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Abstract 
 
Compressive sensing has been evolved as a very useful technique for sparse reconstruction of 
signals that are sampled at sub-Nyquist rates.  Compressive sensing helps to reconstruct the 
signals from few linear projections of the sparse signal.  This paper presents a technique for the 
sparse signal reconstruction by padding the compression matrix for solving the underdetermined 
system of simultaneous linear equations, followed by an iterative least mean square 
approximation.  The performance of this method has been compared with the widely used 
compressive sensing recovery algorithms such as l1_ls, l1-magic, YALL1, Orthogonal Matching 

Pursuit, Compressive Sampling Matching Pursuit, etc..  The sounds generated by 3-blade engine,  
music, speech, etc. have been used to validate and compare the performance of the proposed 
technique with the other existing compressive sensing algorithms in ideal and noisy 
environments.  The proposed technique is found to have outperformed the l1_ls, l1-magic, 

YALL1, OMP, CoSaMP, etc. as elucidated in the results. 
 
Keywords: Compressive Sensing, Greedy Algorithms, LMS Approximation, Relaxation Methods, 
Sparse Recovery, Sub-Nyquist Rate. 

 
 
1. INTRODUCTION 

Compressive Sensing [1]-[3] is a new paradigm that gained the attention of researchers in signal 
processing, communication as well as mathematics.  It helps in reconstructing the signal from far 
less samples than that required by the sampling theorem, which paves the way for saving 
memory and low data rate requirements in communication applications. 
 
Traditional methods make use of signal representations conforming to the sampling theorem that 
makes compression a necessity before storage or transmission in situations where the memory 
space and bandwidth are scarce resources.  A signal with only a few non zero coefficients in any 
transform domain is called a sparse signal and a signal which can be approximated by a few non 
zero coefficients in any transform domain is called a compressible signal.  For sparse or 
compressible signals, the compressive sensing technology is a paradigm shift. 
 
The recovery of the signal is carried out by using certain optimization techniques.  The recovery 
becomes more difficult when the signal to be compressed is corrupted with noise.  For resorting 
to compressive sensing, it is required that the compression and reconstruction techniques should 
be capable of transforming the data into a suitable representation domain.  Many natural and 
manmade signals have underlying sparse representations in some basis functions [4].  Basis 
functions like Discrete Fourier Transform, Discrete Cosine Transform, Wavelets, etc. can be 
used, depending on the information and type of the signal.    
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There are many compressive sensing solvers like l1-magic, l1_ls, YALL1, etc., which come under 

the category of relaxation methods and Orthogonal Matching Pursuit (OMP), Compressive 
Sampling Matching Pursuit (CoSaMP), etc., which come under the category of greedy methods 
for sparse signal recovery. A study of compressive sensing recovery algorithms has been 
performed in [5] and concluded that although the relaxation algorithms have high computational 
complexity and slow response time, they work better in terms of relative error between the 
original and reconstructed signals. However, the authors do not seem to have made any effort to 
study the noise immunization capability of the algorithms. 
 
Greedy algorithms are faster and have simpler implementation. For many applications OMP does 
not offer adequate performance, which led to the introduction of CoSaMP. It is faster and more 
effective for compressive sensing problems but is usually less efficient than algorithms based on 
convex optimization or relaxation methods. Hence, a method which offers an acceptable signal 
reconstruction and fast response has been proposed in this paper. Moreover, the robustness of 
various compressive sensing recovery algorithms are compared with the proposed technique 
under noisy and ideal environments. 
 
The paper is organized as follows.  Section 2 of the paper discusses the fundamental concepts in 
compressive sensing while section 3 discusses some of the most widely used compressive 
sensing algorithms.  Section 4 gives a method for sparse signal reconstruction based on matrix 
padding and the iterative least mean squares approximation.  Section 5 makes a comparison of 
the performances of the algorithms by estimating the signal-to-noise ratio, correlation and mean 
squared error.  Section 6 throws light on some of the prospective applications of the proposed 
technique. 

