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EDITORIAL PREFACE 

 
This is the Fifth Issue of Volume Six of International Journal of Biometric and Bioinformatics 
(IJBB). The Journal is published bi-monthly, with papers being peer reviewed to high international 
standards. The International Journal of Biometric and Bioinformatics is not limited to a specific 
aspect of Biology but it is devoted to the publication of high quality papers on all division of Bio in 
general. IJBB intends to disseminate knowledge in the various disciplines of the Biometric field 
from theoretical, practical and analytical research to physical implications and theoretical or 
quantitative discussion intended for academic and industrial progress. In order to position IJBB as 
one of the good journal on Bio-sciences, a group of highly valuable scholars are serving on the 
editorial board. The International Editorial Board ensures that significant developments in 
Biometrics from around the world are reflected in the Journal. Some important topics covers by 
journal are Bio-grid, biomedical image processing (fusion), Computational structural biology, 
Molecular sequence analysis, Genetic algorithms etc.   

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Started with Volume 6, 2012, IJBB appears with more focused issues related to biometrics and 
bioinformatics studies. Besides normal publications, IJBB intend to organized special issues on 
more focused topics. Each special issue will have a designated editor (editors) – either member 
of the editorial board or another recognized specialist in the respective field. 

 
The coverage of the journal includes all new theoretical and experimental findings in the fields of 
Biometrics which enhance the knowledge of scientist, industrials, researchers and all those 
persons who are coupled with Bioscience field. IJBB objective is to publish articles that are not 
only technically proficient but also contains information and ideas of fresh interest for International 
readership. IJBB aims to handle submissions courteously and promptly. IJBB objectives are to 
promote and extend the use of all methods in the principal disciplines of Bioscience. 

 
IJBB editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  

 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for IJBB. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. IJBB provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts.   
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Abstract 

Studies of Transcription Start Site (TSS) show that a gene has several TSSs locally distributed in 
promoter region. Analysis of this TSS distribution may decipher the gene regulatory mechanism. 
For that purpose, a numerical representation of TSS distribution is crucial for quantitative analysis 
of TSS data. To characterize the TSS distribution in quantitatively, we have developed a novel 
scoring method by considering several significant features that are contributing to shape a TSS 
distribution. Comparing to other methods, our scoring method describes TSS distribution in a 
meaningful and effective way. Efficiency of this method to distinguish TSS distribution is 
evaluated with both synthetic and real dataset.  
 
Keywords: TSS, Transcription Start Site, CAGE, 5’end SAGE, Gene Regulation, Gene 
Expression. 

 
 
1. INTRODUCTION 
Initiation of transcription is the primary but fundamental step in gene expression process. 
Regulation of gene expression begins largely from initiation step of transcription. During 
eukaryotic gene expression process, the assembly of general transcription factors and RNA 
polymerase enzyme bind around the transcription start site (TSS) to initiate the transcription 
activity. Generally, these binding sites of transcription factors are defined as promoter region of a 
gene [1]. Therefore, study of TSSs and their related promoters in genome is essential to unravel 
transcription regulation riddle. For a global understanding of gene regulation, several novel 
technologies (CAGE, 5’end SAGE and PEAT) have been developed to capture 5’end of mRNA 
transcripts [2-4]. Moreover, adaptation of these technologies to the recent high throughput 
sequencers such as Illumina/Solexa and ABI/SOLiD has given a new momentum in genome-wide 
TSS studies [5-7]. Depending on the restriction endonuclease, these capturing methods collect 
about 20~27bp short sequence starting from TSS of mRNA transcript. This short sequence is 
regarded as 5’end mRNA tag or in short tag in this article. As 5’end of each tag is the starting 
position of the mRNA transcript, mapping of the tag to the genome provides the TSS position of 
the original mRNA transcript and the total number of tags that are starting from a TSS gives the 
expression level of its original mRNA transcript as illustrated in Figure 1. Recent TSS studies 
demonstrated that most of the genes contain locally concentrated multiple TSSs as depicted in 
Figure 2. These TSSs and their expression levels create TSS distribution in the promoter region 
of a gene. TSS distribution in each promoter region implies transcription initiation mechanism of 
its related gene. Therefore, study of TSS distribution has the potentiality to elucidate the gene 
regulation mechanisms in cells.  
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FIGURE 1: 5’end mRNA tags and their expression levels. Aligned 5’end mRNA tags are overlapped in 
genome. The starting position of each aligned tag is regarded as the Transcription Start Site (TSS). The 
frequency of each TSS gives the expression level of its original mRNA. 

FIGURE 2: Expression distribution at promoter region of Drosophila melanogaster mRNA 
geneCG5242. The vertical arrow at the 5’end of gene CG5242 in bottom row is the initiated site of 
coding region. In this image, genomic position from 5’end to 3’end is depicted at x-axis and the 2log
(Expression levels) is illustrated in y-axis. 

