
Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 580

A Research on Guided Thinning Algorithm and Its
Implementation by Using C#

Jia Liang Sanctifier.jia@yahoo.com.cn
School of Information Science & Engineering
Chang Zhou University
Chang Zhou, 213164, China

Abstract

After the advent of C# in year 2000, it’s gradually and widely applied in commercial software
developments on various Microsoft platforms. To seamlessly merge image processing algorithms
with the technical trend, one efficient means is implementing algorithms directly by using C#.
Since there hasn’t any way to perform pixel-level operations in the development environment
named Visual Studio which integrates C#, a class encapsulating image processing algorithms is
developed, and guided thinning algorithm is implemented as a method of the class. The
amelioration of the algorithm is made through employing extension methods, manipulating
pointers and modifying the condition of executing thinning. Under these conditions, the
skeletonization is smoothly implemented and the resulting data is visualized as a skeletonized
binary image.

Keywords: Skeletonization, Guided Thinning Algorithm, C#.

1. INTRODUCTION

The skeletonization of binary image is an efficient means assisting image processing algorithms
in various applications such as the object detection. In the intermediate-level vision, Hough
transformation is one main means to detect objects. For the real-time detections, the performance
of a certain Hough transformation-based algorithm is mainly determined by the amount of input
data[1][2], i.e., the number of edge pixels, and skeletonization shrinks the detected edges to unit-
width edges. This minimizes the amount of input data[1].

Usually, the skeletonization employs the morphological methods which are drastically subject to
the size of structure element(also called mask)[3], thus the results may not well retain the general
shapes of objects. An alternative solution has been provided by Davies[1]. The distance function
is introduced to guide the thinning algorithm which generates unit-width homotopic skeletons[2],
but there are isolated points scattering throughout the resulting image when the input image is
taken from the real world. Such points provide poor information about the general shape and
even add some difficulty to the following analysis. Therefore, the isolated points should be
removed and this is achieved by introducing an additional condition of thinning in the algorithm.

To merge with the technical trend, the algorithm is implemented on Windows platforms by using
IDE(Integrated Development Environment) named VS2008(Visual Studio 2008). Among all
programming languages supported by VS2008, C# is chosen as the actual programming
language on account of its powerful features provided directly by Windows producer Microsoft.

During the implementation, several problems arises one after another. Some difficult problems
are how to implement logical operations of numbers belonging to the value type Double and how
to save computations in subroutines of the thinning algorithm. The former is solved by employing
extension methods which are features of C# and the latter is handled by interchanging pointers of
image matrices. These may be the best solutions in this particular situation. Finally, all routines
are integrated into the class ImageProcessing.

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 581

With the help of class ImageProcessing, an application software is successfully developed and
the data of skeletonized binary image is obtained and visualized.

2. METHODS
The guided thinning algorithm mainly consists of two parts. The first is finding the set of local
maxima of distance and the second is thinning objects based on the set. Finding local maxima
involves manipulation of the distance function, and thinning is actually composed by stripping
points in four directions in the image space and finally removing spurs generated by the stripping.

The whole procedure is shown in the following activity diagram of Unified Modeling
Language(UML)[4][5].

FIGURE 1: The activity diagram of skeletonization..

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 582

2.1 Finding Local Maxima
The concept of distance function is quite simple, it just requires every pixel is labeled by an
integer representing the distance from the background. This can be summarized as following[2]:

})(innot,{min)(dist, nBXpNnpXp •∈=∈∀ (2.1)

For each pixel p in the object X, its distance is given by dist(p). Operator• , notations B and N
respectively denote the erosion operation, the object and an integer which represents the
maximal number of the erosion operations shrinking B to single points. Therefore, dist(p) assigns
the integer i to p when p is removed by the ith erosion.

