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Abstract  

 
A novel clustering algorithm CSHARP is presented for the purpose of finding clusters of 
arbitrary shapes and arbitrary densities in high dimensional feature spaces. It can be 
considered as a variation of the Shared Nearest Neighbor algorithm (SNN), in which each 
sample data point votes for the points in its k-nearest neighborhood. Sets of points sharing a 
common mutual nearest neighbor are considered as dense regions/ blocks. These blocks are 
the seeds from which clusters may grow up. Therefore, CSHARP is not a point-to-point 
clustering algorithm. Rather, it is a block-to-block clustering technique. Much of its 
advantages come from these facts: Noise points and outliers correspond to blocks of small 
sizes, and homogeneous blocks highly overlap. The proposed technique is less likely to 
merge clusters of different densities or different homogeneity. The algorithm has been applied 
to a variety of low and high dimensional data sets with superior results over existing 
techniques such as DBScan, K-means, Chameleon, Mitosis and Spectral Clustering. The 
quality of its results as well as its time complexity, rank it at the front of these techniques.  
 
Keywords: Shared Nearest Neighbors, Mutual Neighbors, Spatial Data, High Dimensional 
Data, Time Series, Cluster Validation. 

   
1. INTRODUCTION 
The present paper is a modified version of [25]. The modification includes the incorporation of 
a new measure of cluster homogeneity (section 2.2) which has been used in defining a strict 
order for cluster’s propagation in the proposed algorithm (section 3). Also, new validation 
indexes; as well as new data sets; have been adopted for the purpose of comparing the 
proposed algorithm with the previous techniques (section 4).   
 
Clustering of data is an important step in data analysis. The main goal of clustering is to 
divide data objects into well separated groups so that objects lying in the same group are 
more similar to one another than to objects in other groups. 
  
Given a set  =  of data objects (sample points) to be clustered, where  is the 
i-th object.  is an -dimensional column vector.  consisting of  
measured attributes (  is the dimensionality of the feature space). The Jarvis-Patrick 
clustering technique [12], needs a measure of the distance between two objects and two 
integers:  and .  is the size of the neighborhood list, and  is the number of common 
neighbors. This method works as follows:  
Determine the -nearest neighbors for each object in the set to be clustered. Two objects are 
placed in the same cluster if they are contained in each other’s  nearest neighbors list:  
K-NBj and  K-NBi, where K-NBj and K-NBi denote the K-nearest neighbors of data points 

 and , respectively.                                                                                                    (1) 
They have at least  nearest neighbors in common: .                                  (2) 
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As stated in [15], the principle of K-NB consistency of a cluster states that for any data object 
in a cluster its K-Nearest Neighbors should also be in the same cluster. The principle of K-
Mutual Nearest-Neighbor consistency (K-MNB consistency) states that for any data object in 
a cluster its K-Mutual Nearest-Neighbors should also be in the same cluster. The principle of 
cluster K-MNB consistency is stronger than the cluster K-NB consistency concept, and it is 
also a more strict representation of the natural grouping in the definition of clustering. In the 
present work, the concept of K-MNB is used in developing a new clustering algorithm, 
CSHARP, (Clustering using SHAred Reference Points). CSHARP is a density based 
clustering algorithm in which dense regions are identified using mutual nearest neighborhood. 
Then, sets of points sharing a common mutual nearest neighbor are considered instead of 
points themselves in an agglomerative process.  
 
1.1 Proposed Technique 
Specifically, the technique proposed in this paper:  

• Determines; for every data point; the largest possible set of points satisfying condition 
(1) only (the cardinality of this set lies in the range . For a point , this set is 
called its Reference-List and is denoted RL . Point  is considered as the 
"Representative Point" (or "Reference Point") of this Reference-List. Such sets of 
points are the seeds from which clusters may grow up.  

• Avoids an early commitment to condition (2), and, instead, proceeds directly from 
point(s) to set(s) relation(s) (the Reference-Lists); instead of point(s) to point(s) 
relation(s) (as required by conditions (1) and (2), above). Therefore, data in CSHARP 
is processed as blocks of points not as individual points. Reference lists constitute a 
key concept in the proposed algorithm. To preserve K-MNB consistency, CSHARP 
processes data as blocks of tiny groups of Reference-Lists, on which clusters are 
built, agglomeratively.  

• Allows clusters to be linked if their Reference- Lists share a number of points . 
Thus, parameter  controls the extent to which mutual neighborhood consistency is 
satisfied. Allowing clusters to grow in a chain is similar; though not identical; to the 
reachability relation in DBScan algorithm [5]. Reference-Lists of size  (a selected 
threshold) are either considered as noise or may merge with other clusters as will be 
explained in section 2. 
  

