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Abstract 
 
Since its introduction in 1994 the Secure Socket Layer (SSL) protocol (later renamed to Transport 
Layer Security (TLS))  evolved to the  de  facto standard for  securing the transport layer. 
SSL/TLS  can  be  used  for  ensuring  data confidentiality, integrity and authenticity during 
transport. A main feature of the protocol is its flexibility. Modes of operation and security aims can 
easily be configured through different cipher  suites.  During  its  evolutionary  development  
process several flaws were found. However, the flexible architecture of SSL/TLS allowed efficient 
fixes in order to counter the issues. This paper presents an overview on theoretical and practical 
attacks of the last 20 years.  
 
Keywords: SSL, TLS, BEAST Attack, CRIME Attack, Heartbleed Detection, RC4. 

 
 
1. INTRODUCTION 

In the last few years, we have witnessed a wide range of attacks on the SSL/TLS mechanism. In 
this article, we will try to cover various attacks that were prominent in the field of cryptography. 
Transport layer security (TLS) ensures integrity of data transmitted between two parties (server 
and client) and also provides strong authentication for both parties. The attacks launched in the 
last few years have exploited various features in the TLS mechanism. We are going to discuss 
these attacks one by one. 
 
The Heartbleed bug is a serious vulnerability in the popular OpenSSL cryptographic software 
library. It allows an attacker to read the memory of systems using certain versions of OpenSSL, 
potentially allowing them to access user names, passwords, or even the secret cryptographic 
keys of the server used for SSL. Obtaining these keys would allow malicious users to observe all 
communications on that system, allowing further exploit. We will discuss this vulnerability too. 

 
2. TLS, ATTACKS AND ANALYSIS 

2.1 SSL Protocol and Types 
Secure Sockets Layer, more commonly known as SSL, is a protocol that is used to maintain 
client and server authentication. A site is easily identified as using SSL if it has the small yellow 
padlock at the bottom of the browser. 
 
In SSL, communication between the server and the client is encrypted using their certificates. 
This encryption creates virtual information that is not hackable by others.  The steps of how SSL 
works is shown in the following diagram: 
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SSL Version 1, a test version, was quickly replaced by SSL version 2, which was the first version, 
released to the public and was shipped with the Netscape Navigator browser. Today version 2 is 
still supported despite having some security problems. Later, Microsoft came out with its own 
version of SSL called PCT. SSL Version 3 is a complete redesign of SSL and fixes the problems 
found in previous versions as well as having additional features [1]. 
 

 
 

FIGURE 1: SSL Algorithm. 

 
SSL uses a handshake protocol. Suppose a client wants to make a purchase from a website 
server, but this server does not know anything about the client.  
 
The first step is for the client to send a message to the server. After the server receives the 
message, it acknowledges it by sending the client a message in return. The server also sends the 
client its certificate and asks for the client’s certificate. The client sends its certificate, a client key 
exchange message, and a certificate verification message. Both the client and server send 
change cipher spec messages and then send finished messages to end the handshake [2]. 
 
A website implements SSL by using HTTPS, which stands for Hypertext Transfer Protocol over 
Secure Socket Layer. This web protocol was developed by Netscape to encrypt and decrypt page 
requests as well as the pages that are returned by the web server. HTTPS uses port 443 instead 
of port 80, which is used for HTTP. 
 
SSL uses a key size of 40-bits for the RC4 stream encryption algorithm. This is considered a 
sufficient degree of encryption for commercial exchange. Both HTTPS and SSL support the use 
of X.509 digital certificates from the server. This way, the user can authenticate the sender if 
needed [3]. 
 
One of SSL’s strengths is its ability to help prevent some common attacks. SSL is strong against 
the brute force attack because it uses 128 bits. The dictionary attack which tends to be more 
efficient than a brute force attack is where an attack tries every word in a dictionary as a possible 
password for an encrypted message. This attack is also avoidable because SSL has very large 
key spaces. The replay attack which reruns messages that were sent earlier is prevented since 
SSL uses 128-bit nonce value to indicate a unique connection. And as mentioned earlier, the 
Man-In-the-Middle Attack is prevented by using signed certificates to authenticate the server’s 
public key. 
 
Despite the fact that SSL has the ability to prevent some common attacks, it still has some 
weaknesses. One of the weaknesses found in SSL is the brute force attack against weak ciphers. 
This weakness was forced by the US export on Netscape. This weakness still remains one of the 
most obvious weaknesses of the SSL protocol and it has broken many times [4]. 
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Another weakness in SSL is the renegotiation of the master key. It is known that after a 
connection has been established, the same master key gets used all the way through the 
connection. This could be a serious security flaw if SSL are layered underneath a long running 
connection. One possible solution for this flaw is to force renegotiation of the master key at 
different times. This way, the difficulty and the cost of the any brute force attack will be multiplied 
by the number of times that the master key has changed [5]. 
 
The Transaction Layer Security protocol, commonly known as TLS, is based on SSL and became 
its successor. TLS has some changes in its MAC, has clearer and more precise specifications, 
cleaner handling because of not having a client certificate, and more flexibility. 
 
TLS is an Internet Engineering Task Force (IETF) standards track protocol, first defined in 1999 
and last updated in RFC 5246 (August 2008) and RFC 6176 (March 2011). It is based on the 
earlier SSL specifications (1994, 1995, 1996) developed by Netscape Communications[1] for 
adding the HTTPS protocol to their Navigator web browser. 
 
Early research efforts towards transport layer security included the Secure Network Programming 
(SNP) application programming interface (API), which in 1993 explored the approach of having a 
secure transport layer API closely resembling Berkeley sockets, to facilitate retrofitting preexisting 
network applications with security measures [1]. 
 
The SSL protocol was originally developed by Netscape. Version 1.0 was never publicly released; 
version 2.0 was released in February 1995 but "contained a number of security flaws which 
ultimately led to the design of SSL version 3.0."[2] SSL version 3.0, released in 1996, was a 
complete redesign of the protocol produced by Paul Kocher working with Netscape engineers Phil 
Karlton and Alan Freier. Newer versions of SSL/TLS are based on SSL 3.0. The 1996 draft of 
SSL 3.0 was published by IETF as a historical document in RFC 6101. 
 
The basic algorithm was written by Dr. Taher Elgamal. As the Chief Scientist of Netscape, Taher 
was recognized as the "father of SSL" [2]. 
 