 
2. BACKGROUND 
A discrete time signal x(n) with N elements, can be viewed as an N x 1 vector with n=1, 2, .... N. 
Consider a basis function ψ, which provides K sparse representations (i.e., ||x||0 ≤ K) of x(n), with 
K < N.  x(n) can be represented in the matrix form as  x=ψf, where ψ is the basis matrix of order 
N x N and f is the weighting coefficient vector of order N x 1.  The vector y=ϕx, where ϕ is the 
measurement matrix of order M x N with M < N, is the linear projection of the signal x(n).  
Recovering the original signal x requires solving an underdetermined system of simultaneous 
linear equations.  Given the knowledge that x is sparse, the system regenerates the actual signal 
from the acquired small number of non-adaptive linear projections of the signal. 
 
2.1 Data Recovery 
To recover the sparse signal, the condition that should be satisfied is  

   minimize ||x||0  subject to y=ϕx                                                (1) 

where ||x||0 is the number of non-zero elements of x, which is also called l0 norm.  Computing l0 

norm is an NP-hard problem [6] which led to making use of the basis pursuit relaxation or convex 
optimization [7]. Such approaches have led to the establishment of an l1 - l0 equivalence [8] and 

hence, (1) can be represented as, 

minimize ||x||1 subject to y=ϕx                                                (2) 

where ||x||1 is the sum of the absolute values of the elements in x, which is also being referred to 
as the l1-norm.  

 
In the case of signals, which are contaminated with noise, the equality constraint is relaxed to 
allow some error tolerance є ≥ 0 [9], such that  

minimize ||x||1 subject to ||�� − �||� ≤ є                                         (3) 

will help to reconstruct x with insignificant error [10],[11]. 
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2.2 Foundation of Compressive Sensing 
Compressive sensing is based on sparsity and incoherence.  Incoherence expresses the idea 
that the signals that are spread out in the domain in which they are acquired, may have a sparse 
representation in another domain.  For effective reconstruction, it is mandatory that ϕ has to be 
incoherent with ψ.  Incoherence implies that the mutual coherence or the maximum magnitude of 
entries of the product matrix ϕψ is relatively small.  Coherence is measured according to  

μ
�, � =  √� ����〈��,  �〉�   1 ≤ �, � ≤ �                                      (4) 

If ϕ and ψ contain correlated elements, the coherence is large [1].  Coherence takes the values in 

the range [1, √�]. The random measurement matrices are largely incoherent with any fixed basis 
function ψ.  Hence the sparsity basis function need not even be known, when designing the 
measurement system.  
 
The necessary and sufficient condition for the sparse signals to be uniquely determined is that the 
matrix ϕ should satisfy the Restricted Isometry Property of order K [9], such that 


1 − ���‖�‖��≤‖ �‖��≤ 
1 + ���‖�‖��                                               (5) 

where �� is the isometry constant of the matrix � and K is the sparsity of the signal.  Evaluating 
RIP for a given matrix being computationally complex, this property is normally verified by 
computing the coherence of the matrix ϕ.  Certain random matrices such as Gaussian and 
Bernoulli matrices are known to obey RIP [12]. 
 
A signal x is compressible if its sorted coefficient magnitudes "n in the transform domain ψ 
observe a power law decay [11], according to which, 

|"#| ≤ $%&', n=1, 2, …                                                     (6) 

where R and q are constants with q ≥ 1. 

 
3. COMPRESSIVE SENSING ALGORITHMS 
The general block diagram for Compressive Sensing and recovery is shown in Fig. 1.  The data 
from the wave file is segmented into frames followed by transforming the signal into suitable 
domain for making it sparse.  It is then compressed with the help of a measurement matrix.  
These values can either be stored or transmitted, depending on the requirement.  These signals 
are reconstructed with the help of a compressing sensing algorithm, followed by transforming it to 
the domain in which the data was acquired and the frames are reassembled to regenerate the 
signal. 
 
 
 
 
 
 
 
 
 

 
FIGURE 1: Block Diagram for Compressive Sensing and Recovery. 