Several experiments conducted on a variety of data sets show the efficiency of the proposed 
technique for the detection of clusters of different sizes, shapes and densities; whether in low 
or high dimensional feature spaces; in the presence of noise and outliers. Although the 
motivations behind the algorithm are quite heuristic, the experimental work showed the 
validity of the proposed approach.  
 
1.2 Overview of Related Algorithms 
Many clustering techniques have been developed based on different concepts. Several 
approaches utilize the concept of cluster center or centroid, other methods build clusters 
based on the density of the objects, and a lot of methods represent the data objects as 
vertices of graphs where edges represent the similarity between these objects. 
  
Centroid based algorithms represent each cluster by using the centre of gravity of its 
instances. The most well-known centroid algorithm is the K-means [11]. The K-means method 
partitions a data set into k subsets such that all points in a given subset are close to the same 
centre. K-means then computes the new centers by taking the mean of all data points 
belonging to each cluster. The operation is iterated until there is no change in the centers 
locations. The result strongly depends on the initial guess of centroids, besides, it does not 
perform well on data with outliers or with clusters of different sizes or non globular shapes. 
  
The key idea of density-based clustering is that for each instance of a cluster, a neighborhood 
of a given radius has to contain at least a minimum number of instances. One of the most well 
known density-based clustering algorithms is the DBScan [5]. In DBScan the density 
associated with an object is obtained by counting the number of objects in a region of a 
specified radius, , around the object. An object with density greater than or equal to a 
specified threshold, MinPts, is treated as a core (dense), otherwise it is considered as a non-
core (sparse) object. Non-core objects that do not have a core object within the specified 
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radius are discarded as noise. Clusters are formed around core objects by finding sets of 
density connected objects that are maximal with respect to density-reachability. While 
DBScan can find clusters of arbitrary sizes and shapes, it cannot handle data containing 
clusters of different densities, since it uses global density parameters, MinPts and , which 
specify only the lowest possible density of any cluster. 
  
Chameleon [13] and  [4] algorithms attempt to obtain clusters with variable sizes, shapes 
and densities based on K-nearest neighbor graphs. Chameleon finds the clusters in a data 
set by using a two-phase algorithm. In the first phase, it generates a K-nearest neighbor 
graph that contains links between a point and its K-nearest neighbors. Then it uses a graph 
partitioning algorithm to cluster the data items into a large number of relatively small sub-
clusters. During the second phase, it uses an agglomerative hierarchical clustering algorithm 
to find the genuine clusters by repeatedly combining together these sub-clusters. The Shared 
Nearest Neighbors clustering algorithm,  [4] uses K-nearest neighbor approach for 
density estimation. It constructs a K-nearest neighbor graph in which each data object 
corresponds to a node which is connected to the nodes corresponding to its K-nearest 
neighbors. From the K-nearest neighbor graph a shared nearest neighbor graph is 
constructed, in which edges exist only between data objects that have each other in their 
nearest neighbor lists. A weight is assigned to each edge based on the number and ordering 
of shared neighbors. Clusters are obtained by removing all edges from the shared nearest 
neighbor graph that have a weight below a certain threshold . 
  
A recent clustering algorithm, Mitosis [22], is proposed for finding clusters of arbitrary shapes 
and arbitrary densities in high dimensional data. Unlike previous algorithms, it uses a dynamic 
model that combines both local and global distance measures. The model is depicted in the 
proposed dynamic range neighborhood, and the proposed clustering criteria which use 
distance relatedness to merge patterns together. Mitosis uses two main parameters  and . 
Parameter , controlling the neighborhood size, is the main parameter which decides the 
lower bound on the number of clusters that can be obtained. The value of , should be varied 
in an incremental fashion so as not to deteriorate the speed of the algorithm. It can be 
selected just above the value of , and increased by small steps, to avoid unnecessary large 
neighborhood sizes. Parameter  controls the degree of merging patterns/clusters together, 
within the limits of the neighborhood decided by . Increasing values of , for the same  
value, means decreasing the number of clusters obtained, and vice versa. 
  
In recent years, spectral clustering [20] has become one of the most popular modern 
clustering techniques. It starts from a similarity matrix between data objects, modifies it to a 
sparse matrix, then computes its Laplacian matrix "L". The first k eigenvectors of L constitute 
the first k columns of a matrix . K-means algorithm is applied then on the row vectors of a 
normalized version of matrix  (where each original data object is assigned to the same 
cluster to which the corresponding row vector in  is assigned to). Spectral clustering is 
simple to implement and can be solved efficiently on standard linear algebra software. 
Additionally, it is more effective in finding clusters than some traditional algorithms such as K-
means. However, it suffers from a scalability problem discussed in [17]. It cannot successfully 
cluster data sets that contain structures at different scales of size and density. To overcome 
these limitations, a novel spectral clustering algorithm [2] is proposed for computing spectral 
clustering using a sparse similarity matrix. 

