Fast Complex Gabor Wavelet Based Palmprint Authentication

Jyoti Malik
Electrical Department
National Institute of Technology
Kurukshetra, 136119, India

Ratna Dahiya
Electrical Department
National Institute of Technology
Kurukshetra, 136119, India

G Sainarayanan
Maples ESM Technologies
Chennai, India

Abstract

A biometric system is a pattern recognition system that recognizes a person on the basis of the physiological or behavioral characteristics that the person possesses. There is increasing interest of researchers in the development of fast and accurate personal recognition systems. In this paper, Sliding window method is used to make the system fast by reducing the matching time. The reduction in computation time indirectly reduces the overall comparison time that makes the system fast. Here, 2-D Complex Gabor Wavelet method is used to extract features from palmprint. The extracted features are stored in a feature vector and matched by hamming distance similarity measurement using sliding window approach. Reduction of 74.12% and 90.32% in comparison time is achieved using Sliding window methods. The improvement in time is indicated by experimental results that makes a system rapid.

Keywords: Palmprint Authentication, Complex Gabor Wavelet, Similarity Measurement, Sliding Window Method.

1. INTRODUCTION

Biometric identification of a person by his/her physiological or behavioral characteristics, like face, finger, palmprint, gait, signature, voice etc. has become increasingly popular in modern personal identification and verification systems [1-3]. In this paper, palmprint biometric is selected for personal authentication as it is unique and relatively low resolution images (less than 100 dpi) are sufficient to extract its unique features [4][5].

Palmprint features include line features, geometry features, point features, texture features and statistical features. In this paper, line features are extracted using Complex Gabor Wavelet Transform method. A complex Gabor wavelet is defined as the product of a Gaussian kernel times a complex sinusoid. The line features extracted by complex gabor wavelet [6-15] at various values of theta is stored in the feature vector. The feature vector is matched by Hamming Distance similarity measurement using sliding window approach.

In this paper, the palmprint authentication system is divided in following two subsystems:

a) Pre-Authentication System
b) Authentication System

In Pre-authentication system, a database of Gabor-Palmprint features is prepared. Reference threshold values are also identified and stored in database. These values will be later used by Authentication system.
In Authentication system, the authenticity of a person being genuine or imposter is identified with the help of Reference threshold values stored in Pre-authentication system database.

In Palmprint-based personal recognition system matching time plays very important role in making the real time authentication system. In this paper, we have proposed fast palmprint authentication system. The reduction in matching time is done using Sliding window methods and explained later in section 4.

In the following sections, Section 2 defines palmprint feature extraction by our proposed Complex gabor wavelet method. Section 3 explains the feature matching method by hamming distance using sliding window method. Section 4 explains Sliding window method (SWM), SWM1, SWM2 and Section 5 defines the reference threshold calculation. Section 6 discusses the experimental setup with the results. Section 7 concludes the conclusion.

2. FEATURE EXTRACTION

The desired line features are extracted from the palmprint using Complex Gabor wavelet method which extracts line features from the input palm-print image. The Gabor wavelet is basically a Gaussian (with variances \(sx \) and \(sy \) along \(x \) and \(y \)-axes respectively) modulated by a complex sinusoid (with centre frequencies \(U \) and \(V \) along \(x \) and \(y \)-axes respectively) described by the following equation:

\[
G_i(x, y) = \frac{1}{2 \pi sx sy} \exp \left[-\frac{1}{2} \left(\frac{x}{sx} \right)^2 + \left(\frac{y}{sy} \right)^2 \right] \ast M_i(x, y, f) \tag{1}
\]

\(i = 1, 2 \)
The feature vector contains 7 elements at corresponding to each orientation. The Feature vector matrix is given by (2)

\[
CGWF = \begin{bmatrix}
 CGWF_0,CGWF_1,CGWF_2,CGWF_3,CGWF_4,CGWF_5,CGWF_6
\end{bmatrix}
\] (2)

3. FEATURE MATCHING BY HAMMING DISTANCE AND SLIDING WINDOW METHOD

The complex gabor wavelet line feature vectors (line information) are matched by Hamming distance similarity measurement method but firstly the line information (complex gabor wavelet features) extracted is binarized by the following equation (3):

\[
CGWF_n(i, j) = \begin{cases}
1, & CGWF_n(i, j) > 0 \\
0, & CGWF_n(i, j) \leq 0
\end{cases}
\] (3)

where, \(CGWF_n(i, j)\) = complex gabor wavelet features corresponding to \(n^{th}\) orientation, \(n = 0,1,2,\ldots,6\), \(i\) and \(j\) are the rows and columns of the complex gabor wavelet features.