 
Solution to the sparse recovery problem can be achieved with Relaxation Methods or with Greedy 
Algorithms.  Relaxation methods replace the original sparse recovery problem with a convex 
optimization problem, whereas Greedy Algorithms focus on finding the non-zero values of x at 
their respective locations, which are determined iteratively.  The Greedy Algorithms accumulate 
the approximations by making locally optimal choices iteratively. 
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3.1    Relaxation Methods 
l1-norm based sparse recovery problems can be solved using a variety of existing solvers such as 

l1-magic, YALL1, l1_ls, etc.. l1-magic involves recovery of a sparse vector x from a small number 

of linear measurements y=ϕx or y=ϕx+e using primal-dual method [13], [14], where e is the 
measurement noise,.  YALL1 is another solver that can be applied to l1-optimization, which is a 

collection of fast l1-minimization algorithms based on the dual alternating direction method [15], 

[16].  It is a first order primal-dual algorithm, as it explicitly updates both primal and dual variables 
at every iteration. 
 
l1_ls solves an optimization problem of the form 

minimize ‖�� −  �‖�� + (‖�‖)                                                 (7) 

where λ ˃ 0 is the regularization parameter.  Equation (7) is referred to as an l1-regularized least 

squares problem.  l1_ls is a specialized interior-point method [17] that uses the preconditioned 
conjugate gradients algorithm to compute the search direction. 
 
3.2 Greedy Algorithms 
Greedy Algorithms include Orthogonal Matching Pursuit (OMP), Compressive Sampling Matching 
Pursuit (CoSaMP), etc..  Orthogonal Matching Pursuit, which is one of the earliest methods for 
sparse approximation, provides simple and fast implementation [18].  It is an iterative algorithm 
that selects at each step the dictionary element best correlated with the residual part of the signal 
[19].  New approximation is generated by projecting the signal on to the dictionary elements that 
have already been selected and solving a least squares problem.  The residual is updated in 
every iteration.  The number of iterations can be made equal to the sparsity of the signal or the 
stopping criteria can be based on the magnitude of the residual [9].  Compressive Sampling 
Matching Pursuit [20] which selects multiple columns per iteration [9], is an enhancement to 
OMP. Each iteration of CoSaMP reduces the error in the current signal approximation. 

 
4. PROPOSED APPROACH FOR SPARSIFICATION AND RECOVERY 
In view of the overwhelming limitations of the existing compressive sensing algorithms, in terms 
of computational complexities, response time, overall reconstruction capabilities, etc., there was a 
constant search for high performance, more capable and reliable techniques for the sparsification 
and recovery of audio, speech and natural images. Hence, a new method has been proposed in 
this paper which involves padding the matrix ϕ during compression phase for the purpose of 
solving the underdetermined system of simultaneous linear equations, followed by least mean 
square based adaptation during the reconstruction phase. The solution is obtained with the help 
of a pseudo-inverse matrix by matrix padding, which is then corrected using iterative least mean 
square based adaptation. 
 
The signal has to be converted to the domain in which it is sparse, depending on the information 
and type of the signal. In the simulation studies, the domain chosen is Discrete Cosine Transform 
(DCT). Conversion of the signal to DCT results in a signal which is sparse with real valued 
coefficients, thus making the reconstruction easier [21]. The advantages of the Discrete Cosine 
Transform over Discrete Fourier Transform lies on the fact that it is real-valued, has better energy 
compaction and as such a sizeable fraction of the signal energy can be represented by a few 
initial coefficients [22]. The DCT of a 1-D sequence f(x) of length N is 

*
+� = "
+� ∑ -
�� *./ 01
�23)�4
�5 65&)278                                               (8) 

for u = 0,1,2,…,(N −1).  
where 

"
+� =
9:
; <)

5 , -.= + = 0
<�

5 , .?ℎA=BC/A
D                                                         (9) 
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The first coefficient, being the average value of the sample sequence, is referred to as the dc 
coefficient, while all other transform coefficients are called the ac coefficients. Similarly, the 
inverse DCT is defined as 

-
�� = ∑ "
+� *
+� *./ 01
�23)�4
�5 65&)478                                           (10) 

for x = 0, 1, 2,… (N −1).  
 