  
1.3 Outline of the Paper 
The rest of this paper is organized as follows. Section 2 describes our approach for the 
definition of similarity and density (or reference points structure), which is the key concept to 
our clustering algorithm. Section 3 describes the algorithm itself followed by a logical model of 
the data entities it manipulates, a graph-based interpretation of its effect and its time 
complexity analysis. An anatomy of the proposed algorithm with respect to related algorithms 
is discussed next. Section 4 presents the data sets used in the experiments conducted to 
evaluate the performance of the algorithm using well known cluster validation indexes. 
Section 5 presents a short conclusion and possible future work. 
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2. BASIC DEFINITIONS 
In this section we describe the basic concepts used in the proposed algorithm. 
  
2.1 Reference-List and Reference-Block 

As shown in Figure 1, although the Euclidean distance is a symmetric metric, from the  
perspective (and considering =4), point  is in 4-NBB, however, point  is not in 4-NBA. 
Given a set of points , let  =  be the ordered list of points 
according to their distances from a point , and let K-NB  be the K-
nearest neighbors of . This represents the list of points that point  refers to. If K-NB , 
then  is referred by . Let RB  denote the set of points having  in their K-Nearest 
Neighborhood. Then, K-NB  RB  represents a set of dense points called a Reference-
List, RL , associated with point .  is called the representative point of RL . Each 
representative point  with its Reference-List, RL  constitute a Reference-Block. Points in a 
Reference-Block are shown in Figure 2.  
 

 
FIGURE 1: Concept of mutual neighboring: is in 4-NBB, however,  is not in 4-NBA. 

 
 
 

 
FIGURE 2:  A Reference-List (points within circle), associated with a representative point “A” ). All 
together they constitute a Reference-block. 
 
 
There are three possible types of representative points:  

• Strong Points (or Reference Points), representing blocks of size greater than a pre-
defined threshold parameter .  

• Noise points, representing empty Reference-Lists. These points will be excluded 
initially from final clusters.  

• Weak points which are neither strong points nor noise points. These points may be 
merged with another existing clusters if they are members of another strong points.  

 



Mohamed A. Abbas & Amin A. Shoukry 

International Journal of Data Engineering (IJDE), Volume (3) : Issue (2) : 2012                                    32 

2.2 Homogeneity Factor 
A homogeneity measure is proposed here for the ordering of the cluster’s propagation 
process. While CSHARP[25] performs this process according to the cardinality of the 
reference lists (i.e their densities), the algorithm proposed here, considers both the density 
and homogeneity of the blocks that will be granted priority to propagate first.   
Given RL = {q1 , q2 , …qc}, a Reference List associated with point pi having cardinality 
 c = | RL | >  (i.e. corresponding to a strong reference point), its homogeneity factor αi is 
computed as: 
 

αi =  (3) 

 
Where is the average distance between pi and its associated reference list points qj, 
computed as: 

= ,  (4) 

 
and  is the maximum distance between pi and its associated reference list points qj, 

computed as:  
,  (5) 

Figure 3 shows three cases of strong reference lists with their corresponding homogeneity 
factors. Note that the odd case of a reference list with cardinality c=1 in which αi=1 is 
excluded, since it does not correspond to a strong reference list. In the experiments described 
in section four, T is always greater than 2. 
 
 

 

 
 

 
 
 
FIGURE 3:  Three reference lists with different homogeneity factors (a) 0.98, (b) 0.80 and (c) 0.55 
 
2.3 Cluster’s Propagation 
Given two clusters  such that ; where  is a chosen parameter, called merge-
parameter, then the two clusters can be merged together. Hence,  measures the minimum 
link strength required between two clusters. In CSHARP data is processed as blocks of points 
(reference-blocks) not as individual points. Two clusters are merged if they share a number of 
points equal to or greater than some threshold M; as explained in Figure 4.  
 

A b 

 
 

FIGURE 4:  Two steps of Cluster propagation with M = 2 (the merging parameter) for (a) Ck =  
such that  M and (b) Cu = Ck Cl such that  M. 
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To illustrate the process of clusters propagation, Chameleon’s data set DS5 is used. DS5 
consists of 8000 spatial data points. All genuine clusters were detected at the parameters 
setting( =24, =18, =6). The number of strong points obtained were 5122.  
 