Hamming Distance calculates the difference between two binary feature vectors using EX-OR operation and can be defined as in (4):

\[
HD_n = \sum_i \sum_j (FV(i,j) \oplus FV_{DB}(i,j))
\] (4)

where, \(HD_n\) denotes the Hamming distance at orientation \(n\), \(n = 0,1,2,\ldots,6\), \(i\) and \(j\) is the row and column of the complex gabor wavelet feature vector, \(\oplus\) is the exclusive OR operation, \(FV\) denotes the feature vector of the person to be matched, \(FV_{DB}\) denotes the feature vector in database. Here, \(FV\) is same as \(CGWF\).

FIGURE 3: Feature extraction by Complex Gabor Wavelet

FIGURE 4: Complex Gabor wavelet features images
The hamming distance value is calculated by using sliding window method. In sliding window method, the ROI is reduced by the window size (WS) and the window of \(((60-WS)\times(60-WS))\) slides over the rows and columns out of 60×60 pixels considered for Hamming distance matching. The minimum value of the hamming distance values is considered. Fig. 5 shows the sliding window approach.

The modified Hamming distance value at \(n\) orientation with window size \(WS\) is defined in (5) as:

\[
HD_{WSn} = \sum_{i}^{60-WS} \sum_{j}^{60-WS} (FV(i, j) \oplus FV_{DB}(i, j))
\]

(5)

where, \(HD_{WSn}\) denotes the Hamming distance with window size \(WS\) and at an orientation \(n\), \(n = 0,1,2,\ldots,6\), \(i\) and \(j\) is the row and column of the Complex gabor wavelet feature vector, \(\oplus\) is the exclusive OR operation, \(FV\) denotes the feature vector of the person to be matched, \(FV_{DB}\) denotes the feature vector in database. The minimum value out of 16 (For window size \(WS=4\), \(4\times4 = 16\)) values of Hamming distances is chosen as Hamming distance as calculated in (6).

\[
HD_n = \min\{HD_{1-n}, HD_{2-n}, HD_{3-n}, \ldots, HD_{16-n}\}
\]

(6)

The various steps in sliding window method are shown in figure 6.
The average of all Hamming distances for \(n \) orientations is calculated as shown in (7).

\[
AHD = \frac{\sum_{n=0,1,2,...,6} HD_n}{n}
\]

where, \(HD_n \) denotes the hamming distance for \(n^{th} \) orientation, \(AHD \) denotes the average value of hammimg distance. The average value will help in finding the reference threshold value.

If, the Hamming distance value of two feature vectors is less than reference threshold value, feature vectors are considered to be from same hands otherwise different hands.

4. COMPARISON TIME IMPROVEMENT USING FAST SLIDING WINDOW METHOD

The sliding window method is the basic approach of feature matching and an accurate method but slow because of window size. The window size is chosen in such a manner to avoid alignment problem in the palmprint images. Here, two sliding window approaches are proposed. Sliding window method 1 and Sliding window method 2 is about using palmprint segment in such a manner so that the matching operation time is reduced. In this paper, complexity of the algorithm of SWM is reduced in SWM1 and SWM2.

