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Abstract 

 
Besides being an ill-posed problem, the pel-recursive computation of 2-D optical flow raises a 
wealth of issues, such as the treatment of outliers, motion discontinuities and occlusion. Our 
proposed approach deals with these issues within a common framework. It relies on the use of a 
data-driven technique called Generalized Cross Validation (GCV) to estimate the best 
regularization scheme for a given moving pixel. In our model, a regularization matrix carries 
information about different sources of error in its entries and motion vector estimation takes into 
consideration local image properties following a spatially adaptive. Preliminary experiments 
indicate that this approach provides robust estimates of the optical flow.  
 
Keywords: Motion Estimation, Generalized Cross Validation, Video Processing, Computer 
Vision, Regularization. 

 
 
1. INTRODUCTION 

Motion estimation is very important in multimedia video processing applications. For example, in 
video coding, the estimated motion is used to reduce the transmission bandwidth. The evolution 
of an image sequence motion field can also help other image processing tasks in multimedia 
applications such as analysis, recognition, tracking, restoration, collision avoidance and 
segmentation of objects [6, 7, 10]. 
 
In coding applications, a block-based approach [7] is often used for interpolation of lost 
information between key frames. The fixed rectangular partitioning of the image used by some 
block-based approaches often separates visually meaningful image features. If the components 
of an important feature are assigned different motion vectors, then the interpolated image will 
suffer from annoying artifacts. Pel-recursive schemes [2,3,6] can theoretically overcome some of 
the limitations associated with blocks by assigning a unique motion vector to each pixel. 
Intermediate frames are then constructed by resampling the image at locations determined by 
linear interpolation of the motion vectors. The pel-recursive approach can also manage motion 
with subpixel accuracy. The update of a motion estimate is based on the minimization of the 
displaced frame difference (DFD) at a pixel. In the absence of additional assumptions about the 
pixel motion, this estimation problem becomes “ill-posed” because of the following problems: a) 
occlusion; b) the solution to the 2-D motion estimation problem is not unique (aperture problem); 
and c) the solution does not continuously depend on the data due to the fact that motion 
estimation is highly sensitive to the presence of observation noise in video images.   
 
We propose to solve optical flow (OF) problems by means of a framework that combines the 
Generalized Cross Validation (GCV) and a regularization matrix Λ . Such approach accounts 
better for the statistical properties of the errors present in the scenes than the solution proposed 
by Biemond [1] where a scalar regularization parameter was used. 
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We organized this work as follows. Section 2 provides some necessary background on the pel-
recursive motion estimation problem. Section 3 introduces our spatially adaptive approach. 
Section 4 describes the Ordinary Cross Validation. Section 5 deals with the GCV technique. 
Section 6 defines the metrics used to evaluate our results. Section 7 describes the experiments 
used to access the performance of our proposed algorithm. Finally, Section 8 presents some 
conclusions. 

 
2. PEL-RECURSIVE DISPLACEMENT ESTIMATION  
 
2.1. Problem Characterization 
The displacement of a picture element (pel) between adjacent frames forms the displacement 
vector field (DVF) and its estimation can be done using at least two successive frames. The DVF 
is the 2-D motion resulting from the apparent motion of the image brightness (OF) where a 
displacement vector (DV) is assigned to each image pixel.  
 
A pixel belongs to a moving area if its intensity has changed between consecutive frames. Hence, 

our goal is to find the corresponding intensity value ( )
k

I r  of the k -th frame at location ,
T

x y  =r , 

and ( ) ,x y

T
d d 
 =d r  the corresponding (true) DV at the working point r  in the current frame. Pel-

recursive algorithms minimize the DFD function in a small area containing the working point 
assuming constant image intensity along the motion trajectory. The DFD is defined by 
  

( ) ( )
1

; ( ) ( ) ( )
k k

I I∆
−

=r d r r r -d r-  (1) 

                                                                                                                    

and the perfect registration of frames will result in ( )
1

( ) ( )
k k

I I
−

=r r-d r . The DFD represents the 

error due to the nonlinear temporal prediction of the intensity field through the DV. The 

relationship between the DVF and the intensity field is nonlinear. An estimate of ( )d r , is obtained 

by directly minimizing ( )( )∆ r,d r  or by determining a linear  relationship between these two 

variables through some model. This is accomplished by using the Taylor series expansion of 

( )
1

( )
k

I
−

r-d r  about location ( )i ( )r -d r , where 
i
( )d r  represents a prediction of ( )d r  in i -th step. 