The distance is measured by using two raster scans, the forward and reverse scans. For making
the explanation more comprehensible, every pixel in a 3-by-3 mask is denoted by one of
notations A0, A1, … , A8 as following:

876

105

234

AAA

AAA

AAA

 (2.2)

For the forward scan, the mask regularly moves from left to right and top to bottom in an image
and stops when the central notation A0 is of non-zero value to find the minimum of A2, A3, A4
and A5, then changes the value of central pixel to the sum of the minimum and 1 and move to
next pixel. The scan is sequential which implies the current value-modified pixel is involved in the
sequential value modification of the adjacent pixel next to the current one. Hence, there is only
one image space for simultaneously reading data to process and storing the resultant data, unlike
the usual parallel algorithm which requires two independent congruent image spaces to separate
the two procedures for keeping the input data unchanged during processing. After the scan,
because the procedure just checks A2, A3, A4 and A5, the integers as distance markers increase
gradually from left to right and up to down in the inner area of an object.

If the left image of the following figure is the input binary image, then the right image is the
visualized processed data.

FIGURE 2: Thinning process 1.

Obviously, pixels in the lower right area of the object are labeled by wrong integers. This can be
fixed by applying a reverse scan to it. Reverse raster scan works exactly as the forward scan
except it moves the mask from right to left and bottom to top, i.e., in an inverse direction with
respect to the forward scan. The result is visualized as the left part of the following figure:

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 583

FIGURE 3: Thinning process 2.

After the distances of every pixel are measured by these two scans, finding local maxima can
eventually be performed by using a parallel subroutine. It checks the neighborhood of the central
pixel in a 3-by-3 mask in one image space, finds the maximum and compares it with the value of
the center. If the value is larger than the maximum, then the value is recorded at the
corresponding coordinate of a separate congruent space, otherwise 0 is recorded. This generates
a result shown in the right part of fig.3.

The general procedure of two raster scans and finding maxima can be summarized as the
following pseudo code:

0;else;

),,,,,,,max(&&0if(:maxlocate

1;),,,min(0)if(:scanreverse

1;),,,min(0)if(:scanforward

==

>>

+=>

+=>

B0A0B0

A8A7A6A5A4A3A2A1A0A0

A1A8A7A6A0A0

A5A4A3A2A0A0

 (2.3)

Note the direction of moving mask in curly brackets of reverse scan is the inverse direction of
forward scan and locate max, and the raster scans are sequential and locate max is parallel.

2.2 Guided Thinning

2.2.1. Crossing Number
Once the maxima are found and recorded, it’s possible to design and implement guided thinning
algorithm. The size of the mask is assumed to be 3-by-3 as (2.2) in finding maxima. In such a
small mask, the crossing number χ (chi)[1] is employed to judge connectedness of A0.

The χ is obtained by summing the times of value changing during the travel which starts from an
arbitrary pixel in the neighborhood of A0 clockwise or anticlockwise and ends when the same
pixel is visited again. Under this definition, the integer χ can’t be odd. To correctly compute χ,
three logical operators are necessary, i.e., &&(AND) operator, !=(NOT EQUAL) operator and
!(NOT) operator, and the connectedness criterion must be 8-connectedness.

Firstly, the value changing is checked along four diagonal directions, namely, A1 to A3, A3 to A5,
A5 to A7 and A7 to A1. For each diagonal, if two values of Ai’s are different, χ is then added by 1
to denote one time of value changing.

Secondly, four corners are checked, e.g., A3, A4 and A5 form the upper left corner. For each
corner, if the case is that the corner pixel is 1 and the other two are 0, then χ is added by 2. This
case can’t be detected by checking diagonals. These two checks complement each other and
there’s no intersection between them. In pseudo code, this can be expressed as:

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 584

)}.1!&&8&&7(!)7!&&6&&5(!

)5&&4&&3(!)3!&&2&&1{(!*2

)1!7()7!5()5!3()3!1(

AAAAAA

AAAAAA

AAAAAAAAchi

+

++

+=+=+=+==

 (2.4)

Clearly, the larger the χ is, the more intense the connectedness of the central pixel is. The
marginal value of χ separates the cases the central pixel is removed or preserved is 2 inasmuch
as such pixels are located on the edge of an object and appropriate to be removed. There are two
cases causing ambiguity when χ equals 2, they are exemplified and shown in the following figure.

