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Abstract 

 
Interior vehicle acoustics are in close connection with our quality opinion. The 
noise in vehicle interior is complex and can be considered as a sum of various 
sound emission sources. A nice sounding vehicle is objective of the development 
departments for car acoustics. In the process of manufacturing the targets for a 
qualitatively high-valuable sound must be maintained. However, it is possible that 
production errors lead to a deviation from the wanted vehicle interior sound. This 
will result in customer complaints where for example a rattling or squeak refers to 
a worn-out or defective component. Also in this case, of course, the vehicle 
interior noise does not fulfill the targets of the process of development. For both 
cases there is currently no possibility for automated analysis of the vehicle 
interior noise. In this paper an approach for automated analysis of vehicle interior 
noise by means of neural algorithms is investigated. The presented system 
analyses microphone signals from car interior measured at real environmental 
conditions. This is in contrast to well known techniques, as e.g. acoustic engine 
test bench. Self-Organizing Maps combined with feature selection algorithms are 
used for acoustic pattern recognition. The presented system can be used in 
production process as well as a standalone ECU in car. 
 
Keywords: signal classification, SOM, car noise, pattern recognition. 

 
 

1. MOTIVATION 

Car interior noise is a sum of different sound emission sources, e.g. engine, wind, chassis or 
suspension. Furthermore, it is a challenging task to examine objective assessment criteria for a 
sound. In production process acoustic and vibration technology is used e.g. for analysis at engine 
test bench. Engines and test benches are tested in [1] to recognize damages of failure parts. 
Suppliers are also checking their parts before delivery by similar methods [2], [3] to achieve a 
reliable and correct product. Commonly, the acoustic analysis is done in defined environmental 
conditions to get no interference with unknown noises. In this case quite simple mathematic is 
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FIGURE 1: Model-design for classification of acoustic in car recordings. 

used to detect and to interpret changes. This method is in contrast to the method shown in this 
paper where an undefined environment influences the acoustic conditions. For assessment of car 
interior sound by algorithms the time signal which is recorded by microphone in car interior has to 
be fragmented in different mathematic parameters. The challenge is to find parameters which are 
corresponding to failures or changes of car part sounds and not to acoustic changes in 
environment. Thus the parameters have to be explicit relevant for sounds of interest. To analyze 
these relevant parameter knowledge storage is required to build up experience of parameter 
behavior. Therefore a neural net by Kohonen [4], the self-organizing map (SOM), models an input 
space where similar patterns can be categorized. For the described purpose the Kohonen-map is 
combined with parameter relevance detection algorithm. As a result the developed system 
assesses continuously the microphone signals, e.g. in two categories like “error-free” and “error” 
sound. In future the described method can be used for applications of sound assessment at 
production-line end (at test-bench or test-drive) or in car combined with hands-free kit. 
 

2. MODEL-LAYOUT FOR PATTERN RECOGNITION 

An adequate amount of data sets is the basis for acoustic pattern recognition. For this purpose 
different noticeable sounds are stored in database. They were recorded at different conditions 
like: 

• Car type, 

• Driving situation (longitudinal and transversal dynamic), 

• Car parts (new vs. used and damaged), 

• Environment (weather, pavement). 
In the following analysis one car type was chosen. For this one 1430 measurements with a length 
of 15 to 30 seconds are stored in database. In Figure 1, you can see the model for datasets 
analysis and pattern recognition. As next step the one (e.g. rms, sound pressure level) or 
multidimensional (e.g. spectrum, DCT, MFCC) parameters are calculated. However, psycho-
acoustic (e.g. loudness, roughness) parameters are calculated too. In the next step the focal point 

is 

relevance detection to identify parameters which are corresponding to noticeable sounds caused 
by wear (e.g. steering rod ball joint) or damage. The relevance detection algorithm has to identify 
the connection between: 

• the sound classes (e.g. “error-free” and “error” sounds), 

• sound classes and parameters. 
Each parameter is rated and ordered by rank information. The parameters with best relevance 
are used as input features for SOM. In the next step the datasets with best audibility of defined 
sound classes are used for training process. There are two defined sound classes “error” and 
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“error-free” sound. For more detailed information it is also possible to define more sub-sound-
classes, e.g. different noise emitting parts. The sound class representing sequences are 
extracted from database, whereas a huge variance of recording situations is very important. After 
learning process the weights of the neural net are adopted. Now the SOM represents the input 
space. In labeling process the sound class information is added. Thereafter it is possible to 
classify unknown test datasets and to get a feedback of associated sound class. 
 