This results in  
 

( ) ( ) ( )
1

i i, ( ) ( ) , ( )
k

T
I e∆

−
= ∇ +r r -d r u r -d r r d r- , (2) 

                                                                                     

where the displacement update vector 
i

, ( ) ( )x y

T
u u 
 = = −u d r d r , ( ), ( )e r d r  represents the error 

resulting from the truncation of the higher order terms (linearization error) and ,
x y

T

∇ = ∂ ∂ ∂ ∂    

represents the spatial gradient  operator. Applying Eq. (2) to all points in a neighborhood R  

containing N pixels gives 
 

= +z Gu n , (3) 
 

where the temporal gradients ( )i, ( )∆ r r -d r  have been stacked to form the 1N ×  observation 

vector z  containing DFD information on all the pixels in R , the 2N ×  matrix G  is obtained by 

stacking the spatial gradient operators at each observation, and the error terms have formed the 

1N ×  noise vector n  which is assumed Gaussian with ( )N n

20,σ∼n I . Each row of G  has entries 
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,xi yi

T
g g 
  , with 1,...,i N= . The spatial gradients of 

1k
I

−
 are calculated through a bilinear 

interpolation scheme [2]. 
 
2.2. Regularized Least-Squares Estimation   
The pel-recursive estimator for each pixel located at position r  of a frame can be written as 
 

i+1 i
( ) ( ) ( )

i
= +d r d r u r  (4) 

 

where ( )
i

u r  is the current motion update vector obtained through a motion estimation procedure 

that attempts to solve Eq. (3), 
i
( )d r  is the DV at iteration i  and 

i+1
( )d r  is the corrected DV. The 

regularized minimum norm solution to the previous expression, that is 
 

1
RLS

T T
( ) ( ) ( )

−= = +Λ Λ ΛΛ Λ ΛΛ Λ ΛΛ Λ Λu u G G G z$ $  (5) 

 
is also known as Regularized Least-Squares (RLS) solution. In order to improve the RLS 
estimate of the motion update vector, we propose a strategy which takes into consideration the 
local properties of the image. It is described in the next section.  

 

 
FIGURE 1: Neighborhood geometries. 

 
3. SPATIALLY ADAPTIVE NEIGHBORHOODS 
Aiming to improve the estimates given by the pel-recursive algorithm, we introduced an adaptive 
scheme for determining the optimal shape of the neighborhood of pixels with the same DV used 
to generate the overdetermined system of equations given by Eq. (3). More specifically, the 
masks in Fig. 1 show the geometries of the neighborhoods used. 
 
Errors can be caused by the basic underlying assumption of uniform motion inside R  (the 

smoothness constraint), by not grouping pixels adequately, and by the way gradient vectors are 
estimated, among other things. It is known that in a noiseless image containing pixels in textured 
areas most errors, when estimating motion occur close to motion boundaries. This information 
leads to a hypothesis testing (HT) approach to determine the most appropriate neighborhood 
shape for a given pixel. The best neighborhood from the finite set of templates shown in Fig. 1, 

according to the smallest DFD  criterion, in an attempt to adapt the model to local features 

associated to motion boundaries.   
 
 

  
X Current pixel          O Neighboring pixel 
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4. ORDINARY CROSS VALIDATION (OCV) 
Cross validation has been proven to be a very effective method of estimating the regularization 
parameters [4,5,8], which in our work are the entries of ΛΛΛΛ , without any prior knowledge on the 

noise statistics. The degree of smoothing of the solution ( )$ ΛΛΛΛu , in Eq. (5), is dictated by the 

regularization matrix ΛΛΛΛ .  
 
