
Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga 

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 22 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

Factors Affecting Software Maintenance Cost of Python 
Programs 

 
 

Catherine Wambui Mukunga             cathymukunga@gmail.com 
School of Computing and Information Technology   
Murang’a University of Technology   
Murang’a, Kenya   
       
John Gichuki Ndia                    jndia@mut.ac.ke 
School of Computing and Information Technology   
Murang’a University of Technology   
Murang’a, Kenya 

   

Geoffrey Mariga Wambugu            gmariga@mut.ac.ke 
School of Computing and Information Technology   
Murang’a University of Technology   
Murang’a, Kenya   

 

Abstract 

One of the primary areas of software project management is cost estimation. The cost estimation 
problem remains unsolved today because of the ineffective cost estimation techniques which are 
unsuitable for handling current development methods. Software maintenance costs can be 
estimated using a variety of models such as the Construction Cost Model (COCOMO), Software 
Life Cycle Management (SLIM), Software maintenance project effort estimation model and others 
but more work needs to be done in developing models that can accommodate programs from 
new programming paradigms. The primary objective of this research was to identify factors 
affecting the software maintenance cost of python programs and rank them according to their 
relevance. To achieve the objective, a literature review study was done to identify factors that 
influence software maintenance costs followed by an expert opinion survey to ascertain which of 
the factors were relevant for Python programs. Fifty two (52) Python developers and project 
managers were identified using snowballing technique and asked to rate the cost drivers in order 
of relevance using a five point scale. Descriptive statistics were used to carry out the analysis of 
the results. The results indicated that all the eighteen (18) factors affected the maintenance cost 
of Python programs. The factors were ranked based on the percentage mean of frequencies. Six 
additional factors were also identified by the experts and ranked. The factors will be considered 
as input parameters for a cost estimation model to be developed in the near future for estimating 
the cost of maintaining python programs. 

KEYWORDS: Software Maintenance, Cost Drivers, Expert Opinion, Cost Estimation. 

 
 
1. INTRODUCTION 
The importance of software in the 21st century cannot be under estimated, since almost all 
industries from education, sports, health, and security to governance are enabled by software. 
Therefore the quality of the software should be of a high level to ensure accurate results (Shrove 
& Jovanov, 2020). Maintenance is the final step of the Software development process (Aakriti & 
Shreta, 2015). According to CMRP (2014) corrective maintenance deals with changes to address 
faults, adaptive maintenance aims to keep the software up-to-date, perfective maintenance 
ensures the product accommodates proposed requirements and preventive maintenance ensures 
software is free from failure.  
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Cost estimation for the maintenance phase is required to determine software reliability, increase 
productivity, project planning, control, and adaptability. An observation made by Islam and Katiyar 
(2014) indicates that software maintenance cost is gradually growing with high levels of software 
life cost relating to the maintenance stage. Controlling the elements that influence software 
maintenance could aid in cost reduction, predictability, increased productivity, project planning, 
control, and adaptation of the softwareSingh et al. (2019). According to Pragya and Varun (2012), 
accurate cost estimation of maintenance can be an estimate of how much resources should be 
committed to a project and determine the priority of projects. Proper cost estimation also 
promotes easier management and resource control (Alija, 2017). 

Python is described by Chen et al. (2016) as an interpreted and high-level programming language 
invented by Guido von Rossum with full support for object orientation. Strongly built data 
structures, binding and linking existing components or services make python suitable for Rapid 
Application Development and scripting (Saabith et al., 2019). Python is a programming language 
that enables programmers to effectively connect different sub-systems, promote program 
modularity and reuse of code (Dev, 2020). Python is a free commercial language that is the 4th 
most popular out of 100 according to the Importance of Being Earnest index (TIOBE)(index, 
2022). Public platforms where programmers learn, collaborate and share code such as GitHub 
shows how developers largely use Python (github, 2022). Interest in learning python language 
can also be confirmed through OpenHub which contains volumes of publicly accessible software. 
One of the most significant bibliographic databases in the academic world Scopus reveals the 
growing number of applications using the python language. 

Though there are several cost estimation models such as the COCOMO, they are unsuitable for 
the object oriented paradigm (Kukreja & Garg, 2017). It has also been previously argued that 
COCOMO has some inaccuracies hence the need to revise the model (Obot et al., 2022).  
Furthermore, python programs are unique from other Object Oriented based programs (Yoo & 
Lee, 2013) and therefore the existing models cannot precisely predict the maintenance cost of 
python programs. The work by Alija (2017) has identified software maintenance cost drivers 
based on a literature review but there is a need to verify and rank the said factors through a 
primary study. 

This work is organized into various sections; section two describes the software cost estimation 
model COCOMO’s versions and the factors influencing software maintenance cost. Section three 
explains the design and validation of the survey instrument, a procedure for conducting the expert 
survey and the results. Section four is a discussion of the results obtained from this study. The 
study is concluded in section five. 