 
In TSS studies, it is essential to assign a numerical score to quantitatively classify each promoter 
region with respect to its TSS distribution. Quantitative characterization of TSS distribution 
enables gene expression analysis such as clustering genes with respect to their TSS distributions. 
Quantitative classification of genes also distinguishes differentially expressed genes having 
disparity in their TSS distributions in case-control studies. Moreover, this quantification method 
facilitates genome browser to selectively choose and visualize genes having particular type of 
TSS distributions for further biological studies. To address this problem, Density Percentile (DP) 
within a promoter region has been introduced to categorize TSS distribution [3]. Using DP method, 
promoters having 100 tags or more are categorized into four different classes such as single peak, 
dominant peak, multimodal peak and broad. As DP does not assign score to promoters with 
respect to their TSS distributions and only classifies them in different groups, it is not efficient for 
quantitative TSS studies. Recently, Shape Index (SI) [8] is introduced to assign a numerical score 
to the TSS distribution of a promoter. SI is defined as follows, 
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= 2 + ( ), 

 

 

where  is the probability of observing a TSS at base position  within the promoter. is the 
number of base positions that have expression levels more than zero. Promoter regions with SI 
score 1 are classified as peaked and remaining promoters are classified as broad. The 
principal drawback of SI method is that the scoring system considers only expression levels of 
TSSs, but their spatial orientation is not incorporated in scoring method. From Figure 1 and 
Figure 2, we can understand that TSS distribution in a promoter region is determined by not only 
the expression levels of TSSs but also how the expression levels (illustrated as vertical line in 
Figure1) of TSSs are spatially oriented in the promoter region. As a result, SI assigns same score 
to some TSS distributions, while considerable discrepancy is noticeable among the TSS 
distributions. In this regard, a numerical representation is essential to precisely quantify the 
pattern of TSS distribution. The proposed method will benefit if we can consider the significant 
features such as expression levels of TSSs and spatial orientation of TSSs in a promoter region 
that are contributing to create the shape of a TSS distribution. By incorporating aforementioned 
features of a TSS distribution, a scoring method named Aggregated Index (AI) is proposed here. 
 
In the following sections, we firstly present the scoring method. Secondly, we experiment the 
method on both synthetic dataset and real TSS dataset. Finally, we discuss the effectiveness of 
this scoring method in discussion. 
 
 
2. METHOD 
We define a promoter { , = 1,2,3, , } of -mer length where y is the expression level at 
position  starting from 5’end of the promoter. Total expression in a promoter region is 
summed up as Y = y . The total expression Y is distributed among individual bases in that 
promoter. We discuss how the expression levels and spatial orientation of bases in a promoter 
are utilized in our scoring method. In the following sub-sections, our proposed method is 
explained in three steps. Firstly, divergence of TSSs’ expression levels is quantified using Gini 
Coefficient (GC). Secondly, spatial orientation of TSSs is quantified in Average Neighbourhood 
Distance (AND). Finally, both GC and AND are used to define the Aggregated Index (AI). 
 
2.1 Divergence of Expression Levels 
Observation of Figure 1 and Figure 2 implies that expression level of bases in a promoter region 
is one of the significant features of a TSS distribution. Therefore, incorporation of expression 
levels in our scoring method is important to properly quantify a TSS distribution. Our main 
objective is to consider how disparity of expression levels among the bases in a promoter works 
to make a TSS distribution highly aggregated or not. To quantify the variability of the expression 
level in a TSS distribution, we use Gini Coefficient [9, 10] in our scoring method. Although, this 
coefficient is used by economists to illustrate the concentration of wealth distribution in a 
population, it can be used in all kinds of contexts where size plays a role like gene expression 
among all bases in a promoter region. The expression levels of a promoter region { , =
1,2,3, , } is ranked in ascending order as, y y y y . Kendall and Stuart defined 
Gini Coefficient (GC) as follows [11] : 

=
1

2K y y          (2),  
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 is the average levels of expression, i=1,2,3, ,K and j=1,2,3 ,K. If there is only one base that 
has non-zero expression level in a 200bp length promoter region, then GC value of that TSS 
distribution is 1. This implies that the TSS distribution of that promoter is highly concentrated to a 
single TSS. On the other hand, if the expression levels are equally distributed to all the 200 bases 
in that promoter, then the GC value of that promoter is 0. Therefore, GC always takes value 
between zero and one. 
 
2.2 Spatial Orientation of TSS 
Spatial orientation of bases that have non-zero expression level is another important feature of 
TSS distribution of a promoter. Despite having equal expression levels in the bases of two 
promoters, orientation of those bases can create different TSS distributions pattern in those 
promoters. Therefore, the spatial feature of TSSs is incorporated in AI scoring method using 
Average Neighbourhood Distance (AND). The AND is defined as below: 
 

=
1

[1 + ( )] (3). 

 

 
In equation 3,  is the first base position that has non-zero expression level, and is the last 
base position that has non-zero expression level starting from 5’end of a promoter. Here, is the 
total number of bases in the promoter having non-zero expression level. For example, a promoter 
of length 9 has expression levels of 5,4,0,1,0,2,0,1,3 in the bases position 1, ,9, starting from 
5’end of the promoter. In this example, the number of bases having non-zero expression level is 6. 
According to the equation 3, = 1, = 9 and = 6. Therefore, the value of AND is 1.5. On the 
other hand, in an extreme case, if all the bases in a promoter have non-zero expression levels, 
the value of AND will be 1. Except this extreme case, the value of AND will be always above one. 
As a result, the value of AND is always one or more than one.  
 