Several snapshots of the clustering process are shown in Figure 5. Figure 5, also, illustrates 
how clusters propagate agglomeratively, and simultaneously, in CSHARP.  
 

a b c 

   
D e f 

   
g h i 

   
 
FIGURE 5:  Nine snapshots of Modified CSHARP cluster propagation for the data set Chameleon DS5 
at different iterations (a) 10, (b) 25, (c) 100, (d) 500, (e) 1000, (f) 2000, (g) 3000, (h) 4000 and (i) 5122. 
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3. MODIFIED CSHARP ALGORITHM 
Figure 6 describes the modified CSHARP algorithm. Next, a logical data model and a graph-
based interpretation of the algorithm are given. Finally, the time complexity of this algorithm is 
analyzed in section 3.2. 
 
  Input: Data points  ; 

       {size of the neighborhood of a point}; 
       {threshold parameter for the size of a reference list} and 
       {merge parameter for the size of the intersection between two reference blocks}. 

 Output:  set of generated clusters. 
1: Construct similarity matrix . 

 
{Construct the Refer-To-List, K-NB  for each point } 

2: K-NB  

  
{construct the Referred-By-List, RB  for each point . 

3:   
4:  K-NB   
5: for all  do  
6: If  K-NB  then 

7:  RB   
8: end if 
9: end for 

10: end for 

  
{From K-NB  and RB , Construct the reference Lists RL    

11: for all   do 

12: RL = K-NB RB . 

13: end for 

 14:  Form a sorted (in a descending order) list L. L =  is a representative point , based on 
the densities (i.e. RL ). Exclude the weak points from list L (those points for which 
|RL  ).  

15: Sort the new list  according to the homogeneity factors αi’s of the Reference-Lists RL . 

 {Building Clusters} 

16:  {Initialize i} 
17:  =  RL  
18: label point  as belonging to cluster . 
19: label each point in RL  as belonging to cluster . 
20: While   do  
21:  {increment i} 
22:  =  RL  
23: label point  as belonging to cluster . 
24: label each point in RL  as belonging to cluster . 
25: , {where -1}  then 
26:            
27: Update  labels, by marking each point in  as belonging to cluster  
28: end if 
29: end while 

FIGURE 6: CSHARP Clustering Algorithm 

Note that although a reference list associated with a weak point does not participate in 
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Cluster’s growing, a weak point may itself belong to a Reference list of another strong point. 
This implies that this weak point is not considered as noise. 
 
3.1 Logical Data Model and Graph-based Interpretation 
Figure 7 depicts the conceptual data model underlying the proposed algorithm. Two entities 
are shown; namely, the data sample and Reference-List associated with a data sample 
entities; as well as a one one-to-many" relation between them and one "many-to-many" 
relation associated with each of them.  
 

• The relation “Has as member in its K-NB list” is not symmetric.  
• The relation “Has as member” between a Reference List and its members is 

symmetric.  
• The relation “Overlaps”  is symmetric but not transitive.  
• The entity "Reference List Associated with a Data sample"; say , is obtained as the 

intersection of two sets: the set of points having  in their K-Nearest Neighborhood 
and the K-Nearest Neighborhood of  itself.  

 

 
 

FIGURE 7:  Conceptual data model. 
 

Consider the following weighted graph , where a vertex in this graph corresponds to a 
Reference-List and an edge corresponds to an Overlaps relation between two Reference 
Lists. The weight of an edge corresponds to the cardinality of the intersection set between two 
Reference lists. Now, the effect of the CSHARP algorithm can be viewed as follows: Edges 
with weights less than the threshold  are removed. This decomposes the graph into 
independent components. The remaining connected vertices (i.e. vertices connected by 
edges having weights greater than ) are combined, the union of the data samples belonging 
to their reference lists correspond to the obtained clusters.  
 
3.2 Time Complexity 
The time complexity for computing the similarity matrix is O(N2), where N is the number of 
data points. This can be reduced to O(N log N), by using a data structure such as a k-d tree 
[1] or an R-tree[6]. The space complexity for t computing distances between samples is 
O(NF) where N is the number of data points and F is the number of features (or dimensions).  
 
The time complexity of the algorithm can be analyzed as follows: 
• line 2, finding k-nearest neighbors(refer-to-list): k iterations through all N data points are 

needed, hence it has a complexity of O(NK) 
• lines 3-10, finding referred-by-list:  it has, also, a complexity of O(NK) 
• lines 11-13, finding reference-points: for each data point, its k-nearest neighbors are 

searched for mutual neighborhood. As a binary search is adopted; its complexity is of O(K 
log K), thus, the overall complexity of this step is O(NK log k). 