2. LITERATURE REVIEW 
Factors affecting software maintenance costs were identified by conducting a literature review. A 
combination of reference list and keywords were adopted as the search strategy. Brereton et al. 
(2007)Identified seven electronic sources namely; IEEExplore, ACM Digital library, Google 
scholar, Citeseer library, ScienceDirect, SpringerLink and Scopus as the most relevant sources to 
Software Engineers. The search covered all studies on software maintenance cost estimation 
specifically journal papers, conference proceedings and technical reports from the seven sources 
between the period 2010 and 2022. Factors mentioned in two or more studies were considered 
for this study. 

2.1 Software Cost Estimation Models 

Software cost estimation is defined to be a process for predicting development effort (Sangeetha 
et al.,2012). A study byKeim et al. (2014) defined a software cost estimation model as an indirect 
measure that predicts the cost of a project with the purpose of budgeting, analyzing risks, project 
planning and improving the software. 

There exist estimation models that implement software maintenance cost influencing factors such 
as the Constructive Cost Model (COCOMO). The Constructive Cost Model was developed by 
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Barry Boehm in 1981 and was applied in estimating development cost, man-hours and project 
schedule as explained in (Boehm, 1983). An earlier Version of COCOMO is the COCOMO 81 
which consists of; Basic COCOMO, Intermediate COCOMO and Detailed COCOMO. A later 
version is COCOMO 2 as mentioned in (Boehm, 1983). Basic COCOMO version can be 
implemented on organic, semi-detached and embedded project types as explained in 
(Saljoughinejad & Khatibi, 2018). 

Basic COCOMO mathematical statements are presented below as explained in(Boehm, 1983) 

Effort Applied (E) = ab (KLOC)bb[man-months]       (1) 

Development Time (D) = cb (Effort Applied)db [months]      (2) 

People required (P) = Effort Applied / Development Time [count].     (3) 

The study by Boehm (1983) explains that the basic COCOMO version was designed to work on 
estimates from the size of a project which is expressed by kilo lines of code (KLOC). A limitation 
mentioned by Boehm (1983) is that Basic COCOMO only considers annual change of traffic for 
maintenance and leaves out factors related to hardware and personnel aspects. A further 
drawback of the basic COCOMO is mentioned by Boehm et al. (2000) indicating it could not 
estimate the costs of software from new life cycle procedures and capabilities. Such limitations of 
the Basic COCOMO led to the intermediate COCOMO model. 

The study by Boehm et al. (2000) explains that the intermediate model computes effort from 
program size in KLOC and four cost drivers, with each driver having some attributes. Attributes 
affiliated with software products comprise of how operational the software is, the size of database 
application and ease of product’s understandability and implementation; Hardware elements 
include; the ability of the analyst, software engineering skills, and a rich experience with 
programming language while Project attributes include the application of software engineering 
tools and methods. Boehm (1983) commented that the incorporation of cost drivers in the 
intermediate model increased its accuracy by 20%. The study by Boehm (1983)has described the 
Intermediate COCOMO formula to be: 

E= ai (KLoC) (
b
i) * EAF          (4) 

Effort (E)is expressed in person-months, size is expressed as Kilo Lines of code (KLOC) and EAF 
is an effort adjustment factor which is the product of the effort multipliers for each cost driver. 
Values of aand b depend on the project categories of organic, semi-detached and embedded. 

The intermediate COCOMO accommodates sensitivity analysis by altering the ratings of cost 
drivers. 

In an essay reviewed by Bryant & Kirkham (1983) the authors argue that Boehm presented a 
table of ratings for each cost driver but only alteration of software reliability and some of the 
personnel attributes are discussed leaving other cost drivers unexamined. 

Kitchenham and Taylor(1987) explain that the Detailed COCOMO can counter the drawbacks of 
the Intermediate model through phase-wise cost driver implementation. The phases of the Detail 
COCOMO model include planning and requirements, designing of the system, detailed design, 
module coding and testing and cost constructive model phases as listed in Boehm (2000). The 
study further explains that effort is computed from program size and cost drivers according to the 
phases. 