2.3  Aggregated Index 
To quantify the TSS distribution, we have targeted at two significant features such as divergence 
of expression levels and spatial orientation of bases in a promoter of a gene. Firstly, the 
divergence of expression levels is explained by GC of equation 2 that takes score within the 
range of zero and one. Secondly, spatial orientation of TSSs is quantified in AND of equation 3 
that takes score one and above. Finally, using GC and AND, the aggregated index (AI) is defined 
as below: 
 
         Aggregated Index (AI) =GC/AND          (4).
 
 
AI assigns one single value between zero and one to a TSS distribution in a promoter. For 
example, if there is only one base having expression level more than zero in a promoter of 200bp 
length, the total expression level in that promoter is distributed to that single base. In this case, 
the proposed AI assigns value of one that implies the TSS distribution in the promoter is 
deterministic to a single base position of genome. Moreover, this promoter can be categorized as 
highly aggregated in its TSS distribution. On the other hand, when all the 200 bases of the 
promoter have same non-zero expression levels of TSS distribution, AI assigns value of zero to 
the TSS distribution of that promoter. Therefore, the TSS distribution having value of zero or near 
to zero is categorized as random or nondeterministic TSS distribution. 
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3. RESULT 
To further reinforce the effectiveness of the proposed AI scoring method, we tested and verified 
the AI scoring method to distinguish TSS distribution in a promoter region with both synthetic and 
real TSS dataset. 
 
3.1 Synthetic Dataset 

FIGURE 3: Four synthetic examples of TSS distribution with various patterns are showed in this figure, 
where x-axis is promoter region of a genome and y-axis is expression levels of mRNA transcript. 

 
 

Example Promoter GC AND AI SI 
Case1 5,4,0,1,0,2,0,1,3 0.54 1.5 0.36 -0.35 

Case2 0,0,0,1,2,5,4,3,1 0.54 1 0.54 -0.35 

Case3 10,0,0,0,0,0,0,6 0.78 4 0.195 1.04 

Case4 0,0,0,0,0,0,6,10 0.78 1 0.78 1.04 

TABLE 1: AI values for synthetic promoter examples 

 
Four synthetic examples of promoters that have various TSS distributions are illustrated in Figure  
3 & Table1.These examples are presented to examine AI’s ability to distinguish TSS distribution 
by assigning a numerical score. We categorised the four examples in two groups. Firstly, group1 
consists of Case1 and Case2. In this group, total expression level of each of the cases is equal; 
however, the spatial orientation of bases with non-zero expression levels in each promoter is 
different. Figure 3 shows that TSS distribution in Case1 is random, while in Case2 the distribution 
is aggregated to make a bell shape pattern. Secondly, group2 is comprised of Case3 and Case4 
promoters. All the promoters in group2 also have equally total expression levels; however, two 
distinct bases with non-zero expression levels are positioned far away from each of the bases in 
case3 that creates different TSS distribution comparing to Case4 promoter in the same group that 
have two bases with non-zero expression levels which are located at 3’end of the promoter. In 
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group1, GC scores of Case1 and Case2 promoters are 0.54; on the other hand, GC scores in 
group2 for both Case3 and Case4 are 0.78 (Table1). Figure 3 shows that without the orientation 
of bases that have non-zero expression levels, the total expression levels in both cases of group1 
are same; similarly, both Case3 and Case4 of group2 have equivalent total expression levels. 
Although the TSS distributions of these promoters are different, their GC’s scores are similar in 
each group. It is because, in the process of GC calculation using equation 2, we ranked the 
expression levels of each base that ignored the spatial information of bases and made the GC 
score similar in both cases of each group. Therefore, in order to have a better scoring method to 
describe properly the TSS distribution in a promoter, it is necessary to consider the spatial 
orientation of the bases having expression level more than zero. As a result, spatial orientations 
are considered through AND to properly distinguish each cases of promoters in group1 and 
group2. In group1, AND scores for Case1 and Case2 are 1.5 and 1 respectively; in group2, 
Case3 and Case4 are 4 and 1 respectively (Figure 3 & Table 1). Finally, GC and AND are 
combined at AI in equation 4. AI scores for all promoter examples are Case1=0.36, Case2=0.54, 
Case3=0.195 and Case4=0.78 (Table1). By considering significant features of TSS distribution, 
AI successfully assigned scores to each promoter. Especially, AI distinguished Case1, Case2, 
Case3 and Case4 of each properly. In contrast to AI score, Shape Index (SI) assimilated Case1, 
Case2 and Case3, Case4 by scoring same values in each pair (Table1); because, it does not 
incorporate information of spatial orientation of bases in a promoter in the scoring method defined 
in equation 1.  
 