In the following the described method is combined in a so-called SOM-Agent which will monitor 
and assess microphone signals. The knowledge – the neural weights – of the input space and the 
sound classes – from labeling process – are transferred to the agent. Relevant parameters are 
calculated for the sampled audio data and will be used as input features for the SOM-Agent. 
Identification of sound class active neurons will follow. In Figure 2 the created SOM-Agent 
characteristic curve for one recording of 11 seconds is shown. The 2 defined sound classes and 
an “unknown” class – in case of no active neuron – are represented by an output value in range 0 
to 2 on y-axis. The x-axis represents time. Statistics are also computed for the three classes.  

 

3. FUNDAMENTALS 

As described in previous section the shown method consists of two main components. First one 
is identification and calculation of sound class relevant parameters. For the second step these are 
the input features for a self-organizing map which will categorize them in defined sound classes. 
 
3.1 Relevance Identification 
Several methods exist for analyzing and calculation of feature influence, feature relevance, 
feature (subset) selection or feature extraction. Reduction of feature space to the essential is 
main target of several classification tasks. Anyway, the connectivity between the parameters and 
classes is determined. Therefore the correlation coefficient [5] – as linear method – or the 
information gain [6], [7] – as non-linear method – can be used. In Equation 1 the calculation rule 
for correlation coefficient, also known as normalized covariance is given. Thus, the linear 
connection between the vectorial values x  and y  is estimated. 
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FIGURE 2: Autonomous detection of noticeable acoustic changes in car interior. The SOM-Agent 

characteristic curve (blue) toggles between three sound classes “error-free”, “error” and “unknown” 
sound, e.g. if output value is “1” the microphone recording was made in a car with damaged or 

worn-out parts. 
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On the other hand the information gain ( IG , Equation 2 at [6]) is calculated by entropy H  and 

represents a non-linear probabilistic method. The information gain returns the contribution of one 
attribute to class decision making.  
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Whereas S  is the set and A  represents the class information of S . 
VS  is the subset of the 

selected class. 
Further known filter methods (parameter selection by pre-processing) are for example: Mutual 
Information, Fisher Discriminant, RELIEF, PCA, ICA, FCBF (Fast Correlation Based Filtering, [8], 
[9]). As you can see in [8], [9] the FCBF algorithm solves the two main aspects of feature subset 
selection. First one is in our case the decision whether mathematic parameter (feature) is relevant 
or not for a acoustic condition (sound class). In second step the algorithm determines whether a 
relevant parameter is redundant.  
The symmetrical uncertainty (SU, Equation 3) is used for determination of nonlinear connection 
between the two sources x  and y . It is based on information gain but it is normalized on interval 

[0,1].  
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In correlation analysis for a dataset the relevance and redundancy are assessed by this formula. 
If we are assuming that the values of one source contain same information like second source the 
SU output will be 1. If SU output is 0 the sources are independent of each other. The symmetrical 
uncertainty is used in FCBF algorithm as measure for correlation between two sources. In this 
algorithm two main aspects are shown. 
First one is the SU calculation for the feature-class-SU: 

• Serves as measure for correlation between each feature and the class information. 

• For each feature the SU to all classes is calculated and stored in a list. 

• For this list a threshold determines if features SU is too low. A feature is deleted if 
threshold is undercut. 

• For each class the residual features are ordered in descending order and stored in a final 
list. 

In second process the redundancy examination occurs by feature-feature-SU. 

• Serves as a measure for correlation between each combination of the listed features. 

• For each feature the SU is calculated to all other features. 

• Comparison of feature-feature-SU and feature-class-SU. 

• Features with very high SU are deleted. 

• The remaining features are representing the best features in dataset. 
 