OCV divides the data into two disjoint subsets obtained from the original observations: an 
estimation/prediction set and a validation set. In the context of neural networks, the former is 
called "training set". Let M  be the number of observations used for the validation set, where 

1M ≥ , and N  be the total number of observations. In our particular problem, N  is the mask size 

and z  is the entire observation set, that is an N -dimensional measurement vector. For each set 

1, ...,j M= , where j  is the size of the validation set, the minimum mean-square error (MSE) is 

calculated using the left out data set, that is, the remaining ( )N j−  observations, and varying the  

regularization matrix ΛΛΛΛ . In other words, for each value of j , a corresponding set with ( )N j−  

elements is used to predict the j  data points left out. 

OCV is defined as the average of all the MSE's evaluated over all possible 
N

j

 
 
 

 combinations of 

validation sets. For the case 1j = , that is the validation set has only one element,  the OCV or 

prediction MSE is given by 
 

µ
21

0

1 N

i i

i

OCV( ) z z
N

−

=

 = −
 ∑ΛΛΛΛ ,  

 
                    

where 
i

z  is the i -th entry of the observation vector z , ( )10, ..., Ni −=  as follows:   

0

1

i

N

z

z

z −

 
 
 
 =
 
 
  

z

M

M

,                                                         

i−
z  the vector obtained after making the i -th entry of z  equal to zero, that is  

0

1

1

1

0

i

i

i

N

z

z

z

z

−

−

+

−

 
 
 
 
 

=  
 
 
 
 
 

z

M

M

, and                                                  

µ 1T T

i i i
z [ ( ) ]

−

−= + ΛΛΛΛG G G G z   is the estimate of point 
i

z  using vector 
i−

z .  

 
The previous OCV equation averages all the MSE’s obtained by leaving each of the entries of z  

out. Therefore, the data division into validation and estimation/prediction sets is done in an 
alternate fashion. All the data is used for both purposes. This technique is also called predictive 
sample reuse or leave-one-out principle. The idea behind OCV is to perform a data-driven 
consistency check that, essentially, measures the adequacy of a parameter set via the model 
ability to predict some of the observations based on the other ones. Hence, the optimum value of 
the regularization parameters for N  samples is the one that minimizes the mean-square error 

OCV( ΛΛΛΛ ). The previous expression has to be further manipulated in order to express the OCV in 

terms of ΛΛΛΛ . The optimum ΛΛΛΛ , that is µΛΛΛΛ , is the one that minimizes the following function: 
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21
OCV( ) ( ){ ( )}

N
= −Λ Λ ΛΛ Λ ΛΛ Λ ΛΛ Λ ΛH I A z ,                                          

 

where     
0 0 1 1

1 1

1 1T T

N N

( ) diag , ,
{ } { }

− −
− −

 
=  

− − 
ΛΛΛΛ

1 1
H

g B g g B g
L ,        

 
1T T

( ) [ ]
−= +Λ ΛΛ ΛΛ ΛΛ ΛA G G G G ,   and    

T
( ) ( )= = +Λ ΛΛ ΛΛ ΛΛ ΛB Β G G .       

 
The main advantage of the OCV is its systematic way of determining the regularization parameter 
directly from the observed data. However, it presents the following drawbacks: 
 
(i) It uses a noisy performance measure, Mean Squared Error (MSE). This means that since we 

are looking at the average value of the MSE over several observation sets re-sampled from 
the original z , we can only guarantee the OCV estimator of ΛΛΛΛ  is going to be a good predictor 

when 1N >> . 

 
(ii) It treats all data sets equally. In terms of image processing, we expect close neighbors of the 

current pixel to behave more similarly to it (in most of the cases) than pixels that are more 
distant from it. Of course, this is not the case with motion boundaries, occlusion and 
transparency. 