• Line 14, computing homogeneity factor procedure: has a complexity of ), as k 
iterations are needed for each of the N data points .  
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• line 15, sorting data sets procedure: sorting has a complexity of O(N log N), as binary sort 
is used. 

• lines 25-28, clusters overlapping procedure: detecting overlapping among clusters has a 
linear complexity of O(K),since we iterate through reference-blocks of processed points 
and detect  previously labeled points. 

• lines 20-29, clusters propagation procedure: this is the main procedure. It has a 
complexity of O(NK) , since we iterate through all N data points, running clusters 
overlapping procedure for each data point. Accordingly, the overall complexity is O(NK 
log N) . 

 
The overall time complexity for the modified CSHARP algorithm is O(N log N) where N is the 
number of data points and K is the number of nearest neighbors. Modified CSHARP has a 
space complexity of O(NK), where N is the number of data points and K is the number of 
nearest neighbors used 
 
3.3 Anatomy of CSHARP vs. Jarvis-Patrick and SNN Algorithms 

• In SNN, similarity between two points p and q is computed as the number of nearest 
neighbors they share. In contrast, CSHARP's similarity is computed as the number of 
reference points two blocks share. 

• In contrast to Jarvis-Patrick and SNN, CSHARP is a block-to-block rather than point-to-
point clustering. 

• Jarvis-Patrick and SNN work with k-nearest neighborhood which corresponds to a  non-
symmetric relationship between data points. On the other hand, CSHARP relies on a 
symmetric relation between any point and its reference list points. 

• Jarvis-Patrick and SNN use static k-nearest neighbor lists, while CSHARP starts with 
static  k-nearest neighbor lists then turns them into dynamic Reference Lists.  

• In Jarvis-Patrick and SNN, the association between points is one-to-one, while it is one-to 
many in CSHARP.  

• Both SNN and CSHARP propagate clusters simultaneously and agglomeratively, while  
Jarvis-Patrick builds a similarity graph then decomposes it by removing the weakest links. 

 
4. EXPERIMENTAL RESULTS 
 

4.1 Datasets Used 
4.1.1. 2-d Chameleon’s DS5 data set 
DS5 consists of 8,000 points. It is a mixture of clusters with different densities used by 
Chameleon algorithm to illustrate its efficiency in obtaining arbitrary density clusters. The aim 
is to classify the data into 8 clusters of different densities.  
 
4.1.2. Eight Low Dimensional Datasets 

• Iris data set: This is a well known database in the pattern recognition literature. The 
data set contains 3 classes of 50 instances each, where each class refers to a type of 
iris plant. One class is linearly separable from the others 2; the latter are NOT linearly 
separable from each other [16]. 

• The Synthetic Control Charts (SCC) data set; obtained from UCR repository [14]; it 
includes 600 patterns, each of 60 dimensions (time points).  

• The pen digit character recognition data from the UCI repository [16], consists of 
10992 patterns, each of 16 dimensions. Features (dimensions) are used to describe 
the bitmaps of the digit characters. The aim is to properly classify the digit characters 
to 10 classes from 0 to 9.  

• Libras movement data set: The dataset contains 15 classes of 24 instances each, 
where each class references to a hand movement type. It consists of 360 patterns, 
each of 91 dimensions.  

• The Breast Cancer Wisconsin Diagnostic data from the UCI repository, consists of 
569 patterns, each of 30 dimensions. The aim is to classify the data into two 
diagnosis (malignant or benign).  

• SPECT heart data set: The dataset describes diagnosing of cardiac Single Proton 
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Emission Computed Tomography (SPECT) images. It consists of 267 patterns, each 
of 22 dimensions. Each of the patients is classified into two categories: normal and 
abnormal 

• The Protein localization data; obtained from the UCI repository; is the Ecoli data set 
with 336 proteins of seven dimensions. The aim is to properly classify it to eight 
classes.  

• The Protein Localization Sites, obtained from the UCI repository, consists of 1484 
patterns, each of 8 dimensions. This database contains information about a set of 
Yeast cells. The task is to determine the localization site of each cell by partitioning it 
into 10 classes of varying distribution. 

 
4.1.3. Two High Dimensional Datasets 

• Corel image features data set: This dataset contains image features extracted from a 
Corel image collection. 2074 images of 144 dimensions were selected in this 
experiment according to criteria discussed in [2].  

