CloudIoT has emerged. That is, the data collected from the IoT technologies are stored and processed in the cloud infrastructure so that IoT technologies are relived from resources constrained issue. As a result, some new classes of security and privacy issues are introduced. This paper presents security issues pertaining to IoT cloud.

Keywords: IoT, Cloud, Privacy, Security, CloudIoT.

1. INTRODUCTION

Internet of Things (IoT) is the fast-growing information technology paradigm of this digital era. The number of IoT consumers is increasing due to the deployment of IoT technologies in all sorts of life [1]. At present, the IoT technologies are vastly deployed in the health sector [2, 3], smart cities [4], and smart homes [5, 6]. However, IoT technology alone cannot fully satisfy the increasing number of consumers and their computational requirements. Hence, the need for offloading IoT computations to the cloud has become paramount.

The notion of IoT cloud computing (IoT-Cloud) is concerned with the integration of IoT technologies with cloud computing resources [7-9]. IoT technologies are integrated with cloud mainly for two reasons; first, the IoT providers want to benefit of characteristics of the cloud
computing such as on-demand self-service, resource pooling, broad network, measured service, and rapid elasticity [10]; second, it is for the sake of alleviating the high demands of data storage and processing from the resource-limited IoT technologies [11]. As a result, from a high-level view, IoT technologies appear to be well-integrated with the cloud to establish a uniform infrastructure for IoT cloud applications [12]. This phenomenon of integrating IoT technologies with the cloud is also referred to as the Cloud of Things [13], CloudIoT [14], or Edge IoT [15]. Apart from alleviating the resources constrained behavior, and improving the system performance of IoT technologies, the IoT cloud also enables a new venue of designing and deploying security solutions for IoT technologies [15]. The amalgamation of IoT, cloud, and big data is currently trending [16].

In fact, IoT cloud has come with its own challenges including security issues that may dismay the whole paradigm. IoT cloud security issues are the aggregate of IoT technologies security [17, 18], cloud security [19, 20], and those arising from IoT cloud architecture. This paper surveys security issues that are specific to IoT cloud paradigm, and to our knowledge, it is the first paper of its kind.

The paper is organized as follows, Section 2 presents the background of the research, Section 3 discusses the security challenges related to the IoT cloud, and Section 4 concludes the paper.

2. BACKGROUND

This section discusses areas of intersection of the IoT and Cloud computing. Specifically, the drivers that make the integration of IoT technologies and the cloud more important, and the IoT cloud applications. Furthermore, some of the architectures proposed for IoT cloud are studied. Finally, challenges and issues related to the IoT Cloud are presented.

2.1 IoT Cloud Drivers

IoT and cloud computing are from two different worlds. However, their characteristics are complementary, and that is the main reason why in the literature their integration is seen beneficial for both. That is, IoT can benefit from some aspects of cloud, likewise, IoT can help cloud in some other aspects [21]. For instance, the virtually unlimited resources of cloud can compensate the IoT resource constrains and, IoT can extend cloud services in a more distributed manner and may bring about new real-world service [22]. The driving motivations towards the integration of cloud and IoT mainly lay on three categories including communication, storage, and computing. In communication, data and application sharing are the two main IoT Cloud drivers [23]. In regards to the storage, by definition IoT technologies normally produce large amounts of semi-structured or non-structured data that are generated frequently in large volumes and varieties. Hence, making use of the virtually unlimited storage capacity of the cloud such data can be stored in the cloud. On the other hand, in computing, IoT technologies normally suffer from limited processing and energy resources [24]. These do not allow IoT devices complex data processing. Using cloud computing resources, IoT devices will be able to process data on-site. These are the main motivations that are driving the integration of IoT and Cloud [25]. Table 1 shows aspects where cloud and IoT may complement each other.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>IoT</th>
<th>Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>pervasive</td>
<td>centralized</td>
</tr>
<tr>
<td>Reachability</td>
<td>limited</td>
<td>ubiquitous</td>
</tr>
<tr>
<td>Components</td>
<td>real-world things</td>
<td>virtual resources</td>
</tr>
<tr>
<td>Computational Capabilities</td>
<td>limited</td>
<td>virtual unlimited</td>
</tr>
<tr>
<td>Storage</td>
<td>limited or none</td>
<td>virtual unlimited</td>
</tr>
<tr>
<td>Role of the internet</td>
<td>point of convergence</td>
<td>means of delivering services</td>
</tr>
<tr>
<td>Big data</td>
<td>source</td>
<td>means to manage data</td>
</tr>
</tbody>
</table>

TABLE 1: Complementary aspects of Cloud and IoT.
2.2 IoT Cloud Application

IoT cloud paradigm has come with its new sets of applications and smart services most of which were conventionally deployed as a machine to machine communications. This section, discusses, however, the set of applications that have been improved in order to be used in the IoT cloud paradigm. Figure 1 shows an abstract picture of the IoT cloud applications scenario.