4.1 Sliding Window Method

SWM is the basic technique used for matching two feature vectors. In feature matching, full image is matched with the image stored in the database. If the image is not aligned properly then the concept of window size comes into picture. According to (5), the number of calculations increases by a factor of \((WS)^2\). The complexity calculation algorithm of SWM is explained below.

\[
Complexity_{SWM} = M \times N \times (WS)^2 \times O \times T_i
\]

FIGURE 6: Various steps in sliding window method
where, \(M = (\text{No.ofRows} - WS) = (60 - WS), N = (\text{No.ofColumns} - WS) = (60 - WS) \)

\(WS = \text{WindowSise} = \text{It}04, O = \text{No.ofOrientations} = 7, T_i = \text{EX - ORTime} \)

According to (5), if \(WS = 4 \) and time taken for each EX-OR operation is \(T_i \), then total time taken for hamming distance calculation is given by:

\[
(FV (i, j) \oplus FV_{db} (i, j)) = T_i \text{ time}
\]

(9)

Complexity or total sliding window time \((T_{SWM}) \) taken for 6 orientations will be given by (10):

\[
T_{SWM} = (60 - 4) \times (60 - 4) \times (4 \times 4) \times 7 \times T_i = 56 \times 56 \times 16 \times 7 \times T_i = 351232T_i
\]

(10)

where, \(T_{SWM} \) specifies time taken to compare feature vectors of two palmprints.

If we consider 100 palmprints the total matching time will be given by:

\[
((351232T_i \times 100) = 35123200T_i)
\]

It is observed that the number of operations is large in number in sliding window method and will take lot of time. Comparison time need to be reduced by improving sliding window method.

4.2 Sliding Window Method 1 (SWM1)

In this method, a part of the actual palmprint area is considered and it is named as palmprint segment. The chosen palmprint area can be any of the palmprint segment mentioned in the Fig. 7.

![Palmprint Segments](image)

FIGURE 7: The segmented palmprint.

The complexity calculation algorithm of SWM1 is explained below.

\[
\text{Complexity}_{\text{SWM1}} = \left(M_1 \times N \times (WS)^2 \times T_i + M \times N \times T_i \right) \times O
\]

(11)

where, \(M_1 = \left(\frac{\text{No.ofRows}}{4} - WS \right) = \left(\frac{60}{4} - WS \right) = (15 - WS) \),

\[
M = (\text{No.ofRows} - WS) = (60 - WS), N = (\text{No.ofColumns} - WS) = (60 - WS)
\]

\(WS = \text{WindowSise} = \text{It}04, O = \text{No.ofOrientations} = 7, T_i = \text{EX - ORTime} \)

In (6) minimum hamming distance value using sliding window method is calculated. In SWM1 method, hamming distance value for \(o \) orientations is found out using sliding window method as shown in (5). The (6) signifies minimum hamming distance in sliding window as the closest matching between two palmprints.

\[
\text{min}_\text{index}_{\text{HD}_{WS}} = \text{index}(\text{min}(\text{HD}_{WS}))
\]

(12)

Total time for 6 orientations and window size 4 will be given by (11):

\[
T_{\text{SWM1}} = (((11 \times 56 \times 16 \times T_i + 56 \times 56 T_i) \times 7) = 90944T_i)
\]

If we consider 100 palmprints the total matching time will be \((90944T_i \times 100) = 9094400T_i\).

The reduction in matching time is given by (13).

\[
\left(\frac{351232T_i - 90944T_i}{351232T_i}\right) \times 100 = 74.11\%
\]

(13)
There is 74.11% reduction in matching time using SWM1 than SWM. The reduced matching time signifies fast authentication system.

The sliding window method on the chosen palmprint area can be shown diagrammatically as in Fig. 8.

FIGURE 8: Various steps in improved Sliding window method

As we can see from the above diagrams that the area of palmprint segment in sliding window method has reduced considerably and it leads to reduction in matching time.

4.3 Sliding Window Method 2 (SWM2)

In this method, the minimum hamming distance value is not calculated for all the orientations using sliding window method. The index of minimum hamming distance value is calculated for one orientation and same index value will be used to calculate hamming distance for other orientations. The complexity calculation algorithm of SWM2 is explained below.

\[
\text{Complexity}_{SWM} = \left(\left(M_1 \times N \times (WS)^2 \times M \times N \right) + (M \times N) \times (O-1) \right) \times T_1
\]

(14)
where, \(M_1 = \left(\frac{No.of\text{Rows}}{4} - WS \right) = \left(\frac{60}{4} - WS \right) = (15 - WS), \)

\[M = (No.of\text{Rows} - WS) = (60 - WS), \]

\[N = (No.of\text{Columns} - WS) = (60 - WS) \]