TLS 1.0 was first defined in RFC 2246 in January 1999 as an upgrade of SSL Version 3.0. As 
stated in the RFC, "the differences between this protocol and SSL 3.0 are not dramatic, but they 
are significant to preclude interoperability between TLS 1.0 and SSL 3.0." TLS 1.0 does include a 
means by which a TLS implementation can downgrade the connection to SSL 3.0, thus 
weakening security.TLS 1.1 was defined in RFC 4346 in April 2006 [3]. It is an update from TLS 
version 1.0. Significant differences in this version include: 
 

 Added protection against Cipher block chaining (CBC) attacks. 

 The implicit Initialization Vector (IV) was replaced with an explicit IV. 

 Change in handling of padding errors. 

 Support for IANA registration of parameters. 
 
TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 1.1 specification. 
Major differences include: 
 

 The MD5-SHA-1 combination in the pseudorandom function (PRF) was replaced with SHA-
256, with an option to use cipher suite specified PRFs. 

 The MD5-SHA-1 combination in the Finished message hash was replaced with SHA-256, with 
an option to use cipher suite specific hash algorithms. However the size of the hash in the 
finished message is still truncated to 96-bits. 

 The MD5-SHA-1 combination in the digitally signed element was replaced with a single hash 
negotiated during handshake, defaults to SHA-1. 

 Enhancement in the client's and server's ability to specify which hash and signature algorithms 
they will accept. 
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 Expansion of support for authenticated encryption ciphers, used mainly for Galois/Counter 
Mode (GCM) and CCM mode of Advanced Encryption Standard encryption. 

 TLS Extensions definition and Advanced Encryption Standard cipher suites were added [4]. 
 
All TLS versions were further refined in RFC 6176 in March 2011 removing their backward 
compatibility with SSL such that TLS sessions will never negotiate the use of Secure Sockets 
Layer (SSL) version 2.0. 
 
2.2 Analysis of the Internet Protocol TLS 
The TLS protocol allows client-server applications to communicate across a network in a way 
designed to prevent eavesdropping and tampering. 
 
Since protocols can operate either with or without TLS (or SSL), it is necessary for the client to 
indicate to the server the setup of a TLS connection. There are two main ways of achieving this. 
One option is to use a different port number for TLS connections (for example port 443 for 
HTTPS). The other is for the client to request that the server switch the connection to TLS using a 
protocol-specific mechanism (for example STARTTLS for mail and news protocols). 
 
Once the client and server have agreed to use TLS, they negotiate a stateful connection by using 
a handshaking procedure [5]. During this handshake, the client and server agree on various 
parameters used to establish the connection's security: 
 
1. The client sends the server the client's SSL version number, cipher settings, session-specific 

data, and other information that the server needs to communicate with the client using SSL. 
2. The server sends the client the server's SSL version number, cipher settings, session-specific 

data, and other information that the client needs to communicate with the server over SSL. 
The server also sends its own certificate, and if the client is requesting a server resource that 
requires client authentication, the server requests the client's certificate. 

3. The client uses the information sent by the server to authenticate the server—e.g., in the case 
of a web browser connecting to a web server, the browser checks whether the received 
certificate's subject name actually matches the name of the server being contacted, whether 
the issuer of the certificate is a trusted certificate authority, whether the certificate has expired, 
and, ideally, whether the certificate has been revoked. If the server cannot be authenticated, 
the user is warned of the problem and informed that an encrypted and authenticated 
connection cannot be established. If the server can be successfully authenticated, the client 
proceeds to the next step. 

4. Using all data generated in the handshake thus far, the client (with the cooperation of the 
server, depending on the cipher in use) creates the pre-master secret for the session, 
encrypts it with the server's public key (obtained from the server's certificate, sent in step 2), 
and then sends the encrypted pre-master secret to the server. 

5. If the server has requested client authentication (an optional step in the handshake), the client 
also signs another piece of data that is unique to this handshake and known by both the client 
and server. In this case, the client sends both the signed data and the client's own certificate 
to the server along with the encrypted pre-master secret. 

6. If the server has requested client authentication, the server attempts to authenticate the client. 
If the client cannot be authenticated, the session ends. If the client can be successfully 
authenticated, the server uses its private key to decrypt the pre-master secret, and then 
performs a series of steps (which the client also performs, starting from the same pre-master 
secret) to generate the master secret. 

7. Both the client and the server use the master secret to generate the session keys, which are 
symmetric keys used to encrypt and decrypt information exchanged during the SSL session 
and to verify its integrity (that is, to detect any changes in the data between the time it was 
sent and the time it is received over the SSL connection). 

8. The client sends a message to the server informing it that future messages from the client will 
be encrypted with the session key. It then sends a separate (encrypted) message indicating 
that the client portion of the handshake is finished. 
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9. The server sends a message to the client informing it that future messages from the server will 
be encrypted with the session key. It then sends a separate (encrypted) message indicating 
that the server portion of the handshake is finished. 

10. The SSL handshake is now complete and the session begins. The client and the server use 
the session keys to encrypt and decrypt the data they send to each other and to validate its 
integrity [5]. 
 

This is the normal operation condition of the secure channel. At any time, due to internal or 
external stimulus (either automation or user intervention), either side may renegotiate the 
connection, in which case, the process repeats itself [2]. 
 
This concludes the handshake and begins the secured connection, which is encrypted and 
decrypted with the key material until the connection closes. 
 
If any one of the above steps fails, the TLS handshake fails and the connection is not created. 
 
In step 3, the client must check a chain of "signatures" from a "root of trust" built into, or added to, 
the client. The client must also check that none of these have been revoked; this is not often 
implemented correctly, but is a requirement of any public-key authentication system. If the 
particular signer beginning this server's chain is trusted, and all signatures in the chain remain 
trusted, then the Certificate (thus the server) is trusted. 
 
The TLS protocol exchanges records—which encapsulate the data to be exchanged in a specific 
format. Each record can be compressed, padded, appended with a message authentication 
code (MAC), or encrypted, all depending on the state of the connection. Each record has 
a content type field that designates the type of data encapsulated, a length field and a TLS 
version field. The data encapsulated may be control or procedural messages of the TLS itself, or 
simply the application data needed to be transferred by TLS. The specifications (cipher suite, 
keys etc.) required to exchange application data by TLS, are agreed upon in the "TLS 
handshake" between the client requesting the data and the server responding to requests. The 
protocol therefore defines both the structure of payloads transferred in TLS and the procedure to 
establish and monitor the transfer. 
 