• Arcene data set which consists of 200 patterns each of 10,000 features. The task is 
to distinguish cancer versus normal patterns from mass-spectrometric data. This is a 
two-class classification problem with continuous input variables. Arcene has been  
part of the NIPS 2003 feature selection challenge. 

  
4.2 Cluster Validation 
As described in [21], for a given data set, a clustering algorithm can always produce a 
partitioning whether or not a particular structure in the data really exists. Different clustering 
approaches usually yield different results. Even for the same algorithm, the selection of a 
parameter or the presentation order of the input patterns may affect the final results. 
Therefore, effective evaluation criteria are critically important to provide users with a degree of 
confidence in the obtained clustering results. These assessments should be objective and 
have no preferences to any algorithm. V-measure [24], Purity and Entropy [23] are used for 
the purpose for clustering validation. Noise is taken into consideration in the validation 
process. This reduces the indexes values than if a noise-free validation process is adopted. 
However, this presents a more accurate assessment. 
 
4.3 Results and Performance Evaluation 
To compare the results obtained by the Modified CSHARP with those obtained by other 
algorithms, the nine data sets presented above have been used.  
  
4.3.1. Chameleon’s DS5 Data Set. 
Five algorithms are compared: K-means, DBScan, SNN, Chameleon, and mitosis, in addition 
to Modified CSHARP.   
 
Due to the presence of different densities in the DS5 data set, DBScan either identifies the 
lower density cluster but merges the two neighboring higher density ones, or do not identify 
the lower density cluster, but identifies the higher density ones. DBScan at the parameters 
setting (  = 10 and MinPts = 3) can only identify six rather than eight clusters. Similarly, SNN 
merges two clusters together due to its static nature derived from DBScan. Both DBScan and 
SNN , (Figure 8b, and d) were unable to obtain a good clustering solution. Modified CSHARP 
obtained the genuine clusters at the parameters setting given in Table 1b for K in the range 
[23...25], Figure 8f. 
 
Mitosis has been able to obtain the genuine clusters at parameter settings (  = 2.15 and  = 
2.5) (Figure 8e). Mitosis results were obtained after discarding outliers. Clusters of sizes less 
than 1% of the data size are identified as outliers. While Mitosis uses a static model for 
discarding noise, CSHARP [25] focuses on the detection of chains of dense connected 
regions (defined by strong points) possibly including non-dense regions ; represented by 
weak points; as explained in section 2.1. Hence, in CSHARP any point not taken into 
consideration during cluster’s propagation is considered as noise. Table 2 gives the numbers 
and percentages of strong, weak and noise points found in all the investigated data sets. 
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TABLE 1:  Modified CSHARP’s range of parameters setting for DS5 data set. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
4.3.2. Eight Dimensional Data 

Five data sets have been used to compare the results obtained by Modified CSHARP to 
the ground truth as well as to the results obtained by DBScan, K-means, Mitosis and 
Spectral clustering (as a state-of- the art technique [2]) algorithms. Chameleon and SNN 
have not been included in these experiments, due to the difficulty of adjusting their 
parameters. The Euclidean distance has been adopted as a metric for all data sets. 
Numerous  experiments (100 experiments at least per algorithm per dataset) have been 
done on each algorithm to obtain its best indexes’ values. V-Measure, Purity, and Entropy 
have been used to evaluate all the above clustering algorithms. 
 

 TABLE 2: Number of strong, weak and noise points found in the tested data sets and their percentages  
;at given parameters settings; relative to the size of the corresponding data set. 

  M 

23 [3...5] 7 
23 19 [6,7] 
23 22 [6…9] 
24 [15…17] 7 
24 18 6 
24 22 [6...9] 
24 23 [4...9] 
25 [16…18] [7,8] 

25 22 [6...9] 

25 23 [5...9] 

Dataset size Strong 
Points 

Weak 
Points 

Noise 
Points 

Chameleon DS5 
(K=24, T=18 and M=6) 

8000 6399 
(79.98%) 

1601 
(20.02%) 

225 
(2.81%) 

Synthetic Control Charts 
 (K=14, T=7 and M=4)  

600 479 
(79.83%) 

121 
(20.17%) 

1 
(0.17%) 

Pen Digit Data 
(K=31, T=14 and M=9) 

10992 8732 
(79.44%) 

2260 
(20.56%) 

253 
(2.30%) 

Breast Cancer Diagnostic  
(K=41, T=22 and M=14) 

569 492 
(86.47%) 

77 
(13.53%) 

15 
(2.64%) 

Ecoli 
(K= 22, T=11 and M=8) 

336 240 
(71.43%) 

96 
 (28.57%) 

25 
(7.44%) 