 
5. THE GENERALIZED CROSS VALIDATION (GCV) 
The OCV does not provide good estimates of ΛΛΛΛ  [5, 8]. A modified method called GCV function 
gives more satisfactory results. GCV is a weighted version of the OCV, and it is given by  
 

2

1

1
( ) [ ] ( )

i

N

i i

i

GCV z z w
N =

= −∑Λ ΛΛ ΛΛ ΛΛ Λ$ , (6) 

 

where the weights i
w  are defined as follows: 

 

[ ]

[ ]

2

1 ( )
( )

1
1 ( )

ii

i

a
w

Tr
N

 
 − 

=  
  −    

ΛΛΛΛ
ΛΛΛΛ

ΛΛΛΛA

, and (7a) 

 

( ) ( )
1 TT= +Λ ΛΛ ΛΛ ΛΛ ΛG GA G G  (7b) 

 

with ( )
ii

a ΛΛΛΛ  being the diagonal entries of matrix ( )ΛΛΛΛA  as defined in Eq. (7b). The main 

shortcoming of OCV is the fact that OCV is not invariant to orthonormal transformations. In other 

words, if data ' = ΓΓΓΓz z  is available, where ΓΓΓΓ  is an N N×  orthonormal matrix, and 'z  is the 

observation vector corresponding to the linear model given by 
 

' ' ' ' { }= + = +ΓΓΓΓz G u n Gu n . (8) 

 

Therefore, the OCV, and, consequently the regularization matrix ΛΛΛΛ , depends on ΓΓΓΓ . GCV on the 
other hand is independent of Γ . Thus, the GCV( ΛΛΛΛ ) is a better criterion for estimating the 
regularization parameters [5, 8]. So, Eq. (6) can also take the form 
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[ ]

{ }

2

2

( )1
GCV( )

1
( )

N
Tr

N

−
=

 
−  

I A z

I A

ΛΛΛΛ
ΛΛΛΛ

ΛΛΛΛ

. 
(9) 

 

5.1  Regularization Matrix Determination 
The GCV function for the observation model in Eq. (3) is given in closed form by Eq. (9). Let us 

call $
GCV

u the solution for Eq. (3) when an optimum parameter set (the entries of the regularization 

matrix) ΛΛΛΛ
GCV

 is found by means of the GCV. Then, Eq. (5) becomes  

 

( )
1 TT

−
= +

GCV

$ ΛΛΛΛGCVu G G zG  (10) 

 
5.2 The GCV-based Estimation Algorithm 

For each pixel located at ( , )x y=r  the GCV-based algorithm is given by the following steps: 

 
1) Initialize the system: ( )° rd , 0m ←  ( m  = mask counter), and 0i ←  ( i  = iteration counter). 

2) If DFD T< , then stop. T  is a threshold for DFD . 

3) Calculate 
i

G  and 
i

z  for the current mask and current initial estimate. 

4) Calculate 
i

ΛΛΛΛ  by minimizing the expression 
 

{ }

2

2

1

1

( )
( )

( )

i i

i

i

GCV
N

Tr
N

−

−

  
=

 
  

ΛΛΛΛ
ΛΛΛΛ

ΛΛΛΛ

I A z

I A

, 
(11) 

 
where          
 

( ) ( )
1

( )
T T

i i i i i i
−

 = +  
Λ ΛΛ ΛΛ ΛΛ ΛA G G G G . (12) 

                                                   
5) Calculate the current update vector: 
 

( ) ( )
1

T T
i i i i i i

−
 = +  

ΛΛΛΛu G G G z . (13) 

 
6) Calculate the new DV:  
 

i+1 i i
( ) ( ) ( )= +d r d r u r  (14) 

 
7) For the current mask m : 

 

If i+1 i( ) ( ) ε≤d r d r−−−−  and DFD T< , then stop. 

 

If ( )1Ii < −−−−  where I  is the maximum number of iterations allowed, then go to step 3 with 

1i i← +  and  use 
i i+1
( ) ( )←d r d r  as the new initial estimate. 
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Otherwise, try another mask: 1m m← + . If all masks where used and no DV was found, then 

set 
i+1

( ) 0=d r . 