Boehm et al. (2009) described the COCOMO II model as a COCOMO 81 update to address 
software development practices in the 1990s and 2000s. According to Boehm et al. 
(2009)COCOMO II comprises of the Application Composition Model, which is an early stage 
model that makes assumptions of systems being developed from components that are reusable, 
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database programming, the early Design Model whose primary purpose is to compute 
estimations of a project’s cost and schedule and the Post Architectural model. COCOMO II 
consists of cost drivers that are used with the Post Architecture model. The Post Architecture 
model factors include; required reliability, size of the database, complexity of the product, product 
reusability, product documentation, time required for execution, storage, hardware and software 
platforms, personnel analysis and design ability, developer’s ability to deal with complex software, 
personnel turnover, system analyst’s capability, level of programming language and software tool 
experience, software tool application, site collocation and communication support in multisite 
developments and development Schedule. The rates assigned to the cost drivers are scaled from 
Very Low to Extra High. Five scale drivers namely; similarity of a product to previously developed 
products, flexibility of design, design thoroughness and risk elimination, team connectedness and 
organization’s process maturity. The mentioned drivers contribute to a project's duration and 
determine the exponent used in the Effort Equation. The post architecture COCOMO II model is 
defined as:  

�� = �. ���	
�1.01 + ∑ ���. ∏ �����
���

�
����        (5) 

Where B = 1.01+ 0.01×∑SFi and A = 2.45 (Chamkaur et al., 2019). Application of the COCOMO 
II model in software requirements and maintenance is recommended in the study by(Ismaeel & 
Jamil, 2007). 

COCOMO II model recognizes different approaches such as prototyping, component composition 
development and database programming. The main focus of COCOMO models was to address 
the procedural programming paradigm according to (Periyasamy, K & Ghode, 2009) hence an 
extension of these models would be necessary to accommodate other programming paradigms. 
In addition according to Obot et al. (2022), COCOMO attributes contain some level of imprecision 
and therefore there is a need to extend or review the model. 

A recent study by Singh (2022) proposed an approach for software maintenance cost using the 
Putnum model and particle swarm optimization algorithm. Linear Discrement Analysis (LDA) was 
used for classification. The proposed approach was compared with the COCOMO and Putnum 
models and use of the Putnum model was reported to contribute to better results. 

A study byKyoung-ae-jang and Woo-je Kim(2021)presented a maintenance model for package 
software. The model is based on maintenance activities identified by reviewing literature and cost 
structure. Validation of the model was done using real data from maintenance projects and was 
reported to produce promising results. 

A maintenance cost estimation model is developed bySingh et al. (2019) based onthe Tomcat 

server dataset and particle swarm technique for optimization. The inputs to the model are source 

lines of code and maintenance effort. The model was said to present more accurate results. 

A software maintenance effort prediction model was developed by Maheswaran and 
Aloysius(2018) based on software cognitive complexity metrics. An empirical study was 
conducted on the complexity metrics to ascertain whether they were predictors of software 
maintenance effort. 

The work by Islam and Katiyar(2014) proposed a maintenance cost estimation model which is 
based on technical factors that include; maintenance Staff Ability, internal Complexity, 
Documentation Quality, testing quality, system life span, code quality, application type, interface 
complexity, CASE Tools and non-technical factors included understandability, probability, new 
technology and organization maturity. The maintenance model also operates on fourth generation 
language environment and applies the annual change of traffic metric. 
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A study by Kim et al. (2003) proposed a software maintenance project effort estimation model 
(SMPEEM). Value adjustment factors are introduced and various attributes are discussed such 
as knowledge of the application area, understanding of programming language and others. 
Maintenance factors include; quality documentation, Conformance to software engineering 
standards and testability. 

2.2 Factors That Affect Software Maintenance Cost 

Research by Chamkaur et al. (2019) identified software cost factors and categorized them under 
technical and non technical factors. Technical factors listed included; complex Software, Human 
capability, quality of documentation, Configuration management technology, Modern 
Programming Specifications, size of the Database, Component Reusability and Component 
Performance. Non-Technical Factors: Application Experience, Staff Stability, External 
environment, Support environment and User needs. The researchers recommended the 
implementation of the factors in reducing maintenance costs by the use of a cost estimation 
model. 

A study by Alija (2017) has highlighted team cohesiveness, contractual responsibility, staff 
capability, program duration and composition, costs of understanding or program comprehension, 
lacking or incomplete documentation and impact analysis as justification for increasing software 
maintenance costs. 

A study by Balra (2017) presented a list of factors affecting software maintainability such as 
understandability, standards, modularization, and the language of a program, testing, complexity 
and traceability. 

Research by Benaroch (2013)sought to study the work and contribution by considering 
application characteristics and personnel attributes as software maintenance cost drivers. The 
factors include System characteristics namely; system age, size of the system and software 
complexity. Personnel factors (independent) include; diversities of location and skills and the 
maintenance personnel. System Dependent factors include maintenance effort and maintenance 
cost. The research concluded that personnel attributes have a larger influence than system 
factors. 

Dehaghani and Hajrahimi (2013) carried out a study to identify factors that had a greater effect on 
software maintenance costs. Interviews were conducted and factors were identified using Analytic 
Hierarchy Process (AHP) and prioritized using expert choice (EC) software. The study mentioned 
factors such as the reliability of software, the size of a system, the complexity of the system, 
required time for execution, storage requirements, the experience of the programmer with a 
programming language, quality of documentation and others. 