In most cases the efficiency of the algorithm is shown by a classifier. For this case the recognition 
rate is the measure of assess. Anyway, as well known no algorithm will be the best or worst 
solution for all datasets. In most cases algorithms are optimized for all-round use or for dataset. 
As you can see in analysis (Figure 3, [9]) of UCI library [10] datasets the FCBF algorithm has best 
performance for CoIL2000 (compared to three reduction methods). For Lung-Cancer and Splice 
dataset on the contrary all methods have nearly same recognition rates.  
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3.2 Self-Organizing-Map 
The neurons of a self organizing map [4] are represented by a multidimensional weight vector. If 
the neural net is adopted the weight vectors are already adjusted (self organized without 
supervise) to the input space (defined by the features/parameters). Field of application is the 
recognition of clusters in high dimensional data. Each input node has a connection by weights to 
each neuron of the map. One way of visualization is the component plane where the weights are 
shown as contour or surface plot. However, more detailed information for SOM-visualization (e.g. 
U-Matrix) methods is discussed in [11]. 

Representation of the n  SOM-neurons 
nww ,,1 K  is done by the weight vectors 

nww
r

K
r

,,1
. The 

number of elements in w
r

 is equal to the number m  of input features 
mxx ,,1 K . The initialization 

of the weights is done randomly or by prior input space knowledge. Adjustment and allocation of 
neurons to the input space is made in different ways, e.g. as line, two- or three-dimensional map.  
The adaptation is done by a learning rule with defined step size. The interconnected neurons are 
adjusted by means of following equation: 
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In Equation 4 the calculation rule (from [4]) for adaptation of weight vectors 
kw

r
 for selected 

neuron k  is shown. The step size α  is chosen in interval 10 << α . There is no general rule for 

determination of α . If batch learning is used the input vector x
r

 with m  features is randomly 

selected out of dataset. If we have a closer look to the learning process the adjustment of the 
weights results in a movement of the neuron in the direction of the training vector. The selection 
of the trained neuron occurs by a distance function, e.g. Euclid distance. The neuron which has 
lowest distance to input vector x

r
 is adopted. However, the algorithm has to be updated in the 

way that the connected neurons are covering the complete input space to get a map which is 
topology preservative. For this purpose a neighborhood function ϕ  defines a radius for the 

selected winner neuron which has lowest distance to input vector. Thus, neurons inside the 

radius were adopted by the input vector, too. Furthermore a distance function ( )ki wwd ,  allows a 

division in different neighborhood-distances R  for a weighted neuron adaptation. Symbolically 
neurons which are closest to the winner neuron have the distance 1=R  and neurons in next 
radius have a distance of 2=R  and so on. The degree of adaptation which defines the amount 
of movement for the winning neuron in the direction of input vector x

r
 depends on the 

neighborhood function ( ) Rww ki ≤,ϕ  with a range of values in [0,1]. The neurons 
iw  with a small 

distance will be adapted much more than neurons with a big distance. Also the design of the 
neighborhood function can be varied depending on computational resources. 

 
Figure 3: Comparison of recognition rates of FCBF, ReliefF, CFS-SF and FOCUS-SF algorithm. ([9], 

“Acc records 10-fold cross-validation accuracy rate (%) and p-Val records the probability associated with 
a paired two-tailed t-Test.”). 
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• Computationally efficient Stair-Neighborhood function 
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• Computationally intensive Gaussian-Neighborhood function 
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In comparison Equation 6 realizes a more detailed and non-linear neighborhood-function than 
Equation 5. Finally, after insertion in Equation 4 the learning rule is shown updated in Equation 7. 
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Commonly the adaptation process is done by a defined amount of training cycles. The adaptation 
process shown in Equation 4 and 7 can be optimized by a fast adjustment at the beginning and a 

slow one at the end of training. This behavior can be realized by a time-varying step-size ( )tα . 
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By means of the fixed ratio between actual time t  to the number of cycles 
ET  in Equation 8 a 

linear function is given. Non-linear step-size functions are also possible alternatives. Also it is 
possible to modify the neighborhood functions (Equation 5 and 6) with a time descending factor. 
For interpretation of the self-organizing map two main aspects were analyzed: 

• Characteristics of SOM-neuron-weights in dependence of input vector. 

• Class assignment (sound classes) of neurons with a maximum reaction (smallest 
distance) at defined stimulation (a.k.a. labeling process). 