 

 
 
 
 
 
 
 
 
 
 

FIGURE 2: Frames from the video sequences used for tests: (a) synthetic frame, (b) Mother and 

Daughter and (c) Foreman 

 
6. METRICS TO EVALUATE THE EXPERIMENTS   
The motion field quality is accessed using the four metrics [2, 3] described below applied to the 
video sequences shown in Fig. 2.  
 
6.1 Mean Squared Error (MSE)   
Since the MSE provides an indication of the degree of correspondence between the estimates 
and the true value of the motion vectors, we can apply this measure to two consecutive frames of 

a sequence with known motion. We can evaluate the MSE in the horizontal ( )x
MSE  and in the 

vertical ( )yMSE  directions as follows 

21
[ ( ) ( )]xx x

MSE d d
RC ∈

= −∑
r S

r r$ , and                  (15) 

 

21
[ ( ) ( )]yy y

MSE d d
RC ∈

= −∑ $

r S

r r , (16) 

 
where S  is the entire frame, r  represents the pixel coordinates, R  and C  are, respectively,  the 

number of rows and columns in a frame, ( )( ), ( )( ) x y= d r d rd r  is the true DV at r , and 

( )ˆ ˆˆ( ) ( ), ( )x yd d=d r r r  its estimation.  

 
6.2 Bias 
The bias gives an idea of the degree of correspondence between the estimated motion field and 
the original optical flow. It is defined as the average of the difference between the true DV’s and 
their predictions, for all pixels inside a frame S , and it is defined along  the x  and y  directions 

as 
 

1
[ ( ) ( )]xx x

bias d d
RC ∈

= −∑
r S

r r$  (17) 

                                                                                           
and                                                                                                           
 

1
[ ( ) ( )]yy y

bias d d
RC ∈

= −∑
r S

r r$ . (18) 

(a)                                 (b)                              (c) 
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 Ean-squared Displaced Frame Difference 
This metric evaluates the behavior of the average of the squared displaced frame difference 

(
2

DFD ). It represents an assessment of the evolution of the temporal gradient as the scene 

evolves by looking at the squared difference between the current intensity ( )
k

I r  and its predicted 

value ( )
1

( )
k

I
−

−r d r . Ideally, the 
2

DFD  should be zero, which means that all motion was identified 

correctly ( ( )
1

( )( )
k k

I I
−

−= r d rr  for all r ’s). In practice, we want the 
2

DFD  to be as low as possible. 

Its is defined as 
 

2

1
2

2

[ ( ) ( ( ))]

( 1)

K

k k

k

I I

DFD
RC K

−
= ∈

− −

=
−

∑∑
r S

r r d r

, 
(19) 

 
where K  is the length of the image sequence.  
 
6.3 Improvement in Motion Compensation 

The average improvement in motion compensation ( )IMC dB between two consecutive frames is  

given by 
 

2

1

10 2

1

[ ( ) ( )]

( ) 10 log
[ ( ) ( ( ))]

k k

k

k k

I I

IMC dB
I I

−
∈

−
∈

 −
 

=  
− − 

 

∑

∑
r S

r S

r r

r r d r
, (20) 

 
where S  is the frame being currently analyzed. It  shows the ratio in decibel (dB) between  the 

mean-squared frame difference (
2

FD ) defined by          

 
2

1
2

[ ( ) ( )]
k k

I I

FD
RC

−
∈

−

=
∑
r S

r r

, (21) 

 

and the 
2

DFD  between frames k  and ( )k - 1 .  