In the work by Pragya and Varun (2012) cost estimation factors of component based software are 
discussed. The factors are categorized as technical and non-technical. Factors listed under 
technical factors include; component efficiency, application’s ease of use, the interaction of 
system sub-elements, reusability of system’s units of composition, application’s connection, ease 
of product use, ease of product maintenance, user training, computer-aided  tools and interface 
complexity. Non-technical factors include; expert experience, requirements stability, technology 
advancements, system components and organization progressive improvement. The study by 
Pragya and Varun(2012)  presented a COCOMO based cost estimation model for maintaining 
component based software. The model is based on software development cost, the amount of 
source code changing within a year and high-tech and low-tech factors that have an effect on 
component based software. 

A study was conducted by Lee (2011) involving the identification of factors for estimating effort of 
conducting corrective maintenance of object oriented programs. The factors were grouped into; 
developer-related factors, environmental factors, defect factors and code factors. Developer 
factors included familiarity with technology and software product and low system development 
experience. Environmental factors included; tool unavailability, minimal team cohesiveness and 
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others. Defect factors included; unavailability of bugs documentation, minimal defect 
reproduction, codebase’s ineffectiveness at the start of a maintenance project, Code related 
factors included; high code complexity, low maintainability of code structure, high level of code/ 
system dependencies, high version/deployment complexity, high level of code volatility and low 
availability of formal design documentation and code comments. 

Software maintenance cost factors are discussed in Yong chang et al. (2011) and categorized as 
technical and un technical attributes. Technical factors include; the complexity of software, human 
capacity, quality of program documentation, configuration management technology, modern 
programming specifications and database size. Untechnical factors included; experience with the 
application, staff low turnover, time to develop the application and others. The factors were 
assigned weight values and implemented in the calculation of maintenance cost using an 
empirical method. 

Based on the literature review, eighteen factors were identified as summarized in table one 

 Factor Description References Number of 
studies 

1 Software Complexity Defines the complexity of 

internal properties of a 

software 

[4][5][6][7]  [8] [9] [10] 

[11] 

8 

2 Document Quality Degree of correctness 

and completeness of 

system documents. 

[4] [6] [7] [8] [11] 5 

3 Configuration 

Management 

Technology 

The technology used in 

the maintenance of 

computer systems. 

[4] [11] 2 

4 Modern Programming 

Specifications 

Involves using modern 

tools and techniques for 

program maintenance. 

[4][7] [11] 3 

5 Program Size Size is measured by 

counting code lines in a 

program, counting the 

number of classes and 

functions. 

[4] [5] [7] [11] 4 

6 Component 

Reusability 

The extent to which 

various system 

components can be 

reused. Reuse will lower 

maintenance costs. 

[4] [9] 2 

7 Component 

Performance 

The efficiency of various 

components 

incorporated in the 

system. 

[4] [9] 2 

8 Maintenance Staff 

stability 

Describes the 

permanency of the 

maintenance 

team.Frequent staff 

turnovers could result in 

more time to understand 

the system. 

[4] [6] [11] 3 

9 Testing Quality The quality of tests on 

the system. Low quality 

tests will attract higher 

maintenance costs. 

[6] [10] [11] 3 

10 System Lifespan Age of the system under 

maintenance 

[6] 1 
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11 Application Type An application that is 

well understood will 

result in minimal change 

requests. 

[5] [6] 2 

12 CASE tools The use of various 

Software Engineering 

tools imply  the cost of 

maintaining software 

[6] [8] [9] 3 

13 Dependence on 

External Environment 

An application would 

need modification if it is  

dependent on the 

external environment,  

[4] [8] [11] 3 

14 Hardware Stability The stability of a 

hardware configuration 

on which software will 

operate on. 

[7] 1 

15 Programming Style Style of programming is 

defined by guidelines 

and rules to follow in 

writing a computer 

program. 

[7] [11] 2 

16 Understandability How easy it is to 

comprehend 

applications. 

[6] [8] [10] 3 

17 Technology Newness Refers to how new the 

technology being 

implemented is and the 

frequency of 

technological changes. 

New technology might 

require training or hiring 

skilled personnel. 

[6] [9] 2 

18 Organization Maturity A Measure of an 

organization's readiness 

and capability to conduct 

software maintenance. 

[6] [9] 2 

 
TABLE 1: Factors affecting software maintenance cost. 

A total of eleven studies were reported to contain factors influencing software maintenance cost. 
Software complexity and document quality were the most mentioned factors. System lifespan and 
hardware stability were the least mentioned in one study each. 

3. EXPERT OPINION SURVEY 
Baker et al. (2014) defined expert elicitation as the extraction and quantification of personalized 
opinions in research. 

This section presents subsections explaining the design and validation of the survey instrument 
and how the expert opinion survey was conducted. Survey results are also presented in three 
sections namely; demographic survey of respondents’, responses on software maintenance cost 
factors and ranking of the factors. 