3.2 Real TSS Dataset 

FIGURE 4: AI scores of Drosophila melanogaster genes. TSS distributions of promoter of nine genes 
are illustrated in Figure 4. Left column is for genes CG1101, CG18578 and CG3315 having AI scores 
between . Middle column is for genes CG7188, CG5242 and CG1728 with AI scores 
range . In right column, genes CG7424, CG11368 and CG1967 are depicted 
with AI score between . SI scores for each of the promoter’s expression distribution are 
also presented with AI scores. 
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Evaluation of AI  method was performed with TSS data collected from publicly available database 
called Machibase [12]. Machibase is a TSS database for Drosophila melanogaster that consists 
of  six development stages such as embryo, larva, young male, young female, old male, old 
female and one culture cell line (S2). All the TSS data from seven libraries were merged and 
assigned AI score to the promoters of Drosophila melanogaster genes with respect of their TSS 
distributions. Promoter information is collected from Flybase 5.2 [13] annotated mRNA genes. 
Promoter region of each mRNA gene is defined as 200bp upstream of coding initiation site (ATG 
codon). Each bases of promoter region that has more than five expression levels is assigned TSS 
expression levels from Machibase data. Finally, AI score of TSS distribution is calculated for all 
the promoters of genes according to equation 2, 3 and 4.  With respect to AI scores (
0.1, 0.45 0.55, 0.9 1) nine genes were illustrated in Figure 4. Among these 
genes CG1101, CG18578 and CG3315 (illustrated in left column of Figure 4) have AI scores 
between 0.1. The TSS distributions of this group are similar to the example Case3 in 
synthetic dataset (Figure 3 & Table 1). Genes CG7188, CG5242 and CG1728 (illustrated in mid 
column of Figure 4) have AI scores between 0.45 0.55.  The TSS distributions of this 
group can be categorized to the example Case2 in the synthetic dataset (Figure 3 & Table1). 
Finally, TSS distributions of genes CG7424, CG11368 and CG1967 (illustrated in right column of 
Figure 4) having AI score between 0.9 1 can be categorized to Case4 of the synthetic 
dataset (Figure 3 & Table1). Examples from real dataset in Figure 4 show how efficiently AI score 
can categorize genes according to their TSS distributions in promoters. On the other hand, 
Shaped Index (SI) method categorizes all genes in left and right columns as peaked TSS 
distribution, where clear disparity exists in their TSS distributions. This result also confirms that AI 
scoring system works well to classify genes by providing numerical score to each gene with 
respect to its TSS distribution. By assigning well defined scores to TSS distribution of Drosophila 
melanogaster genes, AI method obviously outperformed SI scoring method in distinguishing TSS 
distribution pattern of promoter region. 
 

 
4. DISCUSSION 
TSS study has the potentiality to elucidate gene regulation mechanism. In TSS study, it is 
essential to quantify TSS distribution in a promoter region of a gene. As existing Density 
Percentile (DP) method does not assign any numerical score to TSS distribution, it is not efficient 
for further quantitative analysis of TSS data. On the other hand, Shape Index (SI) method 
considers only expression levels in its scoring system of equation 1, and resulting score cannot 
distinguish significant disparity among TSS distributions. After considering all the features that 
contribute to shape TSS distribution in a promoter region, we proposed Aggregated Index (AI) 
scoring in this study.  
 
AI is a novel scoring method to measure the TSS distribution of a promoter. Evaluation in 
synthetic data shows the proposed method is able to distinguish distinct patters of TSS 
distribution in promoter regions. However, the existing Shape Index (SI) scoring method assigns 
same scores to some TSS distributions in our synthetic data while significant discrepancy exists 
among them (Table 1). Furthermore, AI also successfully distinguished all the TSS distributions in 
real TSS dataset as depicted in Figure 4. In contrast, SI scores of all the examples in right and 
left columns of Figure 4 are above -1. As a result, in SI scoring system, all of these TSS 
distributions in right and left columns in Figure 4 are classified as peaked promoters. Thus, SI 
scoring system cannot distinguish obvious disparity among TSS distributions in real dataset. By 
assigning scores to distinct patterns of TSS distributions, AI method allows us to cope with the 
problem of TSS analysis to a treatable scale. Therefore, using synthetic and real dataset, we 
verified the advantage of this scoring method in TSS data analysis. In other word, the proposed 
AI method has opened up a new direction for future approaches to genome-wide analysis of gene 
regulation using TSS data.  
 
The contribution of the proposed AI is significant mainly in the following two ways. Firstly, the 
score can quantify the TSS distribution of promoter region by providing a unique measurement 
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technique to reduce the ambiguity in TSS analysis. Secondly, the AI score can automatically 
identify the particular pattern of TSS distribution in genome browser, to our knowledge no other 
scoring method can do like this and that is why AI scoring could be an enormous help for 
biologists working in gene expression and regulation process.  
 
 
5. REFERENCE 
 
1. Alberts, B., Molecular biology of the cell. 5th ed. 2008, New York: Garland Science. 
2. Hashimoto, S., et al., 5'-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol, 

2004. 22(9): p. 1146-9. 
3. Carninci, P., et al., Genome-wide analysis of mammalian promoter architecture and evolution. Nat 

Genet, 2006. 38(6): p. 626-35. 
4. Ni, T., et al., A paired-end sequencing strategy to map the complex landscape of transcription 

initiation. Nat Methods. 7(7): p. 521-7. 
5. Fullwood, M.J., et al., Next-generation DNA sequencing of paired-end tags (PET) for transcriptome 

and genome analyses. Genome Res, 2009. 19(4): p. 521-32. 
6. Hashimoto, S., et al., High-resolution analysis of the 5'-end transcriptome using a next generation 

DNA sequencer. PLoS ONE, 2009. 4(1): p. e4108. 
7. Valen, E., et al., Genome-wide detection and analysis of hippocampus core promoters using 

DeepCAGE. Genome Res, 2009. 19(2): p. 255-65. 
8. Hoskins, R.A., et al., Genome-wide analysis of promoter architecture in Drosophila melanogaster. 