When the connection starts, the record encapsulates a "control" protocol—the handshake 
messaging protocol  (content type 22). This protocol is used to exchange all the information 
required by both sides for the exchange of the actual application data by TLS. It defines the 
messages formatting or containing this information and the order of their exchange. These may 
vary according to the demands of the client and server—i.e., there are several possible 
procedures to set up the connection. This initial exchange results in a successful TLS connection 
(both parties ready to transfer application data with TLS) or an alert message (as specified 
below). 
 
A simple connection example follows, illustrating a handshake where the server (but not the 
client) is authenticated by its certificate: 
 
1. Negotiation phase: 

 A client sends a ClientHello message specifying the highest TLS protocol version it 
supports, a random number, a list of suggested CipherSuites and suggested compression 
methods. If the client is attempting to perform a resumed handshake, it may send a session 
ID. 

 The server responds with a ServerHello message, containing the chosen protocol version, 
a random number, CipherSuite and compression method from the choices offered by the 
client. To confirm or allow resumed handshakes the server may send a session ID. The 
chosen protocol version should be the highest that both the client and server support. For 
example, if the client supports TLS1.1 and the server supports TLS1.2, TLS1.1 should be 
selected; SSL 3.0 should not be selected. 

http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/CipherSuite


Eng. Mohanned Hassan Momani  &  Adam Ali.Zare Hudaib 

International Journal of Computer Science and Security (IJCSS), Volume (8) : Issue (4) : 2014 164 

 The server sends its Certificate message (depending on the selected cipher suite, this may 
be omitted by the server). 

 The server sends a ServerHelloDone message, indicating it is done with handshake 
negotiation. 

 The client responds with a ClientKeyExchange message, which may contain 
a PreMasterSecret, public key, or nothing. (Again, this depends on the selected cipher.) 
This PreMasterSecret is encrypted using the public key of the server certificate. 

 The client and server then use the random numbers and PreMasterSecret to compute a 
common secret, called the "master secret". All other key data for this connection is derived 
from this master secret (and the client- and server-generated random values), which is 
passed through a carefully designed pseudorandom function. 

2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything I 
tell you from now on will be authenticated (and encrypted if encryption parameters were 
present in the server certificate)." The ChangeCipherSpec is itself a record-level protocol with 
content type of 20. 

 Finally, the client sends an authenticated and encrypted Finished message, containing a 
hash and MAC over the previous handshake messages. 

 The server will attempt to decrypt the client's Finished message and verify the hash and 
MAC. If the decryption or verification fails, the handshake is considered to have failed and 
the connection should be torn down. 

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from 
now on will be authenticated (and encrypted, if encryption was negotiated)." 

 The server sends its authenticated and encrypted Finished message. 

 The client performs the same decryption and verification. 
4. Application phase: at this point, the "handshake" is complete and the application protocol is 

enabled, with content type of 23. Application messages exchanged between client and server 
will also be authenticated and optionally encrypted exactly like in their Finished message. 
Otherwise, the content type will return 25 and the client will not authenticate. 

 
Public key operations (e.g., RSA) are relatively expensive in terms of computational power. TLS 
provides a secure shortcut in the handshake mechanism to avoid these operations: resumed 
sessions. Resumed sessions are implemented using session IDs or session tickets. 
 
Apart from the performance benefit, resumed sessions can also be used for single sign-on as it is 
guaranteed that both the original session as well as any resumed session originate from the 
same client. This is of particular importance for the FTP over TLS/SSL protocol which would 
otherwise suffer from a man-in-the-middle attack in which an attacker could intercept the contents 
of the secondary data connections.  
 
In an ordinary full handshake, the server sends a session id as part of the ServerHello message. 
The client associates this session id with the server's IP address and TCP port, so that when the 
client connects again to that server, it can use the session id to shortcut the handshake. In the 
server, the session id maps to the cryptographic parameters previously negotiated, specifically 
the "master secret". Both sides must have the same "master secret" or the resumed handshake 
will fail (this prevents an eavesdropper from using a session id). The random data in 
the ClientHello and ServerHello messages virtually guarantee that the generated connection keys 
will be different from in the previous connection. In the RFCs, this type of handshake is called 
an abbreviated handshake. It is also described in the literature as a restart handshake. 
 
RFC 5077 extends TLS via use of session tickets, instead of session IDs. It defines a way to 
resume a TLS session without requiring that session-specific state is stored at the TLS server. 
 
When using session tickets, the TLS server stores its session-specific state in a session ticket 
and sends the session ticket to the TLS client for storing. The client resumes a TLS session by 
sending the session ticket to the server, and the server resumes the TLS session according to the 

http://en.wikipedia.org/wiki/Pseudorandomness
http://en.wikipedia.org/wiki/FTPS
http://tools.ietf.org/html/rfc5077
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session-specific state in the ticket. The session ticket is encrypted and authenticated by the 
server, and the server verifies its validity before using its contents. 
 
One particular weakness of this method is that it always limits encryption and authentication 
security of the transmitted TLS session ticket to AES128-CBC-SHA256, no matter what other 
TLS parameters were negotiated for the actual TLS session. This means that the state 
information (the TLS session ticket) is not as well protected as the TLS session itself. Of 
particular concern is OpenSSL's storage of the keys in an application-wide context (SSL_CTX), 
i.e. for the life of the application, and not allowing for re-keying of the AES128-CBC-SHA256 TLS 
session tickets without resetting the application-wide OpenSSL context (which is uncommon, 
error-prone and often requires manual administrative intervention) [5].  
 
2.3 Transport Layer Security (TLS) 
TLS has a variety of security measures: 
 

 Protection against a downgrade of the protocol to a previous (less secure) version or a weaker 
cipher suite. 

 Numbering subsequent Application records with a sequence number and using this sequence 
number in the message authentication codes (MACs). 

 Using a message digest enhanced with a key (so only a key-holder can check the MAC). The 
HMAC construction used by most TLS cipher suites is specified in RFC 2104 (SSL 3.0 used a 
different hash-based MAC). 