 

4. METHOD DESCRIPTION AND EVALUATION 

As a basis for the training of the SOM-Agent (see Figure 2) a noise database with different 
measurements is used from which the mathematical properties are calculated. For training, 11 
different noise types were defined which come from worn-out coupling rods, wheel bearings, 
suspension strut mountings and other running gear components from the front of a defined motor 
vehicle type. Noises which originate from the normal sound of a series vehicle without worn-out 
components represent a further noise type. In sum there are 129 measurements - with a length 
between 10 and 30 seconds – for which finally two training classes are defined: 
“C1”: error 
“C2”: error-free 
The time constant for the window length for which the parameters are calculated and averaged is 

ms250 . For each of the 129 datasets several parameter-sets are calculated and marked as class 

one or two. For the dimension reduction and relevance determination for the features the FCBF-
algorithm was selected. From the 17 available parameters the parameters shown in Table 1 are 
determined as relevant by the FCBF-algorithm described in section C1. The training process runs 

T  cycles, in which a randomly selected parameter-set is presented to the network. In next step 
all measurements are used for evaluation by SOM-Agent. Therefore all 129 acoustic records are 
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presented one after the other and the characteristic curve shown in figure 2 is calculated. The 
parameters must be estimated for the acoustic signals continuously. Thus, these time continuous 
parameters equal time variable data rows where each column set is an input vector of self-
organizing map. Through determination of the active neurons in dependence of the class the 
acoustic time signals can be assessed and equipped with class information (“C1” or “C2”). For 
reliable condition recognition a buffer (e.g. ring-buffer with 12000 samples) is filled with these 
data rows and is analyzed periodically. For this purpose a subset of the stored data in buffer is 
used to estimate the class. Depending on distribution of active neurons the following output is 
calculated: 

• SOM-Agent output Ns ∈  in interval ]2,1,0[=s , where 

  - 1=s  corresponds with error-noise class “C1” and 

  - 2=s  corresponds with error-free-noise class “C2”. 

• SOM-output 0=s  if input data didn’t activate any neuron. That’s why Zero corresponds 

to an unknown state “U”. 

 
For visualization a low pass filtered curve is generated from signal s : 
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A statistical evaluation is done afterwards either for the values of s  or 
LPs . In the case of strong 

fluctuating curves of s  the curve of 
LPs  will generate an averaged value over the window length 

characterized by L . However diffuse values (e.g. 5.1=s ) are not used for statistic analysis, that’s 

why thresholds are implemented (have a look at colored areas in Figure 2). These thresholds are 
optimized for a clear assessment between two classes. The probability of occurrence for the 

classes (in the case of use of 
LPs  within the threshold regions) is estimated over the length of 

time signals. In the legend of Figure 2 the probability of occurrence is shown for the analyzed 
record. As a result class “C1” was determined by SOM-Agent for 70% of analyzed time.  
 
For training process and parameterization of self-organizing map the obviously noticeable 
sequences are extracted out of 129 measurements. Hence a dataset with 2456 patterns with 17 
parameters is generated. The 6 most relevant parameters were presented to 2 different self-
organizing maps with 169 or 1000 neurons and 6 inputs. The Gaussian function described in 
Equation 6 was used as a neighborhood function. Neurons within the neighborhood radius R  
(defines the width of the bell curve) are adopted by following rule (out of Equation 7, 8, 9): 
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As distance function, the Euclidean distance is used: 

 

Roughness (Time) 

Speed 

Sharpness (Time) 

Spectral Centroid 

Yaw Rate 

Loudness (Time) 

 
TABLE 1: The 6 most relevant parameters are estimated by means of FCBF-algorithm. 
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In figure 4 the evaluation of the recognition rates is shown for the SOM1-agent (169 neurons). On 
x-axis the acoustic error conditions (class "C1") in the range 1 to 11 are reproduced. Number 12 
is the acoustic original state without any worn-out or damaged part (class "C2"). On y-axis the 
averaged probabilities of occurrence are reproduced.  
 