Genome Res. 21(2): p. 182-92. 
9. Gini, C., Measurement of Inequality and Incomes. The Economic Journal, 1921(31): p. 3. 
10. Anand, S., Inequality and poverty in Malaysia : measurement and decomposition. A World Bank 

research publication. 1983, New York: Published for the World Bank [by] Oxford University Press. x, 
371 p. 

11. Kendall, M.G. and A. Stuart, The advanced theory of statistics. [3 vol. ed. 1963, New York,: Hafner 
Pub. Co. 

12. Ahsan, B., et al., MachiBase: a Drosophila melanogaster 5'-end mRNA transcription database. 
Nucleic Acids Res, 2009. 37(Database issue): p. D49-53. 

13. Drysdale, R.A. and M.A. Crosby, FlyBase: genes and gene models. Nucleic Acids Res, 2005. 
33(Database issue): p. D390-5. 

 
 



Jayanta Basak 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (6) : Issue (5) : 2012 113 

Detection of neural activities in FMRI using Jensen-Shannon 
Divergence 

 
Jayanta Basak                basak@netapp.com 
NetApp India Private Limited      basakjayanta@yahoo.com 
Advanced Technology Group 
Bangalore, India. 

 

 
Abstract 

 
In this paper, we present a statistical technique based on Jensen-Shanon divergence for 
detecting the regions of activity in fMRI images. The method is model free and we exploit the 
metric property of the square root of Jensen-Shannon divergence to accumulate the variations 
between successive time frames of fMRI images. Theoretically and experimentally we show the 
effectiveness of our algorithm. 

 
 
1. INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) is increasingly gaining in popularity as a non-
invasive technique for assessing various clinical situations and in better understanding of the 
functioning of human brain [1, 2, 3, 4, 5]. The basis of fMRI is the different magnetic properties of 
oxygenated and deoxygenated blood. Due to a stimulus, increased flow of oxygenated blood into 
regions of brain activity causes the changes in the MR signal. This results in the corresponding 
changes in MRI map which are captured as four dimensional (x, y, z, t) fMRI images. Automated, 
robust and fast detection of the activated brain regions from the entire sequence of fMRI images 
is a challenging task [6]. First, images based on blood oxygenation level dependent (BOLD) 
contrast [7, 8] have a very low signal-to-noise (SNR) ratio. Second, adequately high temporal 
resolution (smaller time between successive frames) restricts the spatial resolution in the image 
registration process. As a result, each (x, y) plane in the image sequence is only about 64 × 64 or 
128 × 128 with regions of activity occupying a few (dozen or so) pixels. Therefore, it is difficult to 
use traditional image processing operators and spatial constructs (such as traditional image 
segmentation, checking connectivity, shape detection, etc.) in the localization of activity in these 
images. Consequently, various statistical and signal processing methods [9, 10] are used to make 
statistical inferences about the regions of activity in fMRI images. 
 
One of the most widely used approach for detecting active regions in fMRI images is performed 
by the computation and subsequent thresholding of a statistical parameter map subjected to the t-
test based on the assumption of Gaussian temporal noise. The unpaired Student’s t-statistic with 
pooled normal error is commonly used [11, 12] to estimate the true variance using the sample 
variance. Many other methods [6] of producing statistical parameter maps have also been 
proposed (for example, using correlation analysis [13, 14] or the non-parametric Kolmogorov-
Smirnoff test [8]). In this class of methods a threshold has to be chosen (empirically or theoretical) 
and the results obtained are dependent on the threshold that is used. Various other methods 
based on using the wavelet transform [15, 16], principal component analysis [17], independent 
component analysis [18, 19], subspace modeling [20] and clustering [21] have also been 
developed. In parallel, methods for improving sensitivity (for example, by including spatial extent 
of the region of activation) [22] have also been developed. 
 
In this article, we introduce a statistical method for detecting the regions of activity in fMRI images 
based on the Jensen-Shannon divergence [23, 24, 25]. This particular method differs from the 
conventional t-test or ANOVA techniques in the sense that it does not depend on the general 
linear model. Due to the robustness and insensitivity to noise, Jensen-Shannon divergence is 
gaining popularity in the statistician community and has been successfully applied in image 
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segmentation [26] earlier. However, the possibility of using the Jensen-Shannon divergence in 
detecting activity regions in fMRI images has not been explored so far. Here we provide a method 
for detecting the activities in fMRI images using the Jensen-Shannon divergence. 
 
The rest of the article is organized as follows. In Section 2, we describe our algorithm which 
includes a description of the Jensen-Shannon divergence, the way we apply this measure to 
detect the regions of activities in fMRI images, and an empirical analysis to show the validity of 
our algorithm. In Section 3, we demonstrate the effectiveness of our algorithm on some synthetic 
and real-life images. Finally, we conclude in Section 4. 
 

 
2. ALGORITHM 

 
2.1 Description of JS Divergence 
Jensen-Shannon divergence [23, 24, 25] measures the difference between two discrete 
distributions. Let two different discrete probability distributions p and q are given as 

],,,[ 21 npppp K=  and ],,,[ 21 nqqqq K=  where ip denotes the probability of a random 

variable X taking the i-th value. For example, if we have two different coins then their probability 

distributions of ‘Head’ and ‘Tail’ can be represented as ],[ 21 pp  and ],[ 21 qq . 