 The message that ends the handshake ("Finished") sends a hash of all the exchanged 
handshake messages seen by both parties. 

 The pseudorandom function splits the input data in half and processes each one with a 
different hashing algorithm (MD5 and SHA-1), then XORs them together to create the MAC. 
This provides protection even if one of these algorithms is found to be vulnerable [5]. 

 
2.4 Heartbleed OpenSSL Vulnerability 
The Heartbleed bug is a serious vulnerability in the popular OpenSSL cryptographic software 
library, affecting versions 1.0.1 to 1.0.1f. This weakness allows stealing the information protected, 
under normal conditions, by the SSL/TLS encryption used to secure the data payloads. SSL/TLS 
provides communication security and privacy over the Internet for applications such as web, 
email, instant messaging (IM) and some virtual private networks (VPNs). 
 
The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected 
by the vulnerable versions of the OpenSSL software. This compromises the secret keys used to 
identify the service providers and to encrypt the traffic, the names and passwords of the users 
and the actual content. This allows attackers to eavesdrop on communications, steal data directly 
from the services and users and to impersonate services and users. 
 
On April 7 th  2014 OpenSSL and a team of security engineers published advisories regarding a 
severe vulnerability that  “allows anyone on the Internet to read the memory of systems protected 
by vulnerable versions of the OpenSSL  software”. They have dubbed this vulnerability 
“Heartbleed” as it refers to a memory leak in a heartbeat function used by OpenSSL.  SSL and 
TLS are cryptographic protocols designed to secure communications over the internet by  way of 
certificates and asymmetric cryptography.  This is implemented in conjunction with Certificate 
Authorities  (CA) and Public Key Infrastructure (PKI).  Collectively this forms the basis upon which 
trust is established on the  Internet.  For the non-technical person, these services are commonly 
associated with the acronym ‘HTTPS’  which enables secure online commerce and 
authentication. There  are  several  different  versions  of  SSL  and  unfortunately  OpenSSL 
stands  as  one  of  the  most  commonly  implemented  versions  on  the  Internet  today. 
OpenSSL  is  bundled  with  many  different  operating  systems, embedded  systems,  networked  
appliances,  chat  servers, VPNs, e-mail servers and client software making this vulnerability 
extremely wide reaching and dangerous. OpenSSL is deployed with open source web servers 
such as  Apache and NGINX which account for over 50% of active sites on the internet [6].  
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The Heartbleed attack relies on what is considered a relatively simple programming error that 
when exploited allows  attackers to read up to 64 KB of memory.  Specifically the 
dtls1_process_heartbeat function contains values which  are  assigned  in  memory  without  
performing  correct  error  bounds  checking.    This  allows  an  attacker  to  craft  conversations 
with an OpenSSL Client or Server that reads outside of properly allocated memory.  Due to the 
fact  that OpenSSL handles account, certificate, and key information, reading in to memory can 
reveal extremely sensitive  data.  However, one of the discoverers of the vulnerability recently 
tweeted in an apparent attempt to allay concerns  stating “heap allocation patterns make private 
key exposure unlikely for #heartbleed #dontpanic”. Although correct, this is highly dependent on 
how committed an attacker is in their efforts. Prolonged and recurring exploitation of this 
vulnerability against a system radically increases the likelihood of exposing private key 
information. The heartbeat function does serve a legitimate purpose in that it allows both parties 
in a communication channel to  maintain a session while no longer actively exchanging data. 
There  are  multiple  proof-of-concepts  available  in  the  wild  demonstrating  exploitation  
techniques  against  this  vulnerability [7].  
 
Researchers have classified the type of information being leaked into four categories:  
 
1. Primary  Key  Material  –  encryption  keys  are  leaked  allowing  attackers  to  inspect  
confidential  traffic  and impersonate the service. 
2. Secondary Key Material – user account and password information can be stolen  
3. Protected  Content  –  actual confidential  information contained within a  previously 
assumed  secure communication channel is exposed. 
4. Collateral – incidental information gleaned during the attack with regards to OpenSSL 
implementation specifics and architecture [8]. 
 
Unfortunately, exploitation of this vulnerability does not record log evidence that can be used as 
an indicator of attack.  However, IDS/IPS systems may be able to detect malicious heartbeat 
request/response communications based on the record type (and size) contained within the 
protocol.  As described in the software vulnerability section above, detection is possible by 
comparing the size of a request against its reply.   
 
To elaborate, systems with packet inspection capabilities (IDS/IPS, Analytics, Proxy) can look for 
request and response packets containing matches to specific hexadecimal values for different 
TLS versions.  One must also factor in the size of the packet in order to reduce false positives 
and avoid simply identifying legitimate heartbeat communication [9]. 
 
Some operating system distributions that have shipped with potentially vulnerable OpenSSL 
version: 
 
1. Debian Wheezy (stable), OpenSSL 1.0.1e-2+deb7u4. 
2. Ubuntu 12.04.4 LTS, OpenSSL 1.0.1-4ubuntu5.11. 
3. CentOS 6.5, OpenSSL 1.0.1e-15. 
4. Fedora 18, OpenSSL 1.0.1e-4. 
5. OpenBSD 5.3 (OpenSSL 1.0.1c 10 May 2012) and 5.4 (OpenSSL 1.0.1c 10 May 2012). 
6. FreeBSD 10.0 – OpenSSL 1.0.1e 11 Feb 2013. 
7. NetBSD 5.0.2 (OpenSSL 1.0.1e). 
8. OpenSUSE 12.2 (OpenSSL 1.0.1c). 
Operating system distribution with versions that are not vulnerable: 
1. Debian Squeeze (oldstable), OpenSSL 0.9.8o-4squeeze14. 
2. SUSE Linux Enterprise Server. 
3. FreeBSD 8.4 – OpenSSL 0.9.8y 5 Feb 2013. 
4. FreeBSD 9.2 – OpenSSL 0.9.8y 5 Feb 2013. 
5. FreeBSD 10.0p1 – OpenSSL 1.0.1g (At 8 Apr 18:27:46 2014 UTC). 
6. FreeBSD Ports – OpenSSL 1.0.1g (At 7 Apr 21:46:40 2014 UTC) [10]. 
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That’s a lot of system’s that are vulnerable. We all thought Linux is secured and open source 
being the bearer of security flag, apparently not anymore! 
 
