
Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 126

Multi-GranularityUser Friendly List Locking Protocol for XML
Repetitive Data

Eunjung Lee ejlee@kyonggi.ac.kr
Computer Science Department
Kyonggi University
Suwon, South Korea

Abstract

We proposeproposed a list data sharing model, which utilizes semantics expressed in DTD for
concurrency control of shared XML trees. In this model, tree updating actions such as inserting
and/or /deleting subtrees are allowed only for the repetitive parts. The proposed model
guarantees that the resulting XML tree is valid even when applying tree update actions are
applied concurrently. AlsoIn addition, we propose, a new multi-granularity locking mechanism
called list locking protocol is proposed. This protocol locks on the (index) list of repetitive children
nodes, so and thus it allows updates on to the descendents when the node's node child child’s
subtree is being deleted or inserted. This protocol is expected to show betterbe more accessible
accessibility with less number ofand to produce fewer locking objects on XML data compared to
the other locking methods on XML data. Moreover, the prototype system shows that list locking is
well suited to user interface of shared XML clients by enabling/disabling corresponding edit
operation controls.

Keywords: Locking, Shared XML, Repetition, Update.

1. INTRODUCTION

The rapid proliferation of the XML in many different application area areas results has resulted in
a rapidly growing number of XML documents. Also, it becomes and allowed more possible that
users workingwork concurrently on XML documents to share data. Isolating concurrent accesses
has become becomes an important issue in XML database (DB) systems or distributed
applications based on shared XML documents.1

Locking is the standard way to control concurrency in relational databasesDBs (RDBs). Multi-
granularity locking is used to resolve the tradeoff between concurrency and overhead [1]. Rather
than force a single locking granule for all transactions, multi-granularity allows a transaction to
select a granularity level at which to obtain locks. For XML trees, however, a multi-granule lock on
a node blocks the whole subtree and therefore reduces concurrency.

Recently, the topic of synchronization was picked up againreaddressed in the context of XML.
Several locking approaches are have been proposed for shared XML data, such as OO2PL [8]
and path lock [5]. Most of these researches research has focused on the performance of shared
query processing and, therefore concerns is mainly concerned with mainly on reading a large
number of nodes, rather than updating the tree structure, such as through subtree insertion and
/deletion.

In this paper, we investigate a new efficient locking protocol for synchronizing concurrent tree
structure update actions. Studying By studying many application examples, we found that
structure update actions on a shared XML tree usually applied apply to the repetitive parts of the

1 This work was supported by the GRRC program (GRRC Kyonggi 2011-B03) of Gyeonggi province. This

work was supported by the GRRC program(GRRC Kyonggi 20101-B03) of Gyeonggi province.

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 127

tree. This motivates us to propose a list data sharing model for XML data, which restricts
structure update actions only for the repetitive parts. The proposed model guarantees that the
resulting XML tree is valid after applying the application of concurrent tree update actions.

A new multi-granularity locking (MGL) mechanism (MGL), called the list locking protocol, is
proposed. This protocol locks on the (index) list of repetitive children nodes for handling the
concurrent insertion and /deletion of subtrees. This protocol allows update actions on
descendents during the insertion and deletion inserting/deletingof subtrees. List The list locking
protocol is expected to show better accessibilitybe more accessible and to produce with less
fewer number of locking objects for synchronizing structure update actions compared to the other
locking methods on XML data. Moreover, the prototype system shows that list locking is well
suited to user interface of shared XML clients by enabling/disabling corresponding edit operation
controls.

This paper is organized as follows. Section 2 discusses related work. Section 3 gives describes
the motivation for the development of our model. Section 4 describes our model of shared XML
data and the locking algorithm. In section 5, we discuss the proposed method compared with
previous methods. Finally, section 6 has ourdiscusses our conclusions and conclusion and future
work.

2. RELATED WORK

A multiMGL-granularity locking protocol protocols on RDBs as well as on Object-oriented DBs
(OODBs) is are a well well-established research area. Especially, it is studied, and particular
focus has been placed on OODBs using DAGs, which to allow locks on granules of groups of
objects. Lee et al. proposed a new MGL for composite objects [11], where in which collections of
objects can have arbitrary intersection and inclusion relationships.