\(WS = \text{WindowSize} = 15\times4, \quad O = \text{No.of Orientations} = 7, \quad T_i = \text{EX} - \text{ORTime} \)

The total time taken given by (14) for window size 4,

\[T_{SWM2} = \left((16\times11\times56\timesT_i) + (56\times56\timesT_i) + (56\times56T_i) \times 6 \right) = 31808T_i. \]

If we consider 100 palmprints the total matching time will be \(31808T_i \times 100 = 3180800T_i\).

\[\frac{(351232T_i - 31808T_i)}{351232T_i} \times 100 = 90.94\% \quad (15) \]

There is 90.94% reduction in matching time using SWM2 than SWM. The reduced matching time signifies fast authentication system.

All the sliding window methods are summarized in table 1.

<table>
<thead>
<tr>
<th>Method used</th>
<th>Number of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SWM: Hamming distance calculation with sliding window method with window size (WS). (HD_{WS} = \sum_i \sum_j (FV(i, j) \oplus FV_{DB}(i, j)))</td>
<td>(56\times56\times16\times7 = 351232) Operations</td>
</tr>
<tr>
<td>The assumption here is that the minimum hamming distance values for other orientations will also be at the same index as it is for one orientation.</td>
<td>Theoretical time improvement (\frac{(351232T_i - 90944T_i)}{351232T_i} \times 100 = 74.11%)</td>
</tr>
<tr>
<td>2. SWM1: Hamming distance calculation with sliding window method (15\times60) with window size 4. (HD = \sum_i \sum_j (FV(i, j) \oplus FV_{DB}(i, j)))</td>
<td>((11\times56\times16 + 56\times56) \times 7 = 90944) Operations</td>
</tr>
<tr>
<td>The assumption here is that the minimum hamming distance values for other orientations will also be at the same index as it is for one orientation.</td>
<td>The total number of comparisons takes place for seven orientations is 90944 Operations.</td>
</tr>
<tr>
<td>3. SWM2: Hamming distance calculation with sliding window method (15\times60) with window size (WS). (HD = \sum_i \sum_j (FV(i, j) \oplus FV_{DB}(i, j)))</td>
<td>((11\times56\times16 + 56\times56 + 56\times56) \times 6 = 31808) Operations</td>
</tr>
<tr>
<td>The assumption here is that the minimum hamming distance values for other orientations will also be at the same index as it is for one orientation. (11\times56\times16) applies to sliding window method comparisons for window size 4, so</td>
<td></td>
</tr>
</tbody>
</table>
(4×4 = 16) comparisons. (56×56) signifies the comparison of palmprint and finding the minimum index value. The sum of (11×56×16) and (56×56) gives the number of operations for one orientation. The number of comparisons for another 6 orientation is at the minimum index value as assumed for this method. So, additional (56×56)×6 comparisons will be added. The total number of comparisons is 31808.

Assumption: If time taken to do each matching operation is T_1.

Theoretical time improvement $\left(\frac{351232T_1 - 31808T_1}{351232T_1}\right) \times 100 = 90.94\%$

TABLE 1: Reduction in matching operations using various Sliding window method

The number of operations, matching operation time with respect to sliding window size is tabulated in table 2.

<table>
<thead>
<tr>
<th>Sliding Window Size</th>
<th>Number of Operations</th>
<th>Matching operation Time</th>
<th>Percentage reduction in Matching time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWM</td>
<td>SWM1</td>
<td>SWM2</td>
</tr>
<tr>
<td>1</td>
<td>24367</td>
<td>24367</td>
<td>24367</td>
</tr>
<tr>
<td>2</td>
<td>94192</td>
<td>44660</td>
<td>26564</td>
</tr>
<tr>
<td>3</td>
<td>204687</td>
<td>65835</td>
<td>28899</td>
</tr>
<tr>
<td>4</td>
<td>351232</td>
<td>90944</td>
<td>31808</td>
</tr>
</tbody>
</table>

TABLE 2: Percentage reduction in matching operation time

From table 2 it is concluded that there is maximum of 74.12% and 90.32% practical reduction in matching operation time. So it can be concluded from table 1 and table 2 results that with two different sliding window methods, the authentication system becomes very fast. Figure 9 shows that with SWM1 and SWM2 the comparison time reduces significantly.
5. REFERENCE THRESHOLD