The proposed technique converts the signal into sparse domain by applying DCT, followed by 
compressing it using a modified measurement matrix. This modification of the measurement 
matrix has been effected by padding it with a suitable sub matrix for resolving the singularity 
problems, while solving the underdetermined system of simultaneous linear equations. Making 
use of this technique, a computationally efficient sparse signal reconstruction can be achieved. 
 
4.1 Matrix Padding 
The data from the wave file is divided into N' frames of N samples and these frames are then 
converted to the frequency domain by using DCT which resulted in a sparse data representation.  
The compression matrix used is a random Gaussian measurement matrix ϕ of size M x N with M 
< N.  In order to make the computation of the matrix inverse feasible during the  reconstruction 
phase at the receiver, it is padded with (N-M) x N ones which makes the matrix size to N x N. 
Operation of this modified matrix ϕ' upon the framed sparse data results in a signal matrix y that 
has two sub matrices of which the first sub matrix yc gives the data pertaining to the matrix 
operation y=ϕx, while the other sub matrix yam provides certain redundant data consequent to the 
process of matrix padding. Removing the redundant data from yam results in a vector yav of size 1 
x N'.  The matrix yc of order M x N' and the vector yav of order 1 x N' are to be transmitted or 
stored separately.  The algorithmic procedure for the compression is given in ALGORITHM I. 
 

ALGORITHM I: Compression Procedure 

Begin 

     Read the wave file 

     Convert it into N' frames of N samples 

     Create a matrix x(N,N') with the N' frames of samples 

     Generation of modified Measurement matrix 

          Generate Gaussian random measurement matrix ϕ 

          Generate modified Measurement matrix ϕ' 

     Compression Phase 

         Multiply x with DCT matrix ψ 

         Compress the signal using ϕ' 

     Generate yc (compressed data) and yam (auxiliary matrix)  

     Store / transmit yc and yav (auxiliary vector) separately 

End 

 
The signal is reconstructed at the receiver by generating the signal matrix y' by appending the 
received yc' with yam', which is generated from the received yav' by performing the reverse of the 
operations carried out at the transmitter.  The Moore Penrose inverse of ϕ' is taken and multiplied 
with y' and the data so obtained is converted back to the time domain by the Inverse DCT 
operation to generate the initial solution, which is refined further by iterative LMS adaptation. The 
procedure for the recovery of the signal at a later stage is furnished in ALGORITHM II. 
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4.2 Initial Solution 
The problem in sparse recovery addresses the selection of the right solution from the feasible set.  
In order to find an appropriate solution, consider  

minimize J(x) subject to y=Ax                                                 (11) 

Choosing J(x) as the squared Euclidean norm ‖�‖�� and using Lagrange multipliers,  

E
�, (� = ‖�‖�� + (F
G� − ��                                                  (12) 

where ( is the Lagrange multiplier or dual variable. Derivative of (12) with respect to x, 

∇�E = 2� + GJ(                                                            (13) 

Equating (13) to 0 yields, 

�KLKMKNO = − )
� GJ(                                                         (14) 

Substituting (14) into the constraint y=Ax of (11) gives, 

G�KLKMKNO = − )
� GGJ( = �    ⟹  ( = −2
GGJ�&)�                                (15) 

Putting the value of ( from (15) into (14) yields,   

�KLKMKNO = GJ
GGJ�&)� = GQ�                                               (16) 

which is the pseudo-inverse solution. As the initial solution is not sparse, an LMS based 
adaptation has been used to refine the result. 
 