2.2.1 Smart Cities

The adoption of the IoT cloud has generated services like smart city applications that can interact with the surrounding environment to create geographic awareness and contextualization opportunities. IoT cloud provides middleware for future-oriented smart city services by collecting information about the geographical location of different sensing technologies and exposing that information uniformly. Most of the current smart application frameworks consist of APIs of sensors and actuators that are directly connected to cloud platforms where they can get scalability, durable storage and processing resources for automatic management and control of large deployments of sensing devices. For example, some researchers have proposed crowdsourced and reputation based smart city frameworks that implement sensing as a service aimed at public safety [26, 27]. Likewise, mobile crowdsensing smart cities technology that uses cloud-based publish/subscribe middleware that collects data from mobile devices are proposed in [28, 29].

![IoT Cloud Application Scenario](image)

FIGURE 1: IoT Cloud Application Scenario.

2.2.2 Healthcare

In the healthcare industry, things like sensors and devices used for health monitoring are increasing and hugely impacting on patients and health professionals. According to IoT Forbes and Gartner, in 6 years’ time from 2016-2020, the healthcare IoT market will be invested with $117 billion [30]. IoT cloud applications are immensely developed for this aspect. Some of the recent works of IoT cloud applications proposed for health care are discussed here. For example, Syed et al. have proposed an asthma patient health monitoring system that connects to the cloud using wireless body area networks [30]. For security, the researchers have watermarked the recorded signal before sending it to the cloud. Douglas et al. also proposed an efficient healthcare IoT cloud architecture for ambient assisted living environments [31]. The advantages of using IoT cloud in healthcare are discussed in [32].

2.2.3 Smart Home

In recent years, high development of smart home applications that use different sensors such as motion, light, and fire detector sensors, etc have been observed. Data collected from these sensors are used for decision making. Hence, like the preceding applications, the necessity of employing IoT cloud sensors in smart homes is becoming mandatory [33]. For instance, Yassine et al. proposed an IoT cloud platform that enables analytics on data captured from smart homes [34]. The proposed data-driven service uses fog nodes and cloud systems for online data
processing, storage, and classification. The researchers employ a policy-based access control mechanism to ensure trusted connectivity and security in their platform.

2.3 IoT Cloud Architecture
There are efforts made towards the definition of a reference architecture for IoT cloud. For example, Jenjira Jaimunk proposed Data Bank, an IoT cloud architecture that allows users to customize their data collection policies at the IoT device level and data sharing policies at the cloud level, as suited to their privacy needs [35]. Similarly, some researchers proposed IoT cloud architecture for different aspects such as for sustainability [36] where the architecture is focusing on low power consumption and environmental friendliness of the things. A generic IoT cloud architecture is provided by Araujo et al. [37], where data collected from a smart city can be stored, processed and managed.

![FIGURE 2: A Generic IoT Cloud Architecture [37].](image)

As can be seen in Figure 2, the architecture provides a southbound interface where IoT technologies interact with the cloud and a northbound interface where higher-level services such as M2M applications and end consumers interact with the IoT cloud.

2.4 Security IoT Cloud Challenges
Even though the IoT cloud is advantageous for both consumers and providers, it is still facing some issues that threaten its usage. The heterogeneity of the IoT technologies, clouds, operating systems, network protocols from different vendors generates a more challenging environment that may result in a lack of interoperability and portability in IoT cloud [32, 38]. In addition, in IoT cloud, cloud elasticity and scalability is required. If for instance, IoT cloud provider resources do not meet the increased demand for IoT technologies, interruption or unavailability of the services may result in problem [39]. Security challenges pertaining to the IoT cloud environment are more volatile compared to the security issues in conventional cloud computing. For example, due to the limited resource of IoT technologies, it is not practical to run anti-virus on the IoT devices.
3. SECURITY CHALLENGES IN IOT CLOUDS
After having seen the basics of IoT clouds, this section discusses security challenges within IoT cloud. Such security issues may usually result from different parts of technologies constituting the IoT cloud.