100

010

000

110

110

000

 (2.5)

The left matrix of (2.5) represents an end point of an unit-width line which possibly denotes a part
of the final skeleton, so the central point in this case can’t be removed. Therefore, an additional
condition of thinning has to be made, i.e., the sum of values of neighborhood doesn’t equal 1. The
conditions of a common thinning are summarized as following:

)1!&(&)2(=== borhoodsumOfNeighchi (2.6)

2.2.2. Extension Methods for Computing Crossing Number
Only the logical operator &&(AND) shown in (2.4) is valid for Byte values and the !=(NOT EQUAL)
operator and !(NOT) operator both return Boolean values. This complicates programming,
especially when the computation of converting data type of matrix is expected to be saved. One
of the possible solutions is using extension methods[6] which extend the existing class by adding
new methods. In this paper, all matrices involved in calculation are assumed to be of Double[,] for
programming convenience and saving computation of converting data types. The extension
methods of Double are organized as a static class to meet the requirement of C#, and the actual
code is shown in the following figure:

FIGURE 4: Code of Extension methods.

The code of χ is then simplified as shown in the following:

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 585

FIGURE 5: Code of χ.

As shown in fig.5, extension methods AND(), NOT() and NOTEQUAL() are envisaged as the
methods of Double which can be directly invoked by instances of Double, i.e., Double values.

2.2.3. Thinning Based on Local Maxima
The clusters of maxima shown in the left part of fig.3 consist of pixels in the central area of an
object. These pixels are of very high possibility to be parts of the skeleton and they represent the
general shape of the object in some degree. Hence, these pixels shouldn’t be removed during the
thinning procedure.

As the raster scans, thinning is sequential. The sequentiality introduces a new problem that is the
final skeleton would be biased towards the bottom of the image inasmuch as the direction of
regular moving the mask causes pixels in the upper left area of an object are continuously
removed until the mask reaches the lower right edge of the object. Thus, the removal of pixels
shouldn’t be executed once, it should be executed in several times. For each time, the pixels in
the circumambient ring of the area of the object are removed if the condition is satisfied. This can
be summarized as the following formula[2]:

))...)(((}{)()2()1()(ni BBBXBX ⊗⊗⊗=⊗ (2.7)

The notation {B(i)} denotes the Golay alphabet[7] and operator denotes the stripping operation.
Here n is 4, and B(1) , B(2) , B(3) , B(4) are shown in the following figure:

1

1

0

0

1

1

110

011

 (2.8)

Notation * denotes the pixel whose value can be 0 or 1. Actually, B(1) represents north pixels. The
corresponding pseudo code is as following.

echangfurthernountil

pixels}weststrip

pixels;eaststrip

pixels;southstrip

pixels;northdo{strip

 (2.9)

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 586

Combining this detection of directional pixels and (2.6), the condition for stripping directional
pixels is obtained. That is:

)1!(&&)2(&&

)0(&&)max0(&&)00(

===

∈∉>

odneighborhoofsumchi

pixelsldirectionaAimalocalAA
 (2.10)

The result of applying (2.9) and (2.10) is shown in the left part of the fig.6.

Obviously, the object is not completely skeletonized, e.g., the upper right corner of the skeleton is
2-pixel wide. This is because these non-unit wide parts are maxima shown in the right part of the
fig.3 which can’t be removed according to the condition (2.10). In addition, the algorithm will
generate unexpected spurs. Thus, a final sequential thinning with a modified condition (2.10) is
necessary. The condition is:

)1!(&&)2(&&)00(===> odneighborhoofsumchiA . (2.11)

The final result is shown in the right part of the following figure.

FIGURE 6: Thinning process 3.

This result is quite successful. The general shape of the object is preserved and there are no
broken lines based on 8-connectedness criterion.

2.2.4. Amelioration of The Guided Thinning Algorithm
A detail of (2.9) should be noticed, that is how the four stripping subroutines are combined. For a
stripping subroutine, there should be at least two image spaces to store the input data generated
by the previous subroutine and the output data processed by the current subroutine. A possible
solution may be that keeping one space constantly store the input data and the other only store
the output data. This is problematic on account of that another image space has to be introduced
to complete the interchange of the two spaces.