There are several versions of the Heartbleed exploit actively in the wild, some are simply being 
used to test if systems are vulnerable, as well as more robust versions available in Metasploit and 
other frameworks. To watch potential exploits come through I have left a honeypot website 
purposely vulnerable to the Heartbleed bug, with a script that loads fake password and other 
random seemingly juicy data files into RAM [14]. 
 
To get a better picture of the Heartbleed vulnerability in our environment, we can use the full 
Tripwire suite. Tripwire IP360 provides reporting on the state of the vulnerability in your 
environment. Tripwire Log Center provides a guard dog on your network looking for indicators of 
Heartbleed exploits in real-time from IDS and other systems. 
 
If we bring the two products together as well, when a Heartbleed exploit against a host is 
detected targeting a host, Tripwire Log Center can lookup vulnerability data on that host to better 
understand the risk. If the system attacked is vulnerable you can fire off alerts to your team, or 
activate scripts to automate remediation and counter measures in real-time (Fig.2). 
 
Also there is another technique to detect Heartbleed vulnerability. This technique uses a BPF 
packet filter to automatically flag larger-than-typical TLS heartbeat responses from the server, 
and can be used with Wireshark and tcpdump as well as with the Riverbed AppResponse, Shark, 
and Pilot products. (AppResponse and Shark support many terabytes of stored packets, coupled 
with the ability to quickly analyze those packets; more Riverbed product specific hints will follow in 
a separate blog post) [15]. 
 
In addition, for the majority of published Heartbleed exploits so far (which are moving the 
compromised data in the clear on the wire), this technique also identifies what exact data was 
compromised (e.g., the set of user passwords exposed, vs. the "crown jewels" of a server's 
private keys). 

 
FIGURE 2: Heartbleed Vulnerability [14]. 

 
2.5 BEAST Attack 
The ability to mount an adaptive chosen plaintext attack with predictable initialization vectors (IVs) 
against SSL/TLS using cipher block chaining (CBC) was known in 2004,  but until late 2011 was 
thought to be largely theoretical. 
 
Researchers Thai Doung and Juliano Rizzo  found a way to exploit the vulnerability and 
demonstrated a live attack against Paypal  at the Ekoparty security conference in September of 
2011. Doung and Rizzo had notified and had been working with major software vendors including 
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Mozilla and Google to release a patch (CVE-2011-3389). Although the vulnerability is 
cryptographic in nature, it requires certain conditions to be successful. The proof of concept code 
presented at the conference also required a Java-based Same Origin Policy  (SOP) bypass that 
they had found during their research and which has been patched by Oracle [16].  
 
BEAST leverages a type of cryptographic attack called a chosen-plaintext attack.  The attacker 
mounts the attack by choosing a guess for the plaintext that is associated with a known 
ciphertext. To check if a guess is correct, the attacker needs access to an encryption oracle [19] 
to see if the encryption of the plaintext guess matches the known ciphertext. To defeat a chosen-
plaintext attack, popular configurations of TLS use two common mechanisms: an initialization 
vector (IV) and a cipher block chaining mode (CBC). An IV is a random string that is XORed with 
the plaintext message prior to encryption — even if you encrypt the same message twice, the 
ciphertext will be different, because the messages were each encrypted with a different random 
IV. The IV is not secret; it just adds randomness to messages, and is sent along with the 
message in the clear. It would be cumbersome to use and track a new IV for every encryption 
block (AES operates on 16-byte blocks), so for longer messages CBC mode simply uses the 
previous ciphertext block as the IV for the following plaintext block. The use of IVs and CBC is not 
perfect: a chosen-plaintext attack can occur if the attacker is able to predict the IV that will be 
used for encryption of a message under their control and the attacker knows the IV that was used 
for the relevant message they are trying to guess. 8 This new research demonstrated that the 
above attack can be mounted against TLS under certain conditions. When a SSL 3.0 or TLS 1.0 
session uses multiple packets, subsequent packets use an IV that is the last ciphertext block of 
the previous packet, essentially treating the session as one long message.  This allows an 
attacker who can see encrypted messages sent by the victim to see the IV used for the session 
cookie, the because cookie's location is predictable,  and also know the IV that will be used at the 
beginning of the next message packet (the last ciphertext block from the current message 
packet). If the attacker can also ``choose'' a plaintext message sent on behalf of the victim, they 
can make a guess at the session cookie and see if the ciphertext matches. 
 
A successful implementation of the attack requires browser or web technologies to meet the 
above criteria.  For clarity, we walk through the example as follows: The network attacker (who 
we will call Mallory) has the ability to eavesdrop on the network (e.g., over a wireless network) 
and coerces Alice to visit http://mallory.com perhaps through phishing, advertising or another 
attack. The malicious website contains an attack script that forces Alice's browser to make a 
request to http://bob.com and Mallory records the encrypted cookie. Using a technology that 
allows Mallory to adapt the attack through a SOP bypass or technology that allows multi-origin 
communication, Mallory now tries to guess the session cookie as the first block of subsequent 
requests and sees if the resulting ciphertext matches the previously recorded session cookie 
ciphertext [20]. 
 
This class of attack is well known enough that it was mitigated in TLS version 1.1; however, due 
primarily to client compatibility reasons neither TLS 1.1 or 1.2 are widely supported on the web 
and most vendors still require support (i.e. fall back) for SSL v3.0 and TLS v1.0. 
 
Browser vendors have attempted to implement a workaround to address the vulnerability at the 
implementation level while still remaining compatible with the SSL 3.0/TLS 1.0 protocol. These 
initially included inserting empty fragments into the message in order to randomize the IV as in 
the case of OpenSSL, and when that proved problematic to reliably implement, 1/n-1 record 
splitting where a single byte of the plaintext is injected in each record. 
 
The resulting padding added to complete the block (16 or 15 bytes) is random, and its search 
space is too high for an attacker to guess. 
 
2.6 SSL/TLS CRIME and BREACH Attacks 
The authors of the BEAST attack are also the creators of the later CRIME attack, which can allow 
an attacker to recover the content of web cookies when data compression is used along with TLS 
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[21]. When used to recover the content of secret authentication cookies, it allows an attacker to 
perform session hijacking on an authenticated web session. 
 