 
The results of SOM1-Agent (Figure 4) show that primarily the noise classes 1-8 are assessed 
much better than 9-11. Just in the case of noise type 9 many measurements are classified as 
“unknown”. Also many of the original sound records (class 12) are assessed as unknown 
condition (some records are assessed for more than 70% as unknown). This behavior shows that 
no neuron for one of the defined classes “error” or “error-free” was activated. This bad 
performance could be caused by too little records for this noise type. Anyway, the noise of a 
worn-out drive shaft is only noticeable for a few situations when the car is accelerated or high 
steering angle at low speed occurs. This is in contrast to steering rods where noticeable noise is 
emitted in many driving situations. Definitely all records without any noticeable noise are not 
considered for the database but there are still records where the noise occur e.g. for only one 
time in 10 seconds. However, for this case the SOM-Agent shall assess the moment where noise 
is noticeable as “error” class and all other as “error-free”. 
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Figure 4: SOM1-Agent statistic: A calculated probability of occurrence for 129 measurements, SOM with 

169 neurons and 6 parameters is used. Legend defines whether the analyzed measurements are 
assessed as “error”, “error-free” or “unknown” condition. 
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In comparison the SOM2-Agent (Figure 5) assesses much less time domain data (from 129 
measurements) as “unknown”. Just the original sound records are classified to more than 50% of 
the time for the correct category “C2” (“error-free”). This is a result of the increased amount of 
neurons (1000), the corresponding expansion of the input space and the more detailed 
information of the trained input space. In contrast to SOM1-Agent, 6 times more neurons are 
used. 
 

5. CONSLUSION & FUTURE WORK 

The SOM2-Agent produces a reliable statement of the matching category for the analyzed 129 
acoustic in-car records. In comparison to SOM1-Agent (Figure 4 and 5) much less time-parts are 
declared as “unknown”. All car interior time signals of an error-free car are classified for more 

than 50% of time to the right category “C2”. The probability of occurrence of the other two 
categories is near less than 10%. Anyway, noises of worn-out components are assessed at least 
for more than 40% of analyzed time to the right category/class. So it is important to make an 
decision by means of the relations between all statistic outputs “C1”, “C2” and “U”. For example, if 

 

class C1 [%] C2 [%] U [%] 

1 95,0 0,3 2,4 

2 94,6 1,3 1,6 

3 90,9 1,1 2,1 

4 92,0 1,3 4,4 

5 87,0 2,9 3,6 

6 88,7 1,7 3,7 

7 93,4 0,6 2,6 

8 83,5 3,4 2,4 

9 69,5 4,6 4,8 

10 67,6 2,8 3,0 

11 83,0 3,3 3,8 

12 1,8 87,3 3,4 
Table 2: Averaged probabilities of occurrence (SOM2-Agent) for 129 measurements and for different 

error noise (class 1-11) and error-free (class 12) records. 
 

acoustic pattern recognition for microphone records in car

[SOM-Agent: n=1000 T=20000 M=6]

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1-11 noise classes / 12 original car sound class

p
ro

b
a
b

il
it

y
 o

f 
o

c
c
u

rr
e
n

c
e
 [

%
]

C1/error C2/error-free unknown

 
Figure 5: SOM2-Agent statistic: A calculated probability of occurrence for 129 measurements, SOM with 

1000 neurons and 6 parameters is used. Legend defines whether the analyzed measurements are 
assessed as “error”, “error-free” or “unknown” condition. 
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“C2” is much higher than “C1” it is likely that the analyzed signal contains no information for a 
worn-out part.  
In Table 2 all averaged probabilities of occurrence of SOM2-Agent are listed. The noise types of 
the class 9 and 10 are recognized worst. All other noise types emitted from defect or worn-out 
components are recognized as a “error”-sound (“C1”) correctly via at least 83 % of the analyzed 
time. The “error-free”-sound (“C2”) - reproduced through class 12 - is evaluated above 87 % of 
the analyzed time correctly by the agent. However, the average shows one more time that the 
introduced method works well but nevertheless further improvements will be focused on the 
outliers. The presented method seems to be good for pattern recognition in acoustic records due 
to combination of traditional pattern recognition, signal processing and statistic analyze. However, 
it is understood that the results will be proof for the analyzed environment conditions (e.g. car 
type, microphone type, measurement procedure). Furthermore, the analysis of the influence of 
different car types on the features and pattern recognition is necessary in further studies. It was 
shown that the number of the neurons has a decisive influence on the accuracy and reliability of 
the SOM-agent. It has to be examined also by means of further measurements how far the 
number of neurons, adaptation accuracy and over-fitting influence the training and assessment 
process. 
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