The hand image samples are divided into two groups G1 and G2.

\[P_1 = [I_1, I_2, \ldots, I_{(M-1)}], \quad P_2 = [I_1, I_2, \ldots, I_{(M-1)}], \quad \ldots, \quad P_N = [I_1, I_2, \ldots, I_{(M-1)}] \]

(16)

G1 group

\[P_1 = [I_1], \quad P_2 = [I_1], \quad \ldots, \quad P_N = [I_1] \]

(17)

G2 group

where \(P_i \) denotes \(i \)th person in group \(G_1, G_2 \). \(I_j \) denotes the \(j \)th palm image in group \(G_1, G_2 \).

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>M-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>HD_{12}</td>
<td>HD_{13}</td>
<td>\ldots</td>
</tr>
<tr>
<td>2</td>
<td>HD_{21}</td>
<td>X</td>
<td>HD_{23}</td>
<td>\ldots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>M-1</td>
<td>HD_{(M-1)1}</td>
<td>HD_{(M-1)2}</td>
<td>HD_{(M-1)3}</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I \cdot J</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA_1</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>TA_N</td>
</tr>
</tbody>
</table>

Table 3: Matching in group G₁ among person P₁.

In group G1, each hand feature vector in \(P_i \) is matched with all other (m-1) hands feature vector by Hamming Distance similarity measurement method. The matching values are approaching “0” and are stored in threshold array.

\[TA_i = [HD_{12}, HD_{13}, \ldots, HD_{(M-1)}, HD_{21}, HD_{23}, \ldots, HD_{2(M-1)}, \ldots, HD_{(M-1)1}, HD_{(M-1)2}, \ldots, HD_{(M-1)(M-2)}] \]

(18)

Similarly, all N hand image samples matching results are stored in Threshold array (TA).

\[T_A = TA_1 + TA_2 + \ldots + TA_N \]

(19)

The minimum and maximum of matching values are found out from the threshold array (\(TA_1, TA_2, \ldots, TA_N \)) for each individual as shown in equation (20).
The accuracy of the system is identified by matching group G₂ samples with group G₁ samples using threshold values stored in threshold array. Finally, a threshold value is chosen where FAR and FRR is minimum, this value is called Reference threshold.

6. EXPERIMENTAL RESULTS

The effectiveness of the proposed Complex Gabor Wavelet method for feature extraction technique was assessed on the PolyU database [16]. The database consists of 600 palmprint images from 100 palms with 6 samples for each palm.

6.1 Palmprint Authentication System

For the verification experiments the database has to be partitioned into two non-overlapping groups. The first group (G₁) represents the training group, consisting of 100 persons with each person having 5 palm sample images whereas the second group (G₂) represents the testing group containing 100 persons with each person having one palm image different from the first group images. The image size is 284×384 pixels.

G₁ group

\[P_1 = [I_1, I_2, I_3, I_4, I_5], \quad P_2 = [I_1, I_2, I_3, I_4, I_5], \ldots \quad P_{100} = [I_1, I_2, I_3, I_4, I_5] \]

In G₁ group each hand \(P_i \) contains 5 sample image \(I_{1-5} \).

G₂ group

\[P_1 = [I_6], \quad P_2 = [I_6], \ldots \quad P_{100} = [I_6] \]

In G₂ group each hand \(P_i \) contains only sample image \(I_6 \).

Image is pre-processed to get the region of interest. Pre-processing includes image enhancement, image binarization, boundary extraction, cropping of palmprint/ROI. The ROI size is 60×60 pixels. Feature extraction is done by Complex Gabor Wavelet Transform to get the imaginary wavelet coefficients. The Complex Gabor coefficients are calculated at seven different orientations respectively. The feature vector contains features extracted by Complex Gabor wavelet at different orientations. Feature vector of all hand images samples is calculated and stored in database. Feature vector matrix is \(CGWF = [CGWF_0, CGWF_1, CGWF_2, CGWF_3, CGWF_4, CGWF_5, CGWF_6] \). Sample of ROI is shown in Fig.10.