 
As far as the use of the this metric goes, we chose to apply it to a sequence of K  frames, 
resulting in the following equation for the average improvement in motion compensation: 
 

[ ]

( )

2

1

2
10

2

1

2

( ) ( )

( ) 10 log

( ) ( )

K

k k

k

K

k k

k

I I

IMC dB

I I

−
= ∈

−
= ∈

 
−  

=  
 − −    

∑∑

∑∑

r S

r S

r r

r r d r

. (22) 

 

When it comes to motion estimation, we seek algorithms that have high values of ( )IMC dB . If we 

could detect motion without any error, then the denominator of the previous expression would be 

zero (perfect registration of motion) and we would have ( )IMC dB = ∞ .  
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FIGURE 3: ( )IMC dB  for the noiseless (left) and  noisy (right) cases for the MD sequence. 

 

     
 

 

FIGURE 4: ( )IMC dB  for frames 11-20 of the noiseless (left)  and noisy with 20SNR dB=  (right) for the 

Foreman sequence. 

 
7. IMPLEMENTATION   
In this section, we present several experimental results that illustrate the effectiveness of the 
GCV approach and compare it with the Wiener filter [2, 3 ,7] similar to the one in [1]  given by  
 

( )
1

Wiener LMMSE

T Tµ
−

= = +u u G G I G z$ $ , (23) 

 
where µ=50  was chosen for all pixels in an entire frame.   All sequences are 144×176, 8-bit 
(QCIF format). The algorithms were applied to three image sequences: one synthetically 
generated, with known motion; the "Mother and Daughter" (MD) and the "Foreman". For each 
sequence, two sets of experiments are analyzed: one for the noiseless case and the other for a 
sequence whose frames are corrupted by a signal-to-noise-ratio (SNR) equal to 20 dB. The SNR 
is defined as  
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2

10 2
10log

c

SNR
σ

σ
= . (24) 

                                                                                                                                            

where 2σ  is the variance of the original image and 2

c
σ  is the variance of the noise corrupted 

image [8]. 
 

 Wiener LSCRV LSCRVB LSCRV1 LSCRV2 
MSEx 0.1548 0.1534 0.1511 0.1493 0.1440 
MSEy 0.0740 0.0751 0.0753 0.0754 0.0754 
biasx 0.0610 0.0619 0.0599 0.0581 0.0574 
biasy -0.0294 -0.0291 -0.0294 -0.0294 -0.0293 

( )IMC dB  19.46 19.62 19.74 19.89 20.38 

2

DFD  4.16 4.05 3.921 3.76 3.35 

 

TABLE 1: Comparison between GCV implementations and the Wiener filter. SNR = ∞ . 

 

 Wiener LSCRV LSCRVB LSCRV1 LSCRV2 
MSEx 0.2563 0.2544 0.2446 0.2437 0.2373 
MSEy 0.1273 0.1270 0.1268 0.1257 0.1254 
biasx 0.0908 0.0889 0.0883 0.0881 0.0852 
biasy -0.0560 -0.0565 -0.0564 -0.0561 -0.0553 

( )IMC dB  14.74 14.83 14.98 15.15 15.32 

2

DFD  12.24 12.02 11.60 11.16 10.78 

 

TABLE 2: Comparison between GCV implementations and the Wiener filter. 20SNR dB= . 

 
7.1 Programs and Experiments   
The following GCV-based programs were developed: 
 
a) LSCRV: λ  is a scalar;  a   non-causal 3×3   mask,   centered  at the pixel  being analyzed. 

b) LSCRVB: λ  is a scalar; we tried all nine masks. 

c) LSCRV1: ( )1 2,diag λ λ=
GCV

Λ = ΛΛ = ΛΛ = ΛΛ = Λ , where 
1

λ  and 
2

λ  are scalars, is a matrix; a non-causal 3×3    

mask centered  at the pixel being analyzed. 
d) LSCRV2: ΛΛΛΛ  is a matrix; we tried all nine masks. 
 
Results from the proposed algorithms are compared to the ones obtained with the Wiener 
(LMMSE) filter from Eq. (23) in the subsequent experiments. 