Yeast 
(K= 44, T=25 and M=15) 

1484 848 
(57.14%) 

636 
(42.86%) 

134 
 (9.03%) 

Arcene 
(K= 11, T=3 and M=1) 

200 180 
(90.0%) 

20 
(10.0%) 

4 
(2.0%) 

SPECT Heart 
(K= 30, T=7 and M=4) 

267 
 

222 
(83.15%) 

45 
(16.85%) 

18 
(6.74%) 

Libras Movement 
(K= 10, T=7 and M=3) 

360 
 

173 
(48.06%) 

187 
(51.94%) 

46 
(12.78%) 

Iris 
(K= 24, T=8 and M=9) 

360 
 

138 
(92.00%) 

12 
(8.00%) 

0 
(0.00%) 

Corel 
(K= 43, T=21 and M=13) 

2074 
 

1230 
(59.31%) 

844 
(40.69%) 

120 
(5.78%) 
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 a b c 

   

d e f 

   

 
FIGURE 8: Results for the DS5 data set. Clusters are identified by a specific color, and a specific 

marker for: (a) K-means clusters; (b) DBScan clusters; (c) Chameleon clusters; (d) SNN clusters; (e) 
Mitosis clusters; and (f) Modified CSHARP clusters. 

 
• Iris data set: Modified CSHARP and spectral clustering performed better for this data set, 

reached the highest indexes for F-measure and Purity and lowest index for entropy as 
shown in Figure 10a.  The concept of relatedness fails with iris data set, since it consists 
of three classes, two of them are not linearly separable; thus, Due to the merging of  
these two clusters, Mitosis  obtained the lowest indexes  for this data set. Mitosis failed to 
detect the original three clusters and detected only two clusters. On the contrary, Modified 
CSHARP and Spectral clustering detected the three original clusters, Figure 11. 

• Time series data: For SCC, The original six clusters are shown in Figure 9. All algorithms 
(with the exception of  CSHARP) failed to discover the cluster labeled normal, due to its 
relatively low density. DBScan using the parameters setting (  = 50 and MinPts = 3) 
detected the cyclic cluster. However, it merged the Up-Shift, and the Up-Trend clusters 
together, as well as the Down-Shift and the Down-trend clusters. K-means, at  
merged patterns from different clusters together. The values of the V-Measure, Purity and 
Entropy are shown in Figure 10b. Due to the discovery of the Normal low dense cluster; 
at the parameters setting ( =11, =5 and =3);  CSHARP reached the maximum values 
for both V-measure and Purity indexes and the lowest for Entropy index, Figure 12. 
  

 

 
 

FIGURE 9: Time series clusters (mean ± standard deviation) of SCC data original classes. 
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• Pen Digits data set:  CSHARP gave good solution and gave a very high Purity and  low 
Entropy  relative to the other solutions as shown in Figure 10c. DBScan and K-means 
combined several characters in one cluster. For instance, K-means combined 5 with (8, 
9) and 1 with (2, 7), DBScan combined (1,2) and (5,9) and Mitosis combined 1 with (2, 7) 
and (5,9).  

• Disease diagnosis data set: For breast cancer diagnosis,  CSHARP obtained the 
maximum values for all the indexes at the parameters setting (K=50, T=8 and M=5). 
Figure 13a gives the corresponding validity indexes values.  

• SPECT heart and Libras Movement : Modified CSHARP performed better for all indexes 
as shown in Figures 13b and c respectively. 

• Ecoli and Yeast: The values of the indexes are given in Figures 13e and f, respectively 
showing the superiority of  CSHARP over all other algorithms.  

 
a 

 
b 

 
c 

 
FIGURE 10: V-Measure, Purity and Entropy for: (a) Iris data set, and (b) SCC time series, and (c) pen digit 

recognition data set. 
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a b c 

   
FIGURE 11: Plotting Iris data set using PCA for (a) reference solution, (b) Mitosis, and (c) Modified CSHARP 

and Spectral clustering. 
 

a b 

  
c d 

  
FIGURE 12: Plotting SCC time series data set using PCA for (a) reference solution, (b) Mitosis, (c) 

Spectral clustering, and (d)  Modified CSHARP. 
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a 

 
b 

 
c 

 
d 

 
e 

 
FIGURE 13: V-Measure, Purity and Entropy for: (a) Breast cancer Wisconsin diagnostic data set, (b) 
SPECT heart data set, and (c) Libras movement data set.(d) Ecoli data set, and (e) Yeast data set. 
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4.3.3. High Dimensional Data 
To investigate the performance of the Modified CSHARP when applied to high dimensional 
data sets, two data sets were used from the 2003 Nips Feature extraction challenge [7]. Both  
CSHARP and spectral clustering obtained competitive results as shown in Figures 14a and b 
for Corel and Arcene data sets, respectively, with  CSHARP performing slightly  better for all 
indexes. Spectral clustering algorithm implemented by [2] uses two parameters, "K" for the 
number of K-nearest neighbors; used to generate a sparse symmetric distance matrix and  
value used in similarity function S,  
 

where . 