A much better solution is just interchanging the pointers of two spaces before a stripping
subroutine is triggered. Assuming a pointer ptr1 points to a copy of the original binary image and
another pointer ptr2 points to a congruent image space, the matrix with ptr1 is fed into the
subroutine “strip north pixels” and the processed data is stored in the matrix with ptr2. For the
next subroutine “strip south pixels”, the input data should be the matrix with ptr2 and the
processed data can be stored in the matrix with ptr1. For now, the data of original binary image
storing in the matrix with ptr1 is useless for the further processing in (2.9). There are four such
interchanges in one loop.

Although the interchange can’t change the nature of (2.9), i.e., it roughly is O(n2) where n
denotes one dimension of the image space, it saves 8*n2 times of value assignments and a
storage of an image space.

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 587

For the ideal binary image as fig.2, this result is satisfactory. But for real images, isolated points
scatter throughout the whole image. These points provide little information about the skeleton and
may make the following analysis difficult. Thus, they should be eliminated. This is achieved by
modifying the condition (2.11) of the final spur-removing subroutine. The condition is:

)1!(&&)0||2(&&)00(=====> odneighborhoofsumchichiA . (2.12)

3. RESULTS
The application software[8] was executed in Windows XP Professional SP3 on a laptop with Intel
Core(TM)2 Duo 1.6 GHz CPU. The left of the following figure is a screenshot of the application
when a color image whose size is 800×600 had been loaded and the right is the visualized result
of applying the Sobel operator.

FIGURE 7: A loaded image and its gradient image.

The left of the following figure is the skeletonized binary image generated by the algorithm with
(2.11) and the right is generated by the algorithm with (2.12).

FIGURE 8: Binary image and its skeletonized version.

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 588

Obviously, white points scattering in the left lower corner of the left figure of fig.9 vanish in the
right figure of fig.9. Another example is shown in the following figures.

FIGURE 9: The silhouette of a plane and its skeletonized version.

4. CONCLUSION
For practical purpose, the ameliorated guided thinning algorithm is implemented on Windows
platforms by using IDE named VS2008. Among all programming languages supported by VS2008,
C# is chosen as the actual programming language on account of its powerful features provided
directly by Windows producer Microsoft. Since the VS2008 lacks means of performing pixel-level
operations, a class named ImageProcessing is developed, and the guided thinning algorithm is
encapsulated as a method by the class. The problems arising in the development are overcome
by employing extension methods, interchange of pointers and modifying the thinning condition.
The programming procedure is thus simplified, and both the computation and storage are saved
to the full extent, but the nature of the algorithm is not deeply improved. Hence the performance
and spur removal can be further ameliorated. This may require a larger mask and subtle design
of the thinning conditions.

5. REFERENCES
[1] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities 3rd ed. San Fransisco, CA:

Morgan Kaufmann, 2005.

[2] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision 3rd ed. CT:
2008.

[3] R. C. Gonzalez, R. E. Woods, Digital Image Processing 3rd ed. Upper Saddle River, NJ:

Prentice Hall, 2007.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, Unified Modeling Language User Guide 2nd ed.

Boston, MA: Addison-Wesley, 2005.

[5] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Manual
2nd ed. Boston, MA: Addison-Wesley, 2010.

[6] J. Albahari, B. Albahari, C# 4.0 In A Nutshell 4th ed. Sebastopol, CA: O’Reilly, 2010.

[7] J. Serra, Image Analysis and Mathematical Morphology, London: Academic Press, 1982.

Jia Liang

International Journal of Image Processing (IJIP), Volume (5) : Issue (5) : 2011 589

[8] L. Jia, Y. Sun, M. Wang, Y. Gu, “A Research on Implementation of Image Scattergram by
Using C#”, 2011 International Conference on System Design and Data Processing(ICSDDP
2011), IEEE press, February. 2011, pp. 353- 355.