 
Experiment 1. In this sequence, there is a moving rectangle immersed in a moving background. 
In order to create textures for the rectangle and its background (otherwise motion detection would 
not be possible), the following auto-regressive model was used: 
 

1
3( , ) ( , 1) ( 1, ) ( 1, 1) ( , )

i
I m n I m n I m n I m n n m n = − + − + − − +  , (25) 

 

where 1, 2i = . For the background ( 1)i = , 
1

n  is a Gaussian random variable with mean 
1

50µ =  

and variance 
1

2
49σ = . The rectangle ( 2)i =  was generated with 

2
100µ =  and variance 

2

2
25σ = . 

All pixels from the background move to the right, and the displacement from frame 1 to frame 2 is 
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( )( ), ( )( ) (2, 0)bx byb
= =d r d rd r . The rectangle moves in a diagonal fashion from frame 1 to 2 with 

( )( ), ( )( ) (1, 2)rx ry= =
r

d r d rd r . 

 
 

Table 1 shows the values for the MSE, bias, IMC  (dB) and 
2

DFD  for the estimated optical flow 

using the Wiener filter and the four programs mentioned previously when no noise is present. 
All the algorithms employing the GCV show improvement in terms of the metrics used. When we 
compare LSCRV with the Wiener filter, we see that with a regularization matrix of the form 

λ IΛ =Λ =Λ =Λ = , whose regularization parameter λ  is determined by means of the minimization of the 

GCV function and using the same 3 3×  mask as the Wiener, the improvements are small (we 

discuss some of our findings about the drawbacks of the GCV at the end of this article). The 
performance of the GCV implementation increases with the spatially adaptive approach a scalar 
regularization parameter λ  (algorithm LSCRVB) when compared to the OLS. Now, when we 

compare the performance of the previous algorithms with the case where we have a more 

complex regularization matrix { }1 2
,diag λ λΛ =Λ =Λ =Λ = , that is, the implementation LSCRV1, then get even 

more improvements, although we have a single mask. Finally, using both the spatially adaptive 

approach and { }1 2
,diag λ λΛ =Λ =Λ =Λ =  we get the best results (the ( )IMC dB  goes up almost 1 dB on the 

average). 
 

Table 2 shows the values for the MSE, bias, ( )IMC dB  and 
2

DFD  for the estimated optical flow 

using the Wiener filter and the four programs mentioned previously with two noisy frames 

( 20SNR dB= ). 

 

The results for both the noiseless and noisy cases present better values of ( )IMC dB  and 
2

DFD  

as well as MSE’s and biases for all algorithms using the GCV. The best results in terms of metrics 

and visually speaking are obtained with the LSCRV2 algorithm ( { }1 2,diag λ λΛ =Λ =Λ =Λ =  and multi-mask 

strategy). For the noisy case, it should be pointed out the considerable reduction of the 
interference of noise when it comes to the motion in the background and inside the object. For 
this algorithm, even the motion around the borders of the rectangle is clearer than when the 
LMMSE estimator is used.  
 
Experiment 2. Fig. 4 presents the values of the improvement in motion compensation for frames 

31 to 40 of the MD sequence for the noiseless and noisy ( 20SNR dB= ) cases, respectively, for all 

algorithms investigated. Here we concentrate our analysis on the performance of LSCRV2, which 
is the algorithm that gave us the best results.  The LSCRV2 algorithm provides, on the average, 

1.5dB  higher ( )IMC dB  than the LMMSE algorithm for the noiseless case. The ( )IMC dB  for the 

noisy case is not as high as in the previous situation. Their qualitative performance can be 
observed in Fig. 3. By visual inspection, the noiseless case does present dramatic differences 
between both motion fields.  For the noisy case, we were able of capturing the motion relative to 
the rotation of the mother’s head, although incorrect displacement vectors were found in regions 
were there is no texture at all such as the background, for instance, but there is less noise than 
when we use the Wiener filter. 
 