An XML tree has a hierarchical structure, which that is not a DAG. The node relations could be a
general DAG if we use ID or IDREF attribute attributes are used as a relationrelations between
nodes. However, we consider XML trees as simple hierarchical structurestructures. Manipulating
shared actions on trees, tree locking considers shared trees with structure update actions [10]. It
is based on two- phase locking, which allows locks only on individual nodes. Also, Tthe tree
locking protocol does not allow for the deletion of deleting subtrees, but only simple nodes.

For allowing structure update actions, one of the most recent results studies on lock-based
synchronization for XML trees is OO2PL [7,8] proposed by Helmer et al. OO2PL considers
Considering structure updates as changing pointers between nodes, OO2PL and therefore locks
on the pointers. Because it uses low-level physical data structure as locking units, Their the
model is powerful enough to allow arbitrary type of node accesses access and structure updates
since it uses low level physical data structure as locking units. However, if the structure updates
on to XML trees should guarantee validity, then not all structure update actions we cannot allow
allcan be allowed structure update actions. Therefore, in our opinion, allowing a method that
allows any type of structure updates update, such as like OO2PL, is too general for a model
sharing model of XML trees. They Helmer et al. mentioned noted that using document document-
type information and validity to could enhance performance, but present presented only an
informal way to of using dummy nodes for repetitive parts.

Dekeyser and Hidders proposed a path lock [5], a new fine granularity locking scheme of fine
granularity based on path locks. They provide provided an algorithm to support general path
notations such as //A//B for accessing data. Their method could allow both top-down and bottom-
up query evaluation and locking, and therefore shows better efficiencyis more efficient. However,
The path lock method only supports the deletion of leaf nodes, however, and not thedoes not
support deletion of subtrees, either. Only deletion of leaf nodes is allowed. On the other
hand,However, Grab et al. proposed DGLOCK, which controls concurrent accesses using
predicates on data guide [6].

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 128

Recently, sSeveral recently published studies have shown implementations and their concurrency
issues have been published. They have shown that effective and efficient locking protocols are
essential to guarantee the ACID properties for XML processing and to achieve high transaction
throughput. Most native XML database systems adopt one or more of locking protocols [12,13,–
14]. However, we found that there are is still rooms room for improvement in concurrency
efficiency, especially for insert and /delete operations, since because most of the current
researches research are has focused on retrieval and data update operations. In this paper, we
aim to propose a new locking protocol which that is feasible for the a cooperation cooperative
environment with heavy a large number of insert and /delete operations.

3. MOTIVATION

In this section, we will look intoexamine sharing patterns in XML XML-based collaboration
collaborative applications. From this observation, weWe have found that structure update actions
such as subtree insertioninsertions and /deletions are often applied to repetitive parts in XML,
represented as with the symbol “*” in a DTD. This motivates us to propose a new model for XML
data sharing.

3.1 A Working Example
The following XML file includes order details and the process records. Lists 1 and 2 show
instances of XML file and a DTD, respectively.

In a shared XML tree, the tree structure is updated with actions such as inserting and deleting
subtrees. Allowing an arbitrary structure update might result in an invalid tree. Moreover, we
should assume that more than one update action is applied concurrently to the shared tree.
Therefore, in general, it is natural to design the shared tree such that update actions on the
shared structure can be applied to the repetitive parts. For the example in Figure 1,
adding/deleting an item to/from <order> and adding/deleting an order to/from <orders> are such
candidates. In an XML tree, we can identify repetitive parts based on a given DTD, with nodes
corresponding to symbols enclosed with * or +.

<orders>
<order>
<order-by>John</>
<status>preparation</>
<date>2001-08-01</>
<address>…</>
<item>
<title>Little Bear</>
<price>14.00</>

</>
<item>
<title>Blue Horse</>
<price>21.99</>
<discount>5</>

</item>
<bonus-item>
<code>BN-01</>

</>

<process-records>
<record>
<type>payment</>
<date>
2001-08-01</>

<status> OK</>
</>
<record>
<type>findstock</>
<date>
2001-08-02</>

<corr-p>E. Lee</>
</>

</process-records>
</order>
<order>

<status>shipped</>
<date>2001-08-13</>
<item>
<title>Mountain</>
<price>54.00</>
<copies>2</>
<discount>10</>

</>
<item>
<title>River</>
<price>46.50</>
<discount>10</>

</>
<process-records>
…

</process-records>
</order>

</orders>

TABLE 1: XML instance for orders.