While the CRIME attack was presented as a general attack that could work effectively against a 
large number of protocols, including but not limited to TLS, and application-layer protocols such 
as SPDY or HTTP, only exploits against TLS and SPDY were demonstrated and largely mitigated 
in browsers and servers. The CRIME exploit against HTTP compression has not been mitigated 
at all, even though the authors of CRIME have warned that this vulnerability might be even more 
widespread than SPDY and TLS compression combined. In 2013 a new instance of the CRIME 
attack against HTTP compression, dubbed BREACH, was announced. Built based on the CRIME 
attack a BREACH attack can extract login tokens, email addresses or other sensitive information 
from TLS encrypted web traffic in as little as 30 seconds (depending on the number of bytes to be 
extracted), provided the attacker tricks the victim into visiting a malicious web link or is able to 
inject content into valid pages the user is visiting (ex: a wireless network under the control of the 
attacker). All versions of TLS and SSL are at risk from BREACH regardless of the encryption 
algorithm or cipher used.[20] Unlike previous instances of CRIME, which can be successfully 
defended against by turning off TLS compression or SPDY header compression, BREACH 
exploits HTTP compression which cannot realistically be turned off, as virtually all web servers 
rely upon it to improve data transmission speeds for users.[24] This is a known limitation of TLS 
as it is susceptible to chosen-plaintext attack against the application-layer data it was meant to 
protect. 
 
Compression Ratio Info-leak Made Easy (CRIME) is an attack on SSL/TLS that was developed 
by researchers Juliano Rizzo and Thai Duong. CRIME is a side-channel attack that can be used 
to discover session tokens or other secret information based on the compressed size of HTTP 
requests.  The technique exploits web sessions protected by SSL/TLS when they use one of two 
data-compression schemes (DEFLATE and gzip) which are built into the protocol and used for 
reducing network congestion or the loading time of web-pages. Rizzo and Doung demonstrated it 
at the Ekoparty security conference in September 2012 after notifying major affected software 
vendors, including Mozilla and Google (CVE-2012-4929 18). CRIME is known to work against 
SSL/TLS compression and SPDY, although other encrypted and compressed protocols are also 
likely vulnerable [24]. 
 
In a single session the same secret/cookie is sent with every request by the browser. TLS has an 
optional compression feature where data can be compressed before it is encrypted. Even though 
TLS encrypts the content in the TLS layer, an attacker can see the length of the encrypted 
request passing over the wire, and this length directly depends on the plaintext data which is 
being compressed. Finally, an attacker can make the client generate compressed requests that 
contain attacker-controlled data in the same stream with secret data. The CRIME attack exploits 
these properties of browser-based SSL. To leverage these properties and successfully implement 
the CRIME attack, the following conditions must be met: 
 
• The attacker can intercept the victim's network traffic.  (e.g.  the attacker shares the victim's 

(W)LAN or compromises victim's router). 
• Victim authenticates to a website over HTTPS and negotiates TLS compression with the 

server. 
• Victim accesses a website that runs the attackers code [25]. 
 
This attack is feasible on all browsers and servers that support TLS compression. According to 
the Qualys SSL Lab's SSL Pulse test data showed 42% of servers and 45% of the browsers 
supported TLS compression when the attack was released.  Internet Explorer, Safari, and Opera 
were not affected, as they did not support TLS compression. 
 
Among the widely used web browsers, Google Chrome (NSS) and Mozilla Firefox, as well as 
Amazon Silk supported TLS compression as they implement DEFLATE. The attack also worked 
against several popular Web services that support TLS compression on the server side, such as 
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Gmail, Twitter, Dropbox and Yahoo Mail. This attack worked for all TLS versions and all cipher 
suites (AES and RC4) and even if HSTS is active and preloaded by the browser vendor. 
 
CRIME is a the brute-force attack, so it requires O(W) requests where W is cookie charset, with 
the possibility to optimize to O(log(W)).  The modified version of SSL Strip  by Moxie Marlinspike 
can be used in a public network to launch a man-in-the-middle attack which will satisfy one 
requirement of the attack. This tool strips the ongoing SSL/TLS session and performs a man-in-
the-middle attack by acting as a proxy. The proof of concept code by Krzysztof Kotowicz  is also 
useful to simulate the attack. Duong and Rizzo's pseudo code works well in practice, but does not 
include a mechanism to sync the JavaScript with the program observing lengths on the network. 
Browsers still support HTTP compression, and this attack is possible on HTTP compressed 
sessions. Timing Info-leak Made Easy (TIME) is an extension of this attack. Recently Browser 
Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) introduced a 
new targeted techniques to reliably retrieve encrypted secrets [26]. 
 
Like the CRIME attack, BREACH exploited the compression and encryption combination used to 
interact with users and web-servers.  The working mechanism of BREACH is similar to CRIME, 
except CRIME targeted TLS compression, while BREACH targets HTTP compression.  HTTP 
response compression compresses the body of responses but not header information. The 
algorithm used, DEFLATE, is comprised of two components. LZ77 replaces occurrences of three 
or more characters with ``pointer'' values to reduce space. Huffman coding replaces characters 
with symbols in order to optimize the description of the data to the smallest size possible.  
BREACH works by attacking the LZ77 compression while minimizing the effects of Huffman 
coding. If this isolation is not performed, too many false positives will result, reducing the 
effectiveness of the attack. 
 
At a high level the attack works by injecting guesses in HTTP requests and measuring the sizes 
of the compressed and encrypted responses. The smallest response size indicates that the guess 
matches the secret value. This is then repeated on a character by character bases. 
 
As BREACH focuses on the HTTP compression of the response body, it is possible to mount on 
all versions of SSL/TLS, and does not require TLS-layer compression. The cipher suite used 
during the session negotiation does not affect this attack. The number of requests required are 
proportional to the size of secret, but in general BREACH attack can be exploited with just a few 
thousand requests, and under a minute.  In short, the scope of this attack includes a considerable 
portion of the HTTP traffic in the Internet as a large portion of enterprise applications and online 
websites use HTTP compression to optimize bandwidth. 
 
The three main requirements for exploitation of the vulnerability to be effective are: 
 
1.  The application supports HTTP compression. 
2.  The response should reflect back user's input. 
3.  The response should have some sensitive/ secret information embedded in the body. 
 
If the user's input is not reflected, there is no possible way to mount a chosen plaintext attack and 
measure the size of the responses. This attack targets the secret information in the response 
body (e.g. CSRF tokens), not the session cookie in the request header. So this is useful only if 
the the response of this attack contains sensitive information. 
 