 
The divergence between the two discrete distributions p and q is given as 
 

)()()(),( qpHqHpHqpJS qpqp αααα ++−−=      (1) 

where ]1,0[, ∈qp αα are two positive constants indicating the respective weights for the 

distributions subject to 1=+ qp αα . H(.) denotes the Shannon entropy, i.e., 

i

i

i pppH log)( ∑−=          (2) 

For 5.0== qp αα , ),( qpJS is symmetric unlike the Kullback-Leibler divergence. Although 

Jensen-Shannon divergence does not guarantee the triangular inequality of a metric, the square 
root of the divergence follows the metric property (as shown in [27, 28]). 
 
2.2 Application of JS divergence to fMRI signal detection 
The four dimensional fMRI images (x, y, z, t) can be considered as the spatio-temporal signals, 
where in each time frame, the activation occurs over a few pixels, and it propagates over a 
sequence of time frames depending on the hemodynamic response function. 
 

In the case of Jensen-Shannon divergence (JS), since JS is a metric, we have 

( ) ( ) ( ))(),()(),()(),( klilkljljlil twtwJStwtwJStwtwJS ≥+    (3) 

for any kji ttt << . )(twl represents the pixel statistics over a chosen window at a certain 

location l at a time frame t. For example, we can choose a 7 x 7 x 5 window at a specific location 
(x, y, z) at different time frames. Equation (3) reveals that 

( ) ( ) ( ) ( ))(),()(),()(),()(),( 132211 nlnlllllnll twtwJStwtwJStwtwJStwtwJS −+++≤ K

                (4) 

for any n. Thus we can add the square root of the divergence ( JS ) between every consecutive 

pair of time frames and preserve the activation if there exists any. 
 
The overall algorithm is described in Figure 1. First we define an accumulator array A(x, y, z) and 

initialize A = 0 for every (x, y, z). Then for every }1,,2,1{ −∈ nt K (assuming that there are n 
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time frames available) and for every location (x, y, z), we compute the Jensen-Shannon 

divergence ( ))1(),( ,,,, +twtwJS zyxzyx where zyxw ,,  denotes the three dimensional window 

centered at (x, y, z). We then accumulate the variations between successive time frames in terms 
of the square root of the Jensen-Shannon divergence. Finally we threshold the accumulator array 
with certain user defined threshold and obtain the regions of activity. Note that, it is also possible 
to recover the time frames where exactly the stimulus has started by adding one more dimension 
to the accumulator A. 
 

Input : L slices of M x N fMRI images at each time frame. There are T such time frames. 
Output :L slices of M x N output image. 
begin 
    Initialize an accumulator array A(x, y, z) = 0 

    where },,2,1{},,,2,1{},,,2,1{ LzNyMx KKK ∈∈∈  

    Define a window size (2m+ 1, 2n + 1, 2l + 1) where 1,, ≥lnm . 

    for every }1,,2,1{ −∈ Tt K  

         for every )},,(,),,,{(),,( lLnNmMlnmzyx −−−∈ K  

         begin 

   get the window )(,, tw zyx  centered at (x, y, z) from time frame t; 

   compute p ←  normalized histogram of )(,, tw zyx ; 

   get the window )1(,, +tw zyx  centered at (x, y, z) from time frame t + 1; 

   compute q ←  normalized histogram of )1(,, +tw zyx ; 

   Update ),(),,(),,( qpJSzyxAzyxA +←  

         end 
    end 
    Threshold A with a user defined threshold; output thresholded A. 
end 

 
FIGURE 1: The algorithm based on Jensen-Shannon divergence for detecting activation regions in fMRI 
images. 

 
2.3 Analysis  
In this section, we empirically analyze the effectiveness of the proposed method of applying 
Jensen-Shannon divergence. We approximate the distribution over a window volume by a 
histogram. It is necessary because by definition, JS-divergence considers only the discrete 
distribution. Let the distribution in the original window be represented as 

},,,{)( 21 npppxp K=         (5) 

subject to 1=∑
i

ip . ip represents the probability of the pixels taking the i-th intensity level. After 

stimulation, let a fraction of pixels be moved from the i-th intensity level to the j-th intensity level. 
Thus the modified discrete distribution after stimulation is 

},,,,,,,,,{)( 1121 njjii pppppppxq KKK ++ ∆+∆−=     (6) 

where ∆ represents the change in the density of the i-th intensity level. It may be possible that 
due to activation at any time point, voxels at different intensity levels change their intensity 
values. However, here we assume that the activation is local in nature and affect the voxels with 
similar intensity values such that the activated voxels belong in the same bin of the histogram or 
at most neighboring two or three bins. The Jensen-Shannon divergence is given as 
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In Equation (7), all other bins apart from i and j do not contribute to the measure. Considering 

that ji pp βα ==∆ ,  
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whereα represents the fractional decrease in the number of pixels having i-th intensity and β  is 

the fractional gain in the number of pixels having the j-th intensity value. Considering that  

1≤α for all i, we neglect the higher order terms in α such that 
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The Jensen-Shannon divergence (Equation (9) behaves in two different ways in two cases for 

(i) 1<β , and (ii) 1>β . Let us analyze these two cases separately.  