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 129

<orders> := (<order>)*
<order> := <order-by>?<status><date><address>?(<item>|<bonus-item>)+<process-records>
<process-records> := (<record>)*(<cancel-log>|<close-date>|<return-log>)
<item> := <title><price><copies>?<discount>?
<record> := <type><date><corr-p>?<status>?
…

TABLE 2: DTD for orders instance in Table 1.

We found similar patterns from other examples in the literature, such as auction data and
shopping baskets. In an auction status list, adding a new bid to the bid list and deleting an auction
item from the list are applied to the repetitive parts. In a shared shopping basket, adding or
deleting a new item is the same action. As shown from these examples, shared actions that
update the tree structure are often applied to the repetitive parts of the tree.

orders

order order

ordered-by

status date item item
item item

title price
copies

“Mountain”
“River”

process-records
process-records

address

“Little Bear”

“Blue Horse”

status
date

bonus-item

FIGURE 1: An example of an XML tree

We found similar patterns from other examples in the literature, such as auction data and
shopping baskets. In an auction status list, adding a new bid to the bid -list and deleting an
auction item from the list are applied to the repetitive parts. In a shared shopping basket, adding
or /deleting a new item into basket is the same action. As shown from these examples, shared
actions that update the updating tree structure are often applied to the repetitive parts of the tree.

3.2 List Data Sharing Model
Actions for sharing XML data are 1) Read(w) or Write(w, valuenew) on a terminal node w, ; 2)
Traverse(v), to read a list of children of the internal node v, ; 3) Insert(v, Tnew, k), to insert a
subtree Tnew as k-th child of v, ; and 4) Delete(v, k), to delete the k-th subtree of v.

In general, concurrency control for of actions on terminal nodes like such as read/write data is
possible in a same way toa manner similar to that of traditional RDBs. Therefore, we focus on
the structure update actions such as subtree insertions and deletions. The main idea of this paper
is to simplify the sharing model by restricting structure update actions (Insert and Delete) only for
the repetitive parts of the tree. By doing so, the model can guarantee that the intermediate results
of the shared tree is are always valid. Also, we can get an efficient locking/concurrency
mechanism.

Restricting the insertion and /deletion for of repetitive parts might be a serious shortcoming in
some cases, since because it allows neither insertion / deletion of the optional part (? in DTD),
nor exchanges of the subtree structure defined by selections in DTD. However, designing those
ones as * or + parts in DTD is not difficult and sometimes helpful in our experience, since

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 130

because we can identify the shared parts of the tree in an earlier stage of development.
Moreover, this can help users to understand quite easily the meanings meaning of the data quite
easily andas well as their responsibility for collaborating on the data.

In the next section we will present a formal definition for the structure update actions for repetitive
parts of a shared tree.

4. CONCURRENCY CONTROL FOR LIST DATA SHARING MODEL

4.1 *-Facting of XML Trees
DTD defines types of XML trees, where in which the children of a node are represented with

sequential, optional (?), selective (|), and/or repetitive (* or +) parts2. Motivated by the facts fact
that the * parts are the main target for shared structure update actions, we introduce an XML tree
transformation called *-factoring before presenting our new locking protocol.

We call a the sequence of nodes X1X2...Xn a repeated part, if they correspond to children of * or +
nodes in a DTD graph. If the repeated part consists of one symbol X, then we call it a list node
(<order> or <item> nodes in Figure Fig. 1). If the subsequent list of nodes belong belongs to a
separate parent node, we call it a list parent node (<orders> and <process-records> in Figure Fig.
1). An XML tree is called *-factored if a group of nodes for each repetitive part consists of a
separate tree and there is a parent node for each repeated group. In a *-factored XML tree, every
repetitive part has one list node and sibling list nodes are that belong to a list parent node. The
example in Figure 1 is not *-factored since because the repeated parts of <item> and <bonus-
item> do not have a separate list parent node.

We can transform a given XML tree to a *-factored one by introducing new nodes. Algorithm 1
presents the transformation method. This algorithm repeats the factoring if i contains the
repetitive parts in the next cycle. Therefore, it factors the outmost outermost level of *’'s s at each
cycle. Algorithm 1 repeats O(n) times if the number of repetitive parts in the tree is n, and 2 two
new nodes are added in each transformation cycle.