Like CRIME and TIME, the oracle needs to be aware of Huffman coding scheme and overcome 
the false positives generated due to the same.  In their research paper, Gluck, Harris, and Prado 
gave a detailed explanation on methods to overcome the aberrations caused by the subtle inner 
working of the DEFLATE and how they were able to optimize the attack [27]. 
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2.7 Crypt analysis of RC4 and its fails 
In cryptography, RC4 (also known as ARC4 or ARCFOUR meaning Alleged RC4, see below) is 
the most widely used software stream cipher and is used in popular protocols such as Transport 
Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While 
remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its 
use in new systems. It is especially vulnerable when the beginning of the output keystream is not 
discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to 
very insecure cryptosystems such as WEP. 
 
As of 2013, there is speculation that some state cryptologic agencies may possess the capability 
to break RC4 even when used in the TLS protocol.[30] Microsoft recommends disabling RC4 
where possible [28]. 
 
RC4 generates a pseudorandom stream of bits (a keystream). As with any stream cipher, these 
can be used for encryption by combining it with the plaintext using bit-wise exclusive-or; 
decryption is performed the same way (since exclusive-or with given data is an involution). (This 
is similar to the Vernam cipher except that generated pseudorandom bits, rather than a prepared 
stream, are used.) To generate the keystream, the cipher makes use of a secret internal state 
which consists of two parts: 
 

 A permutation of all 256 possible bytes (denoted "S" below). 

 Two 8-bit index-pointers (denoted "i" and "j"). 
 
The permutation is initialized with a variable length key, typically between 40 and 256 bits, using 
the key-scheduling algorithm (KSA). Once this has been completed, the stream of bits is 
generated using the pseudo-random generation algorithm (PRGA) [29]. 
 
Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient 
in hardware, are less so in software. The design of RC4 avoids the use of LFSRs, and is ideal for 
software implementation, as it requires only byte manipulations. It uses 256 bytes of memory for 
the state array, S[0] through S[255], k bytes of memory for the key, key[0] through key[k-1], and 
integer variables, i, j, and K. Performing a modular reduction of some value modulo 256 can be 
done with a bitwise AND with 255 (which is equivalent to taking the low-order byte of the value in 
question) [31]. 
 
Unlike a modern stream cipher (such as those in eSTREAM), RC4 does not take a separate 
nonce alongside the key. This means that if a single long-term key is to be used to securely 
encrypt multiple streams, the cryptosystem must specify how to combine the nonce and the long-
term key to generate the stream key for RC4. One approach to addressing this is to generate a 
"fresh" RC4 key by hashing a long-term key with a nonce. However, many applications that use 
RC4 simply concatenate key and nonce; RC4's weak key schedule then gives rise to related key 
attacks, like the Fluhrer, Mantin and Shamir attack (which is famous for breaking the WEP 
standard) [33]. 
 
Because RC4 is a stream cipher, it is more malleable than common block ciphers. If not used 
together with a strong message authentication code (MAC), then encryption is vulnerable to a bit-
flipping attack. The cipher is also vulnerable to a stream cipher attack if not implemented correctly 
[27]. Furthermore, inadvertent double encryption of a message with the same key may 
accidentally output plaintext rather than ciphertext because the involutary nature of the XOR 
function would result in the second operation reversing the first. 
 
It is noteworthy, however, that RC4, being a stream cipher, was for a period of time the only 
common cipher that was immune[26] to the 2011 BEAST attack on TLS 1.0. The attack exploits a 
known weakness in the way cipher block chaining mode is used with all of the other ciphers 
supported by TLS 1.0, which are all block ciphers. 
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In 2013 there was a new attack scenario proposed by AlFardan, Bernstein, Paterson, Poettering 
and Schuldt that uses new statistical biases in RC4 key table[30] to recover plaintext with large 
number of TLS encryptions [32]. 
 
2.8 Attacks on RC4 
In spite of existing attacks on RC4 that break it, the cipher suites based on RC4 in SSL and TLS 
were at one time considered secure because of the way the cipher was used in these protocols 
defeated the attacks that broke RC4 until new attacks disclosed in March 2013 allowed RC4 in 
TLS to be feasibly completely broken. In 2011 the RC4 suite was actually recommended as a 
work around for the BEAST attack.

 
In 2013 a vulnerability was discovered in RC4 suggesting it 

was not a good workaround for BEAST. An attack scenario was proposed by AlFardan, 
Bernstein, Paterson, Poettering and Schuldt that used newly discovered statistical biases in the 
RC4 key table

 
to recover parts of the plaintext with a large number of TLS encryptions. A double-

byte bias attack on RC4 in TLS and SSL that requires 13 × 2
20

encryptions to break RC4 was 
unveiled on 8 July 2013, and it was described as "feasible" in the accompanying presentation at 
the 22nd USENIX Security Symposium on August 15, 2013.  
 
However, many modern browsers have been designed to defeat BEAST attacks (except Safari 
for Mac OS X 10.8 or earlier, for iOS 6 or earlier, and for Windows. As a result, RC4 is not the 
best choice for TLS 1.0 anymore. The CBC ciphers which were affected by the BEAST attack in 
the past are becoming a more popular choice for protection. 
 
Microsoft recommends disabling RC4 where possible.  
 
RC4 is an extremely simple and elegant algorithm.  The first phase is the key scheduling 
algorithm (KSA). This algorithm takes an initial array and initializes it to values 0 to 255. For each 
index of the array a shuffling occurs that mixes in the key. Once this algorithm runs, the output of 
the KSA is input to the pseudo-random generation algorithm (PRGA) that continually shuffles the 
array. The output of the PRGA is exclusive-ored with the plaintext to produce a cipher text. 
 
These recent attacks have found strong biases in the first 257 bytes of encryption which will allow 
recovery of roughly the first 200 bytes of plaintext in approximately 2 28  to 2 32  encryptions of 
the same plaintext under unique keys (referred to here as the broadcast attack). The attack 
recovers the plaintext at each position by gathering the set of observed ciphertexts (each 
encrypted with a different key) for the corresponding position. It tries each of the 256 candidate 
plaintexts and computes the PRGA output byte by exclusive-oring the candidate with each 
ciphertext. It then calculates which plaintext candidate resulted in PRGA outputs which most 
closely matches the known PRGA bias for that position. To take an extremely simplified example, 
consider when the PRGA output always outputs the value one.  The correct plaintext will be the 
one which, when exclusive-ored with each of the ciphertexts, always results in one [34]. 
 