 

Case I: Since 1<β , we neglect the higher order terms in β  (similar to that of α ) such that 

44

22
ji

pp
JS

βα
+=          (10) 

i.e., ( )
4

∆
+= βαJS          (11) 

Therefore, 
2

11 ∆
+=

ji pp
JS        (12) 

In other words, given ip and jp , JS varies linearly with ∆  independent of the condition that 

ji < or ji > . 

 

Case II: Since 1≥β , we can approximate Equation (9) as 

( )
2

2log2log
4

2
ji

pp
JS +−+= ββ

α
       (13) 

If 1≥β , we have 

22
1

∆








+=

α
JS          (14) 

Thus when jp is very small such that 1>>β , Equation (14) reveals the fact that JS measure is 

independent of β  and depends on α  and ∆ . The dependency of JS is approximately linear 

with β . However, the measure is independent of the condition whether i < j or i > j. 

 

Thus in both the cases (Equations (12) and (14)), JS behaves symmetrically to the rising and 

falling part of the hemodynamic response curve. The behavior of the divergence is also 
independent of any assumption on the distribution. 
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3. RESULTS 

 
3.1 Synthetic Images 
In order to establish the effectiveness of Jensen-Shannon divergence, first we considered 
synthetically generated random data. A random noise of amplitude in the range [50−110] has 
been generated over a sequence of 80x80 images of sequence length 25 (thus the synthetic 
images are three dimensional (x, y, t) instead of four-dimensional images in the fMRI). We then 
added synthetic activation to the random noisy images. Synthetic activation is generated by 
convolving a synthetic stimulus (which is a step function) with a hemodynamic response function 
(Figure 2) given as [29] 

( ) ( )))(/(exp)/())(/(exp)/()( 22221111
21 tttdttctttdttth

dd −−−−−=   (15) 

with five parameters ,,,, 2121 ddtt and c . 

 

 
FIGURE 2: A typical hemodynamic response function h(t) for the auditory cortex. 

 
 
We added two synthetic activation at the (x, y) locations (30, 30) and (50, 50). The starting and 
stopping times of the stimuli are (3, 10) and (10, 20) respectively. We tested the effectiveness of 
our algorithm with two different types of hemodynamic response functions, one for the auditory 
cortex and the other for the motor cortex. For the auditory cortex, the parameter values are 
approximated as [29] t1 = 5.4, d1 = 6, t2 = 10.8, d2 = 12, and c = 0.35. For motor cortex, the 
parameter values are t1 = 5.5, d1 = 5, t2 = 10.8, d2 = 12, and c = 0.4. Figure 3 illustrates the 
regions of activity detected for two different hemodynamic responses and for different amplitude 
of synthetic stimuli ranging from 30 to 60. Note that, we consider the stimulus amplitude to be 
much less than the noise amplitude in order to make a low signal-to-noise ratio. 
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FIGURE 3: Regions of activation detected by our algorithm in synthetic noisy images of size 80 × 80 with 
noise amplitude in the range [50−110]. Activations corresponding to hemodynamic response to a stimulus 
(step function) are added at the locations (30, 30) and (50, 50). (a),(b),(c), and (d) correspond to the regions 
detected for stimulus amplitude 30,40,50, and 60 respectively with auditory cortex hemodynamic response. 
(e),(f),(g), and (h) correspond to the regions detected for stimulus amplitude 30,40,50, and 60 respectively 
with motor cortex hemodynamic response. 
 
3.2 fMRI Images 
We tested the effectiveness of Jensen-Shannon divergence in detecting the activation regions in 
fMRI images. We considered the fMRI data from the fMRI data center [30] particularly the dataset 
used by Hirsch, Rodriguez, and Kim [31]. Each data set in this experiment consists of sequences 
of 128 × 128 images with sequence length 21 over 36 time frames. In the experiment by Hirsch et 
al. [31], subjects performed three cognitive tasks namely, object naming, integer computation and 
same-different discrimination. We considered fMRI images for the first task i.e., object naming. As 
mentioned by Hirsch et al. [31], the brain areas involved in the object-naming task (object-naming 
subsystem) are left inferior frontal gyrus (Brodmann’s areas 44 and 45), left superior temporal 
gyrus (Brodmann area 22) and left medial frontal gyrus (Brodmann Area 6). Figure 4 illustrates 
the results obtained by our algorithm using the Jensen-Shannon divergence (with a window size 
7 × 7 × 5). The t-test results are provided by the fMRI data center [30]. 
 
Note that, in the proposed method, we compute the statistics over a window in the fMRI images. 
If we observe a difference in the distribution of the gray values in a window over successive time 
frames in fMRI images as measured by the JS divergence, we consider that there is certain 
activity in that window location (center of the window). Therefore, due to the effect of blocking, 
certain activities are detected outside the brain region (liquor and the CSF around the brain). This 
can be eliminated by restricting the activity to be detected within the brain region. The brain 
region can be obtained by segmenting the brain images. 
 