Experiment 3.  Fig. 4 demonstrates results obtained for frames 11-20 of the "Foreman" 
sequence. Some frames of this sequence show abrupt motion changes. One can see that all the 
algorithms based on GCV outperform the LMMSE. This sequence shown very good values for 

the ( )IMC dB  for both the noiseless and the noisy cases. As one can see by looking at the plots 

for the errors in the motion compensated frames, the algorithm LSCRV2 performs better than the 
Wiener filter visually speaking.  
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8. CONCLUSION AND DISCUSSIONS 
This work addresses some issues related to the application of two adaptive pel-recursive 
techniques to solve the problem of estimating the DVF. We analyzed the issue of robust 
estimation of the DVF between two consecutive frames, concentrating our attention on the effect 
of noise on the estimates. The observation z  is subjected to independent identically distributed 

(i.i.d.) zero-mean additive Gaussian noise n . This entire work considered n  and the update 

vector u  as the only random signals present, as well as z , since it is obtained from a linear 

combination of u  and n . Robustness to noise was achieved by means of regularization and by 

making the regularization parameters dependent on data.  
 
In our case, the regularization matrix is no longer of the form λ I , where λ  is a scalar, but has a 

more general form ΛΛΛΛ . The entries of ΛΛΛΛ  form a set of regularization parameters and such a 
formulation allows us more possibilities when it comes to find the best smoothed estimate.  
 
A spatially adaptive approach was introduced and it consists of using a set of masks, each one 
representing a different neighborhood and yielding a distinct estimate. The final estimate is the 

one that provided the smallest DFD . The results from some experiments demonstrated the 

advantages of employing multiple masks.  
 
A strategy for choosing the regularization parameter without knowledge of the noise statistics was 
introduced: the GCV. It depends solely on the observations. Two cases were explored: scalar λ  

and { }1 2,diag λ λΛ =Λ =Λ =Λ = . The best results were obtained using the GCV with { }1 2,diag λ λΛ =Λ =Λ =Λ = . All 

implementations of the GCV presented in this article performed better than the LMMSE 
technique. The drawbacks exhibited by the GCV in the context of motion estimation/detection 
were also analyzed. GCV evaluates the variability of the regression results when some subset of 
observations is omitted from the original set z . The criterion to select the best ΛΛΛΛ  is the minimum 

prediction MSE.   Since the regularization matrix ΛΛΛΛ  is related to the autocorrelation of the data, 
there is some implicit stochastic knowledge in our model. The main advantage of our approach is 
the fact we use the GCV to choose the best set of regularization parameters and, then, we use 

these values to calculate the update vector estimate GCVu$ . This take on GCV brings in an implicitly 

Bayesian touch because the entries of ΛΛΛΛ  are actually variance ratios. We improved the GCV 
performance via the introduction of local adaptability (through the use of multiple neighborhoods).  
 
It should be pointed out that our GCV model can handle the motion estimation/detection problem 
well and, as expected, a more complex ΛΛΛΛ  gives better result than a scalar regularization 
parameter. 
 
The proposed method provides an automatic, data-based selection of the regularization 
parameter by means of the minimization of Eq.  (14). The GCV is a non-parametric estimation 
method that does not require any knowledge about the probability density functions of the model 
variables, although the regularization parameters sought are related to the covariance matrices of 
u  and n .  It relies solely on the minimization of a function obtained from the weighted sum of 

squared prediction errors. 
 
However, the technique presents some drawbacks [8]. This technique works very well in most of 
the cases (approximately 95% of the time), but due to the volume of minimizations done, the GCV 
failed to produce good estimates at all points because of one of the following situations: 
 

a) GVC( ΛΛΛΛ ) has multiple minima; 
b) There is no minimum such that all entries of ΛΛΛΛ  are positive; 
c) The minimum is hard to be found (no convergence); 
d) The global minimum of the GCV results in a undersmoothed solution; a local minimum can 

be better; or 
e) We may have found a saddle point. 
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Our spatially adaptive scheme indeed improves the behavior of the routines based on GCV 
around motion borders due to the fact that it seeks the neighborhood which provides the best 
system of equations according to the smoothness constraint assumption. 
 
An interesting problem we are currently investigating, is a more intelligent way of choosing a 
neighborhood upon which to build our system of equations. We are also looking at more complex 
regularization matrices. 
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