ALGORITHM II: Recovery Procedure 

Begin 

     Generate the initial solution 

          Retrieve / receive the signals yc' and yav'  

          Generate yam' from yav' 

          Append yam' to yc' and generate y' 

          Generate Moore Penrose inverse of ϕ' and multiply it with y' 

          Perform Inverse DCT operation and reassembling of frames 

     Perform LMS based adaptation for signal refinement 

     For n=1,……Length of x(n) 

          Compute the output y(n) 

          Compute the error signal e(n) 

          Update the filter coefficients w(n+1) 

     End 

End 

 
4.3 LMS Based Adaptation 
An adaptive filter is a self-designing one, which relies on a recursive algorithm for its operation 
that makes it possible for the filter to perform satisfactorily in an environment where complete 
knowledge of the relevant signal characteristics is not available [23].  For descending towards the 
minimum on the mean-square-error performance surface of the adaptive filter, least-mean-square 
or LMS algorithm can be used, which is simple and has less computational complexity. LMS filter 
is used in a large number of applications like echo cancellation, channel equalization, signal 
prediction, etc..  
 
If y(n) is the n

th
 sample of the observed output signal [24], then  
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�
n� = �J
n� S
n�                                                            (17) 

where S
n� = Tw8
n� w)
n� … … wW&)
n�XJ and x
n� = Tx
n� x
n − 1� … … x
n − L + 1�XJdenote the 
filter coefficient vector and input vector respectively and L is the filter length. The error of the 
adaptive filter output with respect to the desired response signal d(n) is 

[
n� = \
n� − �J
n� S
n�                                                   (18) 

By minimizing the cost function which is the mean squared error [25], the filter coefficients are 
updated iteratively, so that 

S
n + 1� = S
n� + ] [
n� �
n�                                             (19) 

where ] is the adaptation step size.  If R is the autocorrelation matrix of the input vector �
n� and 
λmax, its maximum eigen value, the condition for convergence for the LMS is [24] 

0 ˂ ] ˂ )
_`ab                                                             (20) 

  
The structure of adaptive LMS FIR filter is shown in Fig. 2. It is known that the optimum weight 
vector, which is the point at the bottom of the performance surface, is 

c∗ = e&)f                                                               (21) 

where R is the input correlation matrix given by 

e = ET�
n��
n�JX                                                         (22) 
and 

f = ET\
n��
n�X                                                           (23) 

Taking expectation on both sides of (19), 

ETS
n + 1�X = ETS
n�X + ] ET[
n��
n�X 
                                                                   = ETS
n�X + ] ET\
n��
n� − �
n� �J
n� S
n�X 
                                                                   = ETS
n�X + ]
f − ET�
n� �J
n� S
n�X�        
                                                                   = ETS
n�X + ]
f − ET�
n� �J
n�X ETS
n�X� 

(∵ Coefficient vector S
n� is independent of input vector �
n�) 

ETS
n + 1�X = ETS
n�X + ]
f − e ETS
n�X�                                   (24) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 2: Tapped Delay Line Structure of the LMS Filter. 
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Let the error in coefficient vector s(n) be, i
n� = S
n� − c∗                                                      (25) 
Substituting (25) in (24), 

ETi
n + 1�X = ETi
n�X + ]jf − e 
ETi
n�X + c∗�k 

                  = ETi
n�X + ]
f − e ETi
n�X − ec∗� 

                       = ETi
n�X − ] e ETi
n�X     
∵ f = ec∗� 

= 
l − ] e� ETi
n�X                                                             (26) 

This implies that the mean error in filter coefficients at instant n+1 depend on step size, 
autocorrelation of the input vector and the mean error in filter coefficients at the instant n. 

 
5. RESULTS AND DISCUSSIONS 
In the simulation studies, the number of samples per frame is chosen to be 2048, which resulted 

in 22 frames for the test signal and the tapped delay line structure has been used for the LMS 

adaptation with 32 weights. 

 

The proposed approach for compressive sensing has been simulated under noiseless and noisy 

environments and the performance of this approach has been vis-a-vis compared with a few of 

the widely used compressive sensing recovery methods like l1-magic, l1_ls, YALL1, OMP and 

CoSaMP. Comparison of the performances of various algorithms assuming x’ as the recovered 

signal and x as the original signal, has been performed in terms of signal-to-noise ratio, 

correlation and mean squared error.  