3.1 Security Challenges Related To Data
The data security issues are mainly introduced as the consequence of when smart home owner data are transferred, stored, and processed at clouds that are not part of his network and belong to a third person. The data related security issues that may happen include data loss and data breach. The data loss refers to the data damage that may happen to consumer data. On the other hand, data breach means when the consumer data is taken by an unauthorized individual.

3.2 Offloading Security Challenge
During the transfer process of the data from smart devices to the IoT cloud, access to the cloud is accomplished through wireless networks. Since the consumer does not have access to the data or cannot have control over the data, then there is a risk of unauthorized access to the offloaded content, subsequently, processing of the loaded data is done at the cloud, then there may happen another incident where the integrity of the data is violated.

3.3 Virtualization Security Challenge
The IoT cloud service is provided by using some virtualization techniques. Hence, at the provider side of the IoT cloud, the consumer data is stored and processed on a virtual machine. However, in the cloud, there may be a number of virtual machines abstracted from the same physical server. Hence, a rogue user of a virtual machine may get unauthorized access to a neighboring virtual machine that stores the smart home consumer data.

3.4 IoT Cloud Applications Security Challenges
The security incidents in IoT cloud applications are about compromising the integrity, confidentiality, and availability of both data and applications. Security issues specific to the IoT cloud paradigm are hardly discussed in the literature. Nevertheless, the security challenges of IoT cloud applications may happen at IoT device level, and communication and networking level. Security issues associated with IoT cloud platforms for the smart home is thoroughly discussed in [40]. Likewise, security issues related to the IoT cloud-based healthcare systems can be found in [41].

Another main security issue arises due to a lack of trust in the service provider or the knowledge about service level agreement and knowledge about the physical location of data. Some other security challenges may include heterogeneity, performance, reliability, big data, and monitoring related. For example, the heterogeneity of devices involved in this integrated area may be focusing on the operating system, platform, and services availability [42, 43]. Likewise, those that may come with the performance are those threatening the availability of services such as communication, computation, and storage. Reliability issues may arise when mission-critical applications involving in IoT cloud may suffer from device failure due to a resource-constrained environment[44, 45]. Usually, thousands of smart devices (big data) networked with the cloud would create transportation, storage, access and processing of huge amounts of data that may scrutinize the limited resources of the IoT environment [46, 47]. Having no sophisticated authentication approaches also exacerbates the security associated with IoT cloud. Furthermore, intrusion-related security issues are of most importance for IoT Cloud. In the future as the adoption of cloud-connected IoT technologies increases, security concerns of this area are anticipated to be automatically added on top of currently known security issues.

3.5 IoT Cloud Security Solutions In The Literature
This section presents the current solutions proposed in the literature of IoT cloud. There are a couple of researches that have deliberated to get solutions to the security issues specific to the IoT cloud paradigm [48-64]. Moreover, the summary of the solutions is presented in Table 2. The solutions presented in Table 2 do not include those focusing on the IoT and cloud computing
differently, rather they are the solutions that consider IoT cloud as one area and, hence, trying to propose their solutions in that aspect. Table highlight the security feature in each solution as well as the target area of the paradigm.

3.6 Discussions and Future Directions
Based on the security challenges presented in this paper, it is obvious that security issues pertaining to IoT cloud entail a new set of security challenges from the emerging usage of the paradigm. This new set of security challenges are becoming more difficult to handle for the integration of IoT technologies and cloud. Despite the existence of some security solutions in the literature, there are still some open issues that deserve the attention of the security community. A first secure reference architecture is needed to coin most of the security requirements that IoT cloud need. The cost-effectiveness of the solutions proposed in the literature is not discussed in most cases, hence, the deployment of such solutions is not on the real horizon, thus not cost-effective. In addition, the IoT cloud architecture introduces communications between different technologies. Such communications tend to be secured as well. Here, lightweight secure communication protocols are recommended. There is also a need for algorithms that can create trust between IoT technologies and the cloud. More researches on lightweight solutions for securing virtual machines in the IoT cloud is an added value.