The expert opinion process followed the steps defined by Mosleh and Apostolakis (1987) namely; 
the definition of the problem statement, the selection of experts using a set criteria, informing 
experts of the objectives and expectations of the study and decision making. This research used 
a survey research design, questionnaires were used for data collection and data analysis was 
done using SPSS version 20. The research implemented a deductive approach. The experts 



Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga 

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 29 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

were selected using snowballing technique where a few experts were identified who later 
identified fellow experts until there was an acceptable number of respondents. A requirement was 
that an individual had to have worked for three or more years as a python developer or in python 
project management to be classified as an expert. An online survey was carried out and 
responses were analyzed using descriptive statistics. 

3.1   Design and Validation of Survey Instrument 

An expert opinion questionnaire was designed for this study and contained two sections. The first 
section labelled A comprised of respondent’s personal information and second section labelled B 
contained software maintenance cost factors. A Likert scale of five was used to rate the factors 
namely; 1. Very low, 2. Low, 3. Slightly high 4. High and 5. Very high. The factors were divided 
into two categories of technical and non-technical. Technical factors consisted of; software 
complexity, document quality, configuration management, modern programming specifications, 
program size, component reusability, component performance, maintenance staff stability, testing 
quality, system lifespan, application type, CASE tools, dependence on the external environment, 
hardware stability and programming style. Non-technical factors were; understandability, 
technology newness and organization maturity. The responses of the pilot study were excluded 
from the analysis of the final results. Content validity was performed on the questionnaire to 
assess the extent to which measurement instrument items are relevant and representative of the 
target construct. A total of eight experts were randomly selected to test the questionnaire items 
on their degree of relevance and degree of clarity.  

The experts were guided by the following scales: 

Degree of item relevance to the measured domain 
1- Not relevant  
2- Somewhat relevant  
3- Quite relevant  
4- Highly relevant  

Degree of item clarity 
1- Unclear 
2- Needs revision 
3- Clear with minor revision 
4- Very clear 

Responses from the experts were tabulated and computed in MS Excel and yielded a score 
content validity index of 0.988889 for the degree of relevance and 0.983333 for the degree of 
clarity which according to Shi and Sun(2012)  is within the acceptable value of 0.78 or higher. 
Cronbach’s alpha was used to assess the internal consistency of the questionnaire. The measure 
was applied because it can measure a survey consisting of multiple Likert-type scales and items. 
A Cronbach’s Alpha value of 0.814 was recorded. According to Mohsen(2011), satisfactory 
values of alpha are between 0.70 and 0.95 hence the instrument for data collection was 
considered reliable. Cronbach’s alpha was applied because it is easier to use in comparison to 
other estimates and only requires one test administration (Mohsen, 2011). Questionnaire 
reliability statistics are presented in table two. 

Reliability Statistics 

Cronbach's Alpha 
Cronbach's Alpha Based on 
Standardized Items No. of Items 

.814 
 

.810 18 

TABLE 2: Questionnaire Reliability Statistics. 

Based on the above values, it was concluded that the questionnaire had achieved a satisfactory 
level of content validity. 
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3.2   Conduct of Expert Opinion Survey 

The goal of the survey was to evaluate the relevance of factors contributing to software 
maintenance costs. Experts were identified by snowball technique and issued an online 
questionnaire. Developers and project management staff with over three years in Python project 
development and maintenance were selected. The sample size comprised of 52 python experts. 
The Survey Planet platform was used to host the study questionnaire. Response time for the 
survey was four weeks, the respondents were not contacted on the same day which explains the 
overall long period of the online survey. 

According to Naderifar et al. (2017) sampling is done until data saturation in snowball method. 
Experts were familiarized with the goal of the elicitation process and the details of the issues 
involved. The respondents were provided with the list of software maintenance cost factors that 
were identified in the literature and were required to rank the factors based on the Likert scale. In 
addition the experts were required to include other factors not in the list and influenced software 
maintenance cost. 

3.3 Survey Results 

Feedback from the respondents was received and the data collected were analyzed using SPSS 
software. 

a) Demographic Summary of the Respondents 
Characteristics of the respondents such as ooccupation, years of experience in cost modelling 
and estimation, years of experience with Python software and level of education were considered.   

i. Respondents Occupation 
Analysis of respondents’ occupations was done and the findings indicated 28.6% of the 
respondents were involved in software project management while 71.4 % were in software 
development. These findings were acceptable because all the respondents had knowledge and 
experience in python software development and software project management. The findings are 
presented in figure 1. 

 

FIGURE 1: Responses on Respondent’s occupation. 

ii. Software Modeling and estimation experience of the Respondents 
An analysis of the respondents’ experience in Software modelling and estimation was carried out. 
Findings indicated that two respondents constituting 4.8% had less than two years experience 
however they still qualified as experts since they had five and six years of python software 
development. 73.8% of the respondents had three to five years experience, 16.7% had six to ten 
years experience and 4.8% were highly experienced with over ten years in software modelling 
and estimation. Findings are presented in figure 2. 