 

Signal-to-Noise Ratio is computed using 

SNR = 10 log ∑ st
∑
s&su�t                                                         (27) 

 

Correlation is computed as Rssu =  ∑ s su
v∑ st  ∑ sut                                                             (28) 

 

Mean Squared Error is computed using MSE = )
L ∑
x − x′��                                                          (29) 

 
5.1 Performance Comparison under Noiseless Scenario 
Figs. 3, 4 and 5 show the results of comparison of the performances of the proposed method with 
the widely used compressive sensing recovery algorithms at 50% compression. The plots show 
the values of signal-to-noise ratio, correlation and mean squared error for the sparse recovery 
algorithms under consideration. 
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FIGURE 3: Signal-to-noise ratio Performance of the proposed method is compared with the other 

compressive sensing methods. 
 

These plots reveal that the l1_ls, l1-magic, YALL1, and the proposed method give comparable 

and good performance under noiseless scenarios, whereas the signal-to-noise ratio, correlation 
and mean squared error values of OMP and CoSaMP show that they do not guarantee adequate 
performance. 

 

 
FIGURE 4: Comparison of the Correlation Performance of the proposed method with the other compressive 

sensing methods. 
 

 
FIGURE 5: Comparison of the Mean Squared Error Performance of the proposed method with the other 

compressive sensing methods. 
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5.2 Performance Comparison under Gaussian Noise 

 
FIGURE 6: Signal-to-noise ratio Performance of the proposed method is compared with the other 

compressive sensing methods. 

 
Figs. 6, 7 and 8 show the comparison of the performances of the proposed method with the 
widely used compressive sensing recovery methods, l1-magic, l1_ls, YALL1, OMP and CoSaMP, 

under noisy environment. The plots show the variations of output signal-to-noise ratio, correlation 
and mean squared error with respect to the SNR variation at the input. 

 

At high input signal-to-noise ratios, all the methods show comparable performances.  But, as the 
input signal-to-noise ratio decreases the performance of the proposed method is much better 
than that of the rest of the methods. OMP and CoSaMP also perform better compared to l1-

magic, l1_ls and YALL1 as the SNR at the input decreases. Thus, the noise immunization of the 
proposed method is better compared to the other recovery algorithms considered. 

 
 

FIGURE 7: Comparison of the Correlation Performance of the proposed method with the other compressive 
sensing methods. 
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FIGURE 8: Comparison of the Mean Squared Error Performance of the proposed method with the other 
compressive sensing methods. 

 

The simulation studies further demonstrate the feasibility of improving sparse recovery using the 
proposed matrix padding technique in both ideal and noisy environments. The mean square error 
performance of this method is found to be negligibly small when compared to the other 
compressive sensing algorithms. The proposed sparse recovery algorithms can be effectively 
used in practical communication scenarios. For undoing the channel effects such as multipath, 
intersymbol interference, etc., suitable equalization procedures need to be devised.  Certain 
channel characteristics can be estimated with much less overhead using compressive sensing 
algorithms. The matrix padding sparse reconstruction algorithm will be used for the sparse 
channel estimation towards nullifying the channel effects. 

 
6. CONCLUSIONS 
Compressive sensing recently gained immense attention due to the commendable advantages 
the technique offers in signal manipulation at comparatively low bit rate requirements. With the 
help of compressive sensing, the salient information in a signal can be preserved in a relatively 
small number of linear projections. Compressive sensing has applications in signal processing, in 
areas such as coding, signal level enhancement, source separation, etc. [6]. For example, a 
sparse representation has only a few non-zero values, which necessitates encoding only these 
values to transmit or store the signal. This paper proposed a method for sparse recovery which is 
robust even in the presence of noise. In the practical scenario, noise cannot be eliminated and 
hence, the proposed robust signal recovery method is a good choice for the enhancement of 
corrupted signal. The simulation studies demonstrate that the proposed algorithm can effectively 
improve sparse recovery with the help of matrix padding and LMS based adaptation in both ideal 
and noisy environments.   
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