Note that the *-factoring algorithm adds several new nodes to the tree. It is easy to recover the
original tree, by simply mapping new nodes to null. Hereafter, we will consider only *-factored
XML trees to simplify the discussion. Helmer et al. mentioned a similar approach to that added
add dummy nodes to group groups of repetitive parts to get better performance [7]. However,
they did not provide a formal model.

[Algorithm 1] *-Factoring
Input : a valid XML tree T with respect to the given DTD
Output : *-factored tree T’
1. Repeat the step 2 for every node w.
2. For all repetitive parts of the children of w, let (v11…v1m1)(v21…v2m2)…(vn1…vnmn) be a list

corresponding to �* in DTD, where � is repeated n times,
i) For 1 ≤ j ≤ n, if mj > 1, then add a node vj as a parent of vj1…vjmj in T.

ii) Add a node v as a parent of v1..vn, in T, which are added in step C, and as a child of w.

2 In our model, we use thea notation * instead of * or + for repetitive parts, if the context is clear. We can

assume that a delete action on the repetitive list is relevant only when there are is more than one children

child in the list for satisfying the + condition.

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 131

A

B EDDC C F

A

B

ED

DC C

F

B

H MKKJ H M

B

KK

JH H MM

A := B(C | DE?)*F B := (HJ?K*M)*

FIGURE 2: *-Factoring of Sample Subtrees.

Top, a production rule; middle, the corresponding tree instance; and bottom, the corresponding *-
factored tree for the one above one. The shadowed nodes are newly introduced list parent nodes
and the empty circles are new list nodes.

Now, we are ready to introduce the shared structure update actions used in our model.

[Definition 1] Let vL be a list parent node in a *-factored tree T. Then, list update actions on vL
are defined as follows.
ListInsert(vL, Tnew, k) : Insert Tnew as k-th child of vL.
ListDelete(vL, k) : Delete the k-th child subtree from vL. If vL is a (+)-list parent node, than this

action is relevant only if number-of-children(vL) > 1.

4.2 List Locking Protocol
In this paper, we propose a new locking protocol called a list locking protocol based on
MGL(Multiple Granularity Locking)[1] called a list locking protocol. Shared The shared actions on
an internal node are Traverse, ListInsert, and ListDelete, as defined in Definition 4.1. There are
four types of locks.:

- Traverse lock (T) : A lock request for traversing children or child list nodes.
- List lock (L) : A lock requested request to the list parent node for inserting or /deleting a

child tree. This will block other transaction transactions from accessing the same list.
- Delete lock (D) : A lock requested request to the root node of the deleted subtree for

deleting.
- Intentional lock (I) : A lock requested request for accessing descendent nodes.

Table 1 shows the compatibility of the list locking protocol. In the table, O shows represents
compatibility, X shows reflects conflict, and On means a case allowing write access with a
notification.

 I T L D
I O O O X
T O O X X
L O On X X
D X X X X

TABLE 3: Comparability Relation of the List Locking Protocol.

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 132

We did not differentiate intentional locks for traverse and list update updates in the compatibility
relations. Note that, in this protocol, L lock is applied only for list parent nodes, and D lock is only
for list nodes. In the above table, On shows a possibility ofmay read reading invalidated data.
This can be prevented by using multi-version concurrency [2]. Structure update actions check in a
new version list index and traverse actions check out the last version. We simply assume that the
list update actions notify the clients, if necessary.

[Algorithm 2] List locking protocol:

[1] Locking phase

(1) To access any nodes in the tree, I(vroot) should be gained acquired first, where vroot is the
root node of the tree.

(2) To gain a lock T, L, or I on a node v, I(w) should be acquired gained first, where w is a
parent of v.

(3) To traverse the child nodes of v, T(v) should be acquired gained first.
(4) To delete a child tree of a node v, L(v) should be acquired gained first and D(vd), where

vd is the root of the deleted tree.,
(5) To insert a child tree to a node v, L(v) should be acquired gained first before inserting a

subtree.

[2] Release phase

(1) For a client to release a lock on v, the lock on all child nodes should be released first.
(2) If an update is allowed for a list parent node v with a dirty read, all clients with T(v) should

be informed of the a data update. should be notified to all clients acquiring T(v) before
releasing L(v).