28.6

71.4

Occupation

Projet management Software Development
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FIGURE 2:  Responses on Software Modelling and Estimation experience. 

iii. Python Language Experience  
Analysis of respondent’s responses on python language experience was conducted and the 
findings indicated that none had less than three years experience. 61.9% had three to five years 
experience, 31% was in the category of six to ten years experience and 9.5% had over ten years 
experience with python applications. The findings were a clear indicator that the respondents 
were qualified to participate in the study and would provide reliable information. Findings are 
presented in figure 3. 

 

FIGURE 3: Responses on Python Language Experience. 

iv. Academic Qualifications 
An analysis was conducted of respondents’ academic qualifications. The findings indicated that 
4.8% of the respondents had a Diploma, 57.1% of the respondents had a Bachelor’s degree, 31% 
had a Master’s degree and 7.1% had a Ph.D. degree. Two respondents with Diploma academic 
qualifications had five years of experience in developing python applications and three years 
experience in software modelling and estimation hence were considered as experts. Findings on 
academic qualifications are presented in figure 4. 

 

FIGURE 4: Responses on Academic Qualifications. 

4.8

73.8

16.7
4.8

Software Modeling and Estimation 
experience

0-2 years 3-5 years

6-10 years More than 10  years

0.0

61.9
31.0

9.5

Python Language Experince

0-2 years 3 - 5 years

6 -10 years More than 10 years

4.8

57.1

31.0

7.1

Academic Qualifications

Diploma Bachelor's degree

Master's degree PhD degree
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b) Expert opinion Results on Software Maintenance Cost Factors 
The respondents rated the factors based on how much they influence maintenance cost using a 
scale of very low to very high. A rating of very low means the factor’s influence on the cost of 
maintenance is very low and very high means the factor has a lot of influence on software 
maintenance cost.  

i. Ranked Software Maintenance Cost Factors 
Each factor was ranked based on the mean value to identify the most relevant. The Sum of actual 
responses was divided by the Sum of expected responses to get the mean using the formula 
shown below; 

�
�� =
���  ! "#$�"% &'() *('(  )'& "$$&�+�$' 

���  ! ',)'#$'- &'() *('(  )'& "$$&�+�$' 
×  100        (6) 

The Sum of actual responses was derived by summing the respondents’ actual responses on all 
the items in the questionnaire. The Sum of expected responses per attribute was derived by 
summing expected responses from all the items in the questionnaire. Each item’s expected 
response was five on the scale provided. 

From the analysis, understandability, quality of documents, technology for configuration 
management, programming standards, program size and complexity of software were highly 
ranked with over 80% mean values. CASE tools, application type and system life span had the 
lowest means of less than 60%.The results are presented in table 3. 

Ranking 
 

Factors affecting 
maintenance cost 

Sum of Actual 
Responses 

Sum of Expected 
Responses 

Mean in % 

1 

 
Understandability 180 210 85.71 

2 Document Quality 174 210 82.8 

3 
Configuration Management 

Technology 
173 210 82.3 

4 
Modern Programming 

Specifications 
170 210 80.95 

5 Program Size 170 210 80.95 

6 Software Complexity 168 210 80 

7 Testing Quality 167 210 79.52 

8 Component Reusability 165 210 78.57 

9 Organization Maturity 163 210 77.61 

10 Maintenance Staff Ability 162 210 77.14 

11 Technology Newness 155 210 73.80 

12 Programming Style 146 210 69.52 

13 Hardware Stability 142 210 67.61 

14 
Dependence on External 

Environment 
134 210 63.80 

15 Component Performance 133 210 63.33 

16 CASE Tools 124 210 59.04 

17 Application Type 117 210 55.71 

18 System Lifespan 116 210 55.23 
 

TABLE 3: Ranked software maintenance cost factors. 

Additional factors that influence the cost of maintaining Python programs mentioned by the 
experts included; availability of maintainers, Staff ability and skills, code quality, number of 
maintainers, hiring model of maintainers and location diversity of maintainers. A second 
questionnaire was issued to the experts to get their feedback on how relevant the factors were in 
the determination of software maintenance cost. 
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Each of the additional factors was ranked based on the mean value to identify the most relevant. 
The Sum of actual responses was divided by the Sum of expected responses to get the mean. 
The Ranked factors are presented in table 4. 
 
From the analysis code quality was ranked highest with 85.8 % mean. Location diversity of 
maintainers was the least relevant factor with a 67% mean. 