 
In this section, the efficiency of Modified CHARP is recorded  when compared with well-
known clustering algorithms such as K-means, DBScan, Chameleon, Mitosis, and Spectral 
Clustering. V-measure, Purity, and Entropy are used showing the superiority of  CSHARP 
over the other tested algorithms for almost all  used data sets  . 
 
Modified CSHARP succeeded to overcome the limitations that the other algorithms suffer 
from. It can deal with classes of  different densities whereas DBScan cannot, deal with 
arbitrary shapes whereas K-means cannot, deal with arbitrary cluster’s sizes where spectral 
clustering cannot, and deal with interlaced (overlapped) clusters where Mitosis cannot. 
Moreover, it can scale easily whereas Chameleon cannot. Therefore, it can be said that the 
proposed technique is less likely to merge clusters of different densities or different 
homogeneities as indicated by the obtained results. Next,  the performance of Modified 
CSHARP relative to the other algorithms is investigated. 
 
4.4 Speed Performance 
The speed of Modified CSHARP has been compared to the speed of CSHARP, Chameleon 
and DBScan as shown in Figure. 15,  using the DS5 data set, after dividing it into data 
subsets, each of size 1000 patterns. The subsets are added incrementally, and the speed of 
the algorithm is recorded for each increment. The time considered is the time required for 
running the core clustering algorithms, excluding the time for obtaining the similarity matrix 

a 

 
b 

 
 

FIGURE 14: V-Measure, Purity and Entropy for: (a) Corel data set and (b) Arcene data set. 
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between the sample points. The time is measured in seconds. The average running times are 
computed for DBScan, K-means, and  Modified CSHARP for 10 runs, with standard deviation 
listed in Table 3. Chameleon was tested only once for each increment. K-means was iterated 
100 times for each experiment to provide better convergence. 
 
The adopted algorithms as well as the proposed Modified CSHARP algorithm have been 
executed on a machine with the following configuration: 3.00 GHz processor, 1.0 GB RAM, 
and running Linux operating system (Ubuntu 10.04 LTS). 
 

TABLE 3: Standard Deviation for 10 Runs on Modified CSHARP, DBScan, and K-means on 
Chameleon’s DS5. 

 

Data Size 1000 2000 3000 4000 5000 6000 7000 8000 

K-means 0.020 0.008 0.017 0.015 0.021 0.018 0.023 0.043 

DBScan  0.008 0.012 0.017 0.025 0.028 0.021 0.017 0.034 

Modified 

CSHARP 
0.013 0.013 0.014 0.016 0.016 0.019 0.025 0.037 

 

 

a 

 
b 

 
c 

 
FIGURE. 15: Speed of CSHARP and Modified CSHARP using Chameleon’s DS5 data set, compared to (a) 

DBScan and K-means (b) DBScan, Kmeans, and Chameleon (c) DBScan. 
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5. CONCLUSION 
In this paper, a modified version of the novel shared nearest neighbors clustering algorithm, 
CSHARP[25] has been presented. Density and homogeneity  are combined in a new 
homogeneity factor  used to order the merging of blocks of points . It can find clusters of 
varying shapes, sizes and densities; even in the presence of noise and outliers and in high 
dimensional spaces as well. It is based on the idea of letting each data point vote for its K-
nearest neighbors and adopting the points with the highest votes as clusters’ seeds. Two 
clusters can be merged if their link strength is sufficient. Any data point not belonging to a 
cluster is considered as noise. The results of our experimental study on several data sets are 
encouraging. A wide range of possible parameters settings yield satisfactory solutions using 
the validation indexes adopted in [8], [9] and [10]. Modified CSHARP solutions have been 
found, in general, superior to those obtained by DBScan, K-means and Mitosis and 
competitive with spectral clustering algorithm adopted in[2]. 
  
More work is needed to introduce a procedure for parameters selection. Also, we intend to 
investigate the behavior of our clustering approach on other types of data. Moreover, we 
intend to parallelize our algorithm as its clustering propagation is inherently parallel, as has 
been shown in section 2.2. Finally, we have made the algorithm publicly available to other 
researchers at http://www.csharpclustering.com. 
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