Hamming distance is used as a similarity measurement method for feature matching.

6.2 Reference Threshold Calculation

In group G₁, each hand feature vector in \(P_i \) is matched with all other 4 hands feature vector by Hamming Distance similarity measurement method. Similarly, all 100 hand image samples 2000 matching values are stored in Threshold array (TA).
The maximum and minimum values are found out from threshold array. These 25 threshold values are tested with group G₂ and group G₁ images. The 25 threshold values, the respective FAR and FRR values and accuracy at frequency sixteen and theta zero are shown in table 4.

<table>
<thead>
<tr>
<th>Reference Threshold</th>
<th>FAR</th>
<th>FRR</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.46E-01</td>
<td>1.23E-01</td>
<td>6.69E-03</td>
<td>9.35E+01</td>
</tr>
<tr>
<td>5.52E-01</td>
<td>1.27E-01</td>
<td>4.91E-03</td>
<td>9.34E+01</td>
</tr>
<tr>
<td>5.58E-01</td>
<td>1.16E-01</td>
<td>2.67E-03</td>
<td>9.40E+01</td>
</tr>
<tr>
<td>5.65E-01</td>
<td>9.25E-02</td>
<td>1.33E-03</td>
<td>9.53E+01</td>
</tr>
<tr>
<td>5.71E-01</td>
<td>6.95E-02</td>
<td>6.94E-03</td>
<td>9.62E+01</td>
</tr>
<tr>
<td>5.77E-01</td>
<td>4.92E-02</td>
<td>3.74E-04</td>
<td>9.75E+01</td>
</tr>
<tr>
<td>5.84E-01</td>
<td>3.59E-02</td>
<td>2.75E-04</td>
<td>9.82E+01</td>
</tr>
<tr>
<td>5.90E-01</td>
<td>2.71E-02</td>
<td>3.13E-04</td>
<td>9.86E+01</td>
</tr>
<tr>
<td>5.96E-01</td>
<td>2.16E-02</td>
<td>1.85E-04</td>
<td>9.89E+01</td>
</tr>
</tbody>
</table>

TABLE 4: Threshold Values, FAR, FRR, Accuracy Values for SWM.

<table>
<thead>
<tr>
<th>Method</th>
<th>FAR</th>
<th>FRR</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWM</td>
<td>6.95E-02</td>
<td>6.94E-03</td>
<td>9.62E+01</td>
</tr>
<tr>
<td>SWM1</td>
<td>6.94E-02</td>
<td>7.13E-03</td>
<td>9.62E+01</td>
</tr>
<tr>
<td>SWM2</td>
<td>7.07E-02</td>
<td>6.93E-03</td>
<td>9.61E+01</td>
</tr>
</tbody>
</table>

TABLE 5: FAR, FRR, Accuracy values for sliding window size 2

From the table 5 it can be concluded that by using SWM1 and SWM2 techniques the accuracy of the system is not affected.

The FAR and FRR are values are plotted with respect to 25 threshold range values. From the graph the value of reference threshold is chosen where FAR and FRR are minimum. Plot of FAR and FRR is shown in figure 11. The plot between accuracy and threshold is shown in figure 11.
FIGURE 11: FAR Vs FRR

Accuracy values with respect to threshold values are plotted in Fig. 12.

FIGURE 12: Accuracy Vs Threshold

6.3 Speed Performance
Table 1 shows the reduction in comparison time by sliding window method 1 (SWM1) and sliding window method 2 (SWM2). It can be observed that with palmprint segments, the comparison time reduces and speed to verify the person is improved.
7. CONCLUSION
The Complex Gabor Wavelet transform is applied to each palmprint image in the database to get imaginary wavelet coefficients. The features are computed at different orientations. The feature vector generated from complex gabor features are matched by hamming distance using sliding window method. Modified sliding window methods SWM1 and SWM2 are also used to make the matching system fast. Experimental results clearly show that our proposed Complex Gabor Wavelet method can discriminate palmprints and is fast authentication system.

8. REFERENCES
[14] Say Song Goh, Amos Ron, Zuowei Shen “Gabor and Wavelet Frames”.