Ranking 
Factors affecting 
maintenance cost 

Sum of Actual 
Responses 

Sum of 
Expected 
Responses 

Mean in % 

1 Code quality 73 85 85.8 

2 Staff ability and skills 68 85 80 

3 Availability of maintainers 64 85 75.2 

4 Number of maintainers 59 85 69.4 

5 Hiring model of maintainers 58 85 68.2 

6 
Location diversity of 

maintainers 

57 85 67 

 
TABLE 4: Ranked software maintenance cost factors. 

4.  DISCUSSION 
A deductive research methodology was adopted with results obtained from this study comprising 
a mix of secondary and primary data. Eighteen factors were identified from the literature review 
namely; Understandability, quality of documents, technology for managing software 
Configurations, Programming standards, Program size, the complexity of Software, Testing 
quality, Component reusability, Organization maturity, Maintenance staff ability, Technology 
newness, Programming style, Hardware stability, Dependence on the external environment, 
Component performance, CASE tools, Application type and System lifespan. 

An expert opinion survey was conducted to enhance and verify the findings from the literature 
review. All the respondents had over three years experience in python language and hence were 
considered as experts. Over 95% of the respondents had a minimum academic qualification of a 
Bachelor’s degree. Such findings on the demographic characteristics of the respondents 
indicated that they were fit for the study. From the expert’s opinion survey, all the factors were 
reported to have some influence on the maintenance cost of Python programs. However, the 
degree of relevance was differentiated by the ranking done based on the percentage mean per 
factor. Understandability, document quality, configuration management technology, modern 
programming specifications, program size and software complexity were top on the list with over 
80% mean values in the first survey. CASE Tools, Application Type and System Lifespan were 
the least significant with less than 60% mean. 

In the second survey code quality and staff ability and skills were the most influential factors with 
over 80% mean while location diversity of maintainers was the least significant. 

Previously, the identification of software maintenance cost drivers has relied on literature review 
as seen in Alija (2017) and frameworks as presented in the work by Benaroch (2013). Very few 
authors have taken the time to conduct primary studies to verify the factors. This work has made 
a contribution by verifying the factors through an expert opinion survey and in addition, ranking 
the factors. Ranking will provide the beneficiaries of this work with prioritized factors during 
software maintenance cost estimation. 

5. CONCLUSION AND FUTURE WORK 
This research aimed to identify and present a set of maintenance cost drivers for python 
programs and show the order of relevance. This was done through an expert opinion survey to 
determine relevant factors for estimating the maintenance cost of python programs. A total of 
twenty four factors were reported and ranked in order of relevance. Adoption of the mentioned 
factors by project managers can greatly impact decision making and success in the estimation of 
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software maintenance costs. This work has also a great benefit to software developers since it 
presents information for developers to understand which factors affect maintenance cost and their 
ranking in terms of relevance. A metrics-based neural-fuzzy cost estimation model will be 
developed in the near future and the updated factors will be considered as input parameters. 
Incorporating updated cost drivers will potentially result in a more accurate estimation model for 
python programs. 

6. REFERENCES 
Aakriti, & Shreta. (2015). Software Maintenance challenges and issues. International journal of 
computer science engineering, 4 (1), 23-25. 

Alija. (2017). Justification of software maintenance costs. International Journal of Advanced 
Research in Computer Science and Software Engineering, 7 (3), 15-23. 

Balraj, K. (2017). A Survey of Key Factors Affecting Software Maintainability. International Journal 
for Research in Applied Science & Engineering Technology, 5 (6), 1631-1637. 

Benaroch. (2013). Understanding Factors Contributing to the Escalation of Software Maintenance 
Costs . Thirty Fourth International Conference on Information Systems. Milan. 

Boehm. (1983). Software Engineering Economics. ACM, 8 (3), 44 - 60. 

Boehm, Abts , & Chulani. (2000). Software development cost estimation approaches - a survey. 
Annals of Software Engineering, 10, 177 - 205. 

Boehm, Abts, Brown , & Chulani. (2009). Software cost estimation with COCOMO II. Prentice Hall 
Press. 

Boehm, Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., & Steece, B. (2009). 
SSoftware cost estimation with COCOMO II. Prentice Hall Press. 

Brereton, Kitchenham, Budgen, & Turne. (2007). Lessons from applying the systematic literature 
review process within the software engineering domain. Journal of systems and software, 80 (4), 
571 - 583. 

Bryant, & Kirkham. (1983). B .W.BOEHM SOFTWARE ENGINEERING ECONOMIC S A 
REVIEW ESSA Y. ACM , 8 (3), 44. 

Chamkaur, Neeraj, & Narender. (2019). Analysis of software maintenance cost affecting factors 
and cost models. International journal of scientific and technology research, 8 (9), 276-281. 

Chen, Chen, Ma, & Xu. (2016). Detecting code smells in python programs. International 
conference on software analysis testing and evolution. Nanjing,China. 

CMRP. (2014). Maintenance engineering handbook. McGraw-Hill Education. 