(3)(2) For a shared action to get acquire another lock, it should release all of the locks it
is currently holding. One exception is to upgrade T(v) to L(v), which should be allowed in
order to update the list after visitingit is visited.

In the list locking protocol, intentional locks to all ancestor nodes first should be gained acquired
first in a top-down manner. ThereforeThereafter, it is enough sufficient to get a delete lock on the
subtree root node. Following The following two properties show that the list locking protocol
guarantees the serializability of list update actions.

 [Property 1] In the list locking protocol, no more than one list update actions action are is
allowed to the same list parent node.

[Property 2] In the list locking protocol, a delete action is not allowed for any node whose
descendent is currently being accessed.

[Property 3] In the list locking protocol, two list update actions applied to different parent nodes
can be executed concurrently unless one of the corresponding list parent nodes is deleted by the
other action.

The list locking protocol considers structure traversal/update actions. In order toTo cover
read/write actions on terminal nodes, the previous MGL could be used togetherwith the list
locking protocol. If we model the data read/update as a node traversal, we could combine the
proposed protocol with the original MGL on the data values, without conflict.

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 133

5. DISCUSSION

5.1 Summary
We have proposed a locking scheme for XML documents that allows the same document to be
updated by more than one user. EspeciallyIn particular, we investigate investigated a
synchronization method of for structure updates on to shared trees, such as subtree insertion
insertions and deletiondeletions. The Our study on of XML sharing applications show showed that
subtree insertion/ and deletion is applied for to the repetitive parts of the tree. This motivates our
model, called awhich we call a list data data-sharing model, ; the model that restricts subtree
insertionsinsertion and /deletiondeletions on the repetitive parts of the tree based on DTDs. This
guarantees that the result tree valid even for concurrent structure update actions.

FIGURE 3: A Shared XML Data Interface Based on the Proposed Model.

Formally, we defined a *-factored XML tree and introduced a transformation method from
arbitrary XML trees to *-factored ones based on DTDs. By introducing *-factored trees, we could
simplify the concurrency control to handling handle a number of index lists. Also, locks on
repetitive parts of the tree are introduced; a traverse lock(T) and a list modification lock(L), which
consist of a list locking protocol based on MGL. The proposed locking protocol has the following
advantages compared to the previous methods.

First, the result tree trees that result after applying structure update actions are guaranteed to be
valid. Previous researches research did not consider the validity for of shared actions because of
the complexity of the problem. However, we think it is important that the intermediate result trees
are valid during XML data sharing. We introduced a relatively simple model for covering ensuring
XML trees’ validity.

Secondly, the locking protocol becomes efficient because we consider only the repetitive parts.
Number The number of locking objects is relatively small. Moreover, the new locking protocol
allows for updating other descendents while a child subtree is being deleted or /inserted.

5.2 Comparison
In this section, we compare the proposed method to several recent researches studies on XML
data locking.

A locking protocol called OO2PL [7,8], is a general model which that uses the physical links as
locking units. They say that theThe researchers argue that serializability should be the
foundation for protocols and that thea lowest level of atomic actions should be isolated in order to
prevent unwanted side effects. Therefore, OO2PL uses parent/child or sibling links as locking
units. Also, they canlinks can be locked lock on links by IDREFs or IDs for direct accessesaccess.
However, we believe that their this model is too general to be efficient for relatively simple XML
data. Since Because they use arbitrary pointers/links are used for locking units, the number of
locking objects should increase significantly. Also, two-phase locking they do notis used instead
use of multi-granularity, , but two phase locking instead. Therefore, they couldso it was not

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 134

possible to not take advantage of the native tree structure. They The researchers mentioned
using DTD information to enhance efficiency by restructuring links to group repetitive parts of the
children. HoweverAlthough, they describe a way to add dummy nodes to XML tree, no formal
method is but did not provide a formal methodprovided.

Another type of protocols protocol that is often used for hierarchical data are is the so-called tree
locking protocolsprotocol [10]. In these protocols, locks hold only for nodes do not hold forbut not
for entire granules but only for nodes, i.e., when a node is locked its descendants are not also
locked. However, there is also the restriction that a lock can only be acquired for a node if an
identical or stronger lock was already obtained for the parent of the node.