Additionally, using previously discovered long-term biases in RC4, 50% of a 16-byte secret value 

can be extracted after analysis of 6 ∗ 2 30 encryptions of the same plaintext message using a 
single key. This attack is different to the broadcast attack since it can recover plaintext from a one 
or more encryption streams in which the same plaintext is sent repeatedly.  The attack recovers 
plaintext using transitional biases in the PRGA stream that recur at fixed positions in the stream. 
For example, if the PRGA output is zero at any offset that is a multiple of 256-bytes, then the next 
output is more likely to also be a zero. The attack works by starting with a known plaintext byte 
that repeats at a fixed position and finding a candidate for the plaintext byte that repeats at the 
next position.  The candidate that most closely matches the transition bias of the PRGA is 
selected. This process is then repeated to find the next unknown plaintext byte. 
 
In both attacks the request structure such as the URL, which may be known or the location and 
beginning of the cookie as well as the plaintext structure, such as the language or HTML can be 
used to further optimize the attack. 

http://en.wikipedia.org/wiki/RC4
http://en.wikipedia.org/wiki/BEAST_(computer_security)
http://en.wikipedia.org/wiki/USENIX
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Additionally, many byte positions may quickly be probabilistically reduced to a limited number of 
candidate plain-texts.  This includes positions that may have multiple biases.  The candidate 
plaintexts can be used to attempt to authenticate to the system under attack in order to verify the 
correctness of the secret [35]. 
 
In the current and un-optimized state, these attacks do not represent a practical threat against the 
majority of implementations.  However, optimization can be made and depending on the 
individual target, analysis of the structure, language can be made to reduce the attack time frame. 
A team from Royal Holloway, University of London, and the University of Illinois-Chicago has 
discovered that the small "biases" contained in RC4 can be manipulated in a way that reveals a 
limited amount of the plaintext in an encrypted data stream. It requires attackers to receive tens of 
millions of different encryptions of the same message. By statistically sampling them, the lack of 
randomness can be exploited to deduce parts of the encrypted message [36]. 
 
2.9 TLS Attacks in practice 
Examples of attacks: 
 
1. Prediction of random numbers  

In January 1996, Goldberg and Wagner published an article on the quality of random numbers 
used for SSL connections by the Netscape Browser. The authors gained access to the 
application's Source Code by decompiling it and identified striking weaknesses in the 
algorithm responsible for random number generation. 

2. Limited entropy 
In 2008 Luciano Bello observed during code review that the PRNG of Debian-specific 
OpenSSL was predictable starting from version 0.9.8c-1, Sep 17 2006 until 0.9.8c-4, May 13 
2008, due to an implementation bug. A Debian-specific patch removed two very important 
lines in the libssl source code responsible for providing adequate entropy. 

3. Exception based DoS 
Zhao et al. provided an attack on the TLS handshake which leads to an  immediate 
connection shutdown and can thus be used for a Denial of Service (DoS) attack. The authors 
exploited two previously discussed weaknesses to mount successful attacks. 
The first attack targets the Alert protocol of TLS and makes use of the fact that, due to yet 
missing completed cryptographic primitives negotiation during the handshake phase, all Alert 
messages remain strictly unauthenticated and thus spoof-able. This enables an obvious, but 
effective attack: Spoofing Fatal Alert messages which cause immediate connection 
shutdowns. 
The second attack simply confuses a communication partner by sending either misleading or 
replayed messages or responding with wrong messages according to the expected 
handshake flow 

4. Renegotiation flaw 
Ray and Dispensa discovered a serious flaw induced by the renegotiation feature of TLS. The 
flaw enables an attacker to inject data into a running connection without destroying the 
session. A server would accept the data, believing its origin is the client. This could lead to 
abuse of established sessions - e.g., an attacker could impersonate a legitimate victim 
currently logged in to a web application. 

5. SSL/TLS Stripping 
In February 2009, Moxie Marlinspike released the sslstrip tool which disables SSL/TLS at a 
higher layer. As a precondition it is necessary for an attacker to act as Mitm. To disable the 
security layer the tool sends  HTTP 301 - permanent redirection responses and replaces any 
occurrence https:// with http:// (notice the missing s). This causes the client to move to the 
redirected page and communicate unencrypted and unauthenticated (when the stripping 
succeeds and the client does not notice that she is being fooled). Finally, the attacker opens a 
fresh session to the (requested) server and passes-through or alters any client and server 
data. 

6. Computational DoS 
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In 2011, the German Hacker Group The Hackers Choice released a tool called THC-SSL-
DoS, which creates huge load on servers by overwhelming the target with SSL/TLS 
handshake requests. Boosting system load is done by establishing new connections or using 
renegotiation. Assuming that the majority of  computation during a handshake is done by the 
server the attack creates more system load on the server than on the own device - leading to 
a DoS. The server is forced to continuously recompute random numbers and keys [36]. 

 

3. CONCLUSIONS 
We presented our analysis for SSL/TLS attacks. We found serious logic flaws in advanced 
attacks mechanisms. We discussed the weaknesses and ways of its protection.  
 
SSL/TSL has been around for many years without any major modifications. This protocol was 
considered to be secure. The CRIME, BREACH,BEAST, Hartbleed attacks proved that in one 
very specific use case it can be compromised. While this use case can be avoided and SSL/TSL 
re-secured, will this have an effect on the thoughts of SSL/TSL security as a whole. People tend 
to lose faith in security protocols as soon as the simplest attack is successful. Will this be the end 
to SSL/TSL, or will users still have faith in the non-compressed version, that has yet to be broken, 
or will they run to a new protocol to be positive that they are secure? This will only be answered in 
time.   
 
We believe that our study takes some steps in the security problem space that SSL protocols 
have brought. Also our study suggests and analyses Heartbleed exploit detection. We believe 
that our study brings some new chain of trust between the client and the protocol security.  In 
future work we are considering the security challenges that come with other advanced SSL 
attacks. Fundamentally, we believe that vulnerabilities of SSL/TSL demands new research efforts 
on ensuring the security quality of the protocols. 
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