So far researchers have indicated that improving or integrating existing solutions may to some extent handle some of the discussed security issues. However, there is also a need for developing new and dedicated security solutions for the area. What makes different the cloud-connected IoT architecture is that two (cloud and IoT) broadly different areas of technologies are involved. Each has its security issues and challenges where researchers are striving to get solutions. Nevertheless, getting an end to end security solution that would protect personal data collected from IoT end devices and stored or processed in the cloud is alarming.

Converging towards a common security platform for providing APIs to auditing IoT clouds will enable new research efforts in the direction of standard rules and policies that would hold consumers and providers accountable. Similarly, security solutions of IoT cloud would benefit from efficient and flexible technologies that can create a network and virtual machine isolation. Solutions that detects manipulation of data based on IoT clouds will enable enhanced context-based security services.
In this paper, we review the security challenges pertaining to the IoT cloud. The basics of the IoT cloud are reviewed, followed by the security challenges that a consumer may encounter when using smart devices that are connected to the cloud are discussed. Moreover, solutions in the literature are studied and presented. Open security research issues that need immediate attention from the research community are discussed and some prospect solutions that may work conveniently with the IoT cloud paradigm are recommended. Finally, we hope that this paper will be a good entry in enabling a secure integration of IoT technologies and cloud computing.

TABLE 2: Solutions in the Literature.

<table>
<thead>
<tr>
<th>Source</th>
<th>Title</th>
<th>Focus Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>[48]</td>
<td>Intrusion detection in Cloud Internet of Things Environment</td>
<td>Network security</td>
</tr>
<tr>
<td>[49]</td>
<td>A software defined network-based security assessment framework for cloudIoT</td>
<td>Network security</td>
</tr>
<tr>
<td>[50]</td>
<td>Secure Self-Destruction of Shared Data in Multi-CloudIoT</td>
<td>Data security</td>
</tr>
<tr>
<td>[51]</td>
<td>Secure and Parallel Expressive Search over Encrypted Data with Access Control in Multi-CloudIoT</td>
<td>Data security</td>
</tr>
<tr>
<td>[52]</td>
<td>PRTA: A Proxy Re-encryption based Trusted Authorization scheme for nodes on CloudIoT</td>
<td>Access control</td>
</tr>
<tr>
<td>[53]</td>
<td>A design of secure communication protocol using RLWE-based homomorphic encryption in IoT convergence cloud environment.</td>
<td>Network security</td>
</tr>
<tr>
<td>[55]</td>
<td>Advanced lightweight multi-factor remote user authentication scheme for cloud-IoT applications</td>
<td>Access control</td>
</tr>
<tr>
<td>[56]</td>
<td>Enhancing Cloud-Based IoT Security Through Trustworthy Cloud Service: An Integration of Security and Reputation Approach</td>
<td>Access control</td>
</tr>
<tr>
<td>[58]</td>
<td>Privacy-aware IoT cloud survivability for future connected home ecosystem</td>
<td>Privacy</td>
</tr>
<tr>
<td>[59]</td>
<td>Security in Lightweight Network Function Virtualisation for Federated Cloud and IoT</td>
<td>Network security</td>
</tr>
<tr>
<td>[61]</td>
<td>A novel and secure IoT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres</td>
<td>Digital forensics</td>
</tr>
<tr>
<td>[62]</td>
<td>A Lightweight User Authentication Scheme for Cloud-IoT Based Healthcare Services</td>
<td>Access control</td>
</tr>
<tr>
<td>[63]</td>
<td>IoT–Cloud collaboration to establish a secure connection for lightweight devices</td>
<td>Network security</td>
</tr>
<tr>
<td>[64]</td>
<td>Identity-based encryption with authorized equivalence test for cloud-assisted IoT</td>
<td>Access control</td>
</tr>
</tbody>
</table>

4. CONCLUSION

In this paper, we review the security challenges pertaining to the IoT cloud. The basics of the IoT cloud are reviewed, followed by the security challenges that a consumer may encounter when using smart devices that are connected to the cloud are discussed. Moreover, solutions in the literature are studied and presented. Open security research issues that need immediate attention from the research community are discussed and some prospect solutions that may work conveniently with the IoT cloud paradigm are recommended. Finally, we hope that this paper will be a good entry in enabling a secure integration of IoT technologies and cloud computing.
5. REFERENCES