Dehaghani, S. M., & Hajrahimi, N. (2013). Which factors affect software projects maintenance 
cost more? Acta Informatica Medica, 21 (1), 63-66. 

Dev. (2020). Design and development with Python programming. Journal of Engineering & 
Technology, 26-30. 

github. (2022). Retrieved from Github.com: Github.com 

index. (2022, November 12). Retrieved from tiobe.com: https://www.tiobe.com/tiobe-index/ 

Islam, & Katiyar. (2014). Development of a software maintenance cost estimation model: 4th GL 
perspective. International Journal of Technical Research and Applications , 2 (6), 65-68. 



Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga 

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 35 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

Ismaeel, & Jamil. (2007). Software engineering cost estimation using COCOMO II model. Al-
Mansour J, 10, 86-111. 

Keim, Bhardwaj, saroop, & Tandon. (2014). Software Cost Estimation Models and Techniques: A 
Survey. International Journal of Engineering Research & Technology (IJERT), 3 (2), 1763 - 1768. 

Kim, H., Kim, S., Suh, J., & Ahn, Y. (2003). The software maintenance project effort estimation 
model based on function points. JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: 
RESEARCH AND PRACTICE, 15 (2), 71-85. 

Kitchenham, & Taylor. (1987). Software Cost Models. ICL Technical Journal, 4 (1), 73-101. 

Kukreja, & Garg. (2017). Effort estimation of object orinted system usig Stochastic tree boosting 
technique. International journal of advanced research in computer science, 91-96. 

Kyoung-ae-jang, & Woo-je Kim. (2021). A method of activity-based software maintenance cost 
estimation for package software. The Journal of Supercomputing , 8151 - 8171. 

Lakens. (2022). Sample Size Justifcation. Collabra: Psychology, 8 (1), 1-32. 

Lakens, D. (2021). Sample size justification. psyarxiv. 

Lee, M. J. (2011). Identifying effort estimation factors for corrective maintenance in object-
oriented systems. Las Vegas: digitalscholarship.unlv.edu. 

Leung, & Fan. (2002). Software cost estimation. In Handbook of Software Engineering and 
Knowledge Engineering. 

Maheswaran, & Aloysius. (2018). Empirical Validation Of Object Oriented Cognitive Complexity 
Metrics Using Maintenance Effort Prediction. International Journal of Scientific Research in 
Computer Science Applications and Management Studies. 

Mohsen. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2 
(1), 53-55. 

Mosleh, & Apostolakis. (1987). The elicitation and use of expert opinion in risk assessment: a 
critical review. Probabilistic safety assessment and risk management, 1 (PSA 87). 

Naderifar, Goli, & Ghaljaie. (2017). Snowball sampling: A purposeful method of sampling in 
qualitative research. Strides in Development of Medical Education, 14 (3), 1-4. 

Periyasamy, K, K., & Ghode, A. (2009). Cost estimation using extended use case point (e-UCP) 
model. International Conference on Computational Intelligence and Software Engineering. 

Pragya, S., & Varun, K. (2012). A Cost Estimation of Maintenance Phase for Component Based 
Software. Journal of Computer Engineering, 1 (3), 1-8. 

Saabith, Fareez, & Vinothraj. (2019). Python current trennd applications - an overview. 
International Journal of Advance Engineering and Research Development, 6-12. 

Saljoughinejad, & Khatibi. (2018). A New Optimized Hybrid Model Based on COCOMO to 
Increase the Accuracy of Software Cost Estimation. Journal of Advances in Computer 
Engineering and Technology, 4 (1), 27-40. 

Sangeetha, Latha, & Prasad. (2012). software Cost Models. International Journal of Engineering 
Research & Technology (IJERT), 1-10. 



Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga 

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 36 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

Shi, J. M., & Sun, Z. (2012). Content validity index in scale development. Journal of Central South 
University. Medical sciences, 152-155. 

Shi, J. M., & Sun, Z. (2012). Content validity index in scale development. Journal of Central South 
University. Medical sciences, 37 (2), 152-155. 

Singh, Kamini, Juneja, Joshi, & Garg. (2022). Performance comparison of Putnam model using 
new technology trends for software maintenance cost estimation. Journal of Discrete 
Mathematical Sciences and Cryptography , 691-703. 

Singh, Sharma, & Kumar. (2019). An Efficient Approach for Software Maintenance Effort 
Estimation Using Particle Swarm Optimization Technique. International Journal of Recent 
Technology and Engineering (IJRTE), 1-6. 

Singh, Sharma, & Kumar. (2019). Analysis Of Software Maintenance Cost Affecting factorsand 
estimation models. International journal of scientific & technology, 276-281. 

Yongchang , R., Tao , X., Xiaoji , C., & Xuguang , C. (2011). Research on Software Maintenance 
Cost of Influence Factor Analysis and Estimation Method. IEEE. 