Path lock [5] is has been proposed to support arbitrary path expressions for accessing nodes in
XML trees. It can provide fine granule locks based on path locks. They give anAn algorithm is
provided to evaluate locks for a given path expression, and to check compatibility with the
previous locks. In this protocol, they can support path expressions such as //A//B can be
supported with a minimal number of locking objects. Instead, evaluatingEvaluating compatibility
with current locks is not easy. , however. Their The model does not support subtree deletion
since because they need to evaluate path conditions must be evaluated in either a top-down or
bottom-up waysmanner. We believe that deletingdeletions and /inserting insertions of subtrees
are important update actions for shared XML trees. Sometimes, the sharing is more for editing
and /managing XML trees rather than for searching and /querying. In that case, our protocol could
be useful to serialize structure update actions including subtree deletions.

The main restriction of our study is not that it does not consider navigations through considering
ID- and IDREF-based accesses. This is because our approach is focused on the (repeat)
structure of the tree definition and updates on to the structure. We treat IDREFS as terminal
nodes which can be inserted and/or deleted.

6. REFERENCES
[1] N. S. Barghouti, G. E. Kaiser., “Concurrency control in advanced database applications,”.

AACM Computing Surveys, vol.23(3), pp.269-317, 1991.

[2] P. Bernstein, N. Goodman., “Multiversion concurrency control – theory and algorithms,”.

ACM TransTransactions. On on Database Systems, vol. 8(4), pp.465-483, 1983.

[3] B. Bouchou, and M. Halfeld and, F. Alves., “"Updates and Incremental Validation of XML

Documents,". The 9th International Workshop on Data Base Programming Languages
(DBPL), 2003, pp.216-232.

[4] Stijn S. Dekeyser, Jan J. Hidders., “Path locks for XML Document collaboration,”. Proc.

WISE'02, 2002, pp.105-114.

[5] Torsten T. Grabs, Klemens K. Bohm and, HansH.-Jorg J. Schek., “"XMLTM: Efficient

Transaction Management for XML Documents,"”. CKIM’02, 2002, pp.142-152.

[6] S. Helmer, C. Kanne and, G. Moerkotte, “"Lock-based Protocols for Cooperation on XML

Documents”.," Int.International Workshop on DB and Expert Systems Applications
Conference (DEXA'03), 2003, pp.230-236.

[7] S. Helmer, C. Kanne and, G. Moerkotte, . “"Evaluating lock-based protocols for coorperation

cooperation on XML documents”.," ACM SIGMOD Record, vol. 33(1), 2004, pp.58- – 63.

[8] KuenK.-Fang F. Jea, ShihS.-Ying Y. Chen and ShengS.-H.Hsien Wang., “Concurrency

Control in XML Document Databases: XPath Locking Protocol,”. In: Proceedings of the 9th

Eunjung Lee

International Journal Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 135

International Conference on Parallel a6d and Distributed Systems (ICPADS 2002), 2002,
pp.551-556.

[9] V. Lanin and D. Shasha., “Tree locking on changing trees,”. Technical Report 503, New

York University, 1986.

[10] S.-Y. Lee and R.-L. Liou. “A multi-granularity locking model for concurrency control in

object-oriented database systems,”. IEEE Trans.Transactions onOn Knowledge and Data
Engineering, vol. 8(1), 1996, pp.144- -- 156.

[11] World wide web consortium, “XForms 1.0 Working draft,” http://www. w3. org/TR/xforms,

Jan. 2002, [Jan. 28. 2002].

[12] E. Harder, C. Mathis, S. Bachle, K. Schmidt and, A. Weiner., “Essential performance drivers

in native XML DBMSs,”. LNCS 5901, 2010, pp. 29-46.

[13] S. Bachle, T. Harder and, M. Haustein., “Implementing and optimizing fine-granular lock

management for XML document Trees,”. DASFAA’09, 2009, pp.631-635.

[14] M.Haustein, T.Harder, “Optimizing lock protocols for native XML processing,” Data &

Knowledge Engineering, vol.65(1), 2008, pp.147-173.

[15] H. Tan, X. Chen and, J. Gu, . “A transaction mechanism for native XML database,”.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science,
2006, pp. 486-490.

[16] P.Pleshachkov, P.Chardin, S.Kusenetzov, “SXDGL: Snapshot based concurrency protocol

for XML data,” XSym 2007, LNCS 4704, 2007, pp.122-136.