Moreover, the proposed method has one inherent drawback. The method is not based on the 
generalized linear model (GLIM) and accumulates the statistical differences over successive time 
frames. Therefore, if the fMRI images are not properly registered and there exist statistical 
differences (over successive time frames) due to various reasons such as patient motion then 
certain false active regions may be detected. We did not address this issue in this article. 
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FIGURE 4: The regions of activity detected in the fMRI images captured when subject performs object 
naming task [31]. The left panel of each pair ((a1), (b1), (c1), (d1), (e1), and (f1)) shows the regions of 
activity detected by our algorithm, and the right panel ((a2), (b2), (c2), (d2), (e2), and (f2)) shows that by t-
test. 

 
 

4. CONCLUSIONS 

We presented a statistical technique based on Jensen-Shannon divergence for detecting the 
regions of activity in fMRI images. We exploited the metric property of the square root of Jensen-
Shannon divergence to accumulate the variations between successive time frames of fMRI 
images. Use of Jensen-Shannon divergence makes our algorithm independent of the assumption 
of any statistical distribution. Jensen-Shannon divergence has been used in the context of image 
segmentation [26] before, but the use of the same in spatio-temporal data analysis has not been 
explored, and fMRI is one such example. In the proposed method, we consider a window around 
each voxel in a M x N x L (say) image and compute statistics over T such time frames. Since the 

computation of JS metric is linear in time with the number of pixels (considering a fixed number 

of bins in the histogram) in a window, the overall computation requires O(MNLTw
2
h) time where 

the size of the window is w×w×h. A smarter computation can be performed by considering a 
shifting window. In that case, we require O(w

2
) time for computation in each window instead of 

O(w
2
h) time. The overall computation, in that case, will take O(MNLTw

2
) time. As mentioned 
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before, we do not address the issues of false activity detection due to improper registration in this 
article. This can be pursued as one of the future work. The output of our algorithm can possibly 
further be improved by processing the regions of activity with some other techniques such as 
clustering [12]. 
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Abstract 

 
In biometrics authentication systems, it has been shown that fusion of more than one modality 

(e.g., face and finger) and fusion of more than one classifier (two different algorithms) can 
improve the system performance. Often a score level fusion is adopted as this approach doesn’t 
require the vendors to reveal much about their algorithms and features. Many score level 
transformations have been proposed in the literature to normalize the scores which enable fusion 
of more than one classifier. In this paper, we propose a novel score level transformation 
technique that helps in fusion of multiple classifiers. The method is based on two components: 
quantile transform of the genuine and impostor score distributions and a power transform which 
further changes the score distribution to help linear classification. After the scores are normalized 
using the novel quantile power transform, several linear classifiers are proposed to fuse the 
scores of multiple classifiers. Using the NIST BSSR-1 dataset, we have shown that the results 
obtained by the proposed method far exceed the results published so far in the literature.  
 

 
 
1. INTRODUCTION 
 
Biometrics-based authentication systems have been shown to be extremely useful in many 
security applications because of the non-repudiation functionality. However, these systems suffer 
from many shortcomings: the errors associated with the biometrics such as the false accept rate 
and false reject rate can impact the performance of the system; the failure to acquire and failure 
to enroll error rates can also impact the coverage of the population; fake biometrics e.g., latex 
fingers, face masks etc. can be used to fool biometrics systems. In order to overcome these 
problems, multi-biometrics systems have been proposed which is also known as biometric fusion. 
The fusion can be at various levels: signal (data), features, and classifiers.  Several examples of 
biometric fusion methods have been reported in the literature. Fusion could involve more than 
one biometrics modality such as finger and face; involve more than one classifier e.g., face with 
two different matchers; involve more than one sample of a biometrics e.g., two samples of the 
same finger; involve more than one sensing modality in a particular mode e.g., face acquisition 
using infra red imaging and regular color cameras. Each method of fusion described above would 
have some advantage over a unimodal system.  
 
The biometrics fusion problem is very interesting problem from a research and practical use 
perspective. The general area of fusion in the computer vision community has been studied 
extensively while its application to biometrics has been a relatively recent phenomenon. Early 
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research in this area dealt with decision level fusion using majority, and, or rules. While only few 
papers have appeared in the area of feature level fusion, the score-level fusion has received 
considerable attention in the literature. In order for feature-level fusion to work, the description of 
the features used in the underlying unimodal biometrics system needs to be reported. Many 
commercial vendor-based systems aren’t comfortable with this. While the impact of a pure 
decision is limited, the feature level fusion looks hard because of non-standard features used in 
commercial systems. The score level fusion has been proposed as the optimal level as most 
vendors produce a score from a biometrics template pair matching. The score is available for 
making a final decision. The only challenge in a score level fusion has been score normalization. 
Even within the same mode (e.g., face), every matcher provides a score within its own range and 
interpretation. Many score normalization methods have been proposed before the standard sum 
rule or other simple fusion rules can be applied [11, 15].  
 
In this paper, we propose a novel method of score transformation before the classifiers can fuse 
them. Many score normalization methods depend on the range of the scores produced by the 
classifiers. Even small change in the scores, can cause the normalization methods to vary 
significantly. Often the quantile transform has been used in many statistical data analysis to 
suppress the impact of outliers. In a biometrics system, there are two score distributions: genuine 
and impostor as shown in Fig. 1.  
 
The quantile transform is applied to both the distributions. In order to improve the separability 
between the two distributions, we apply a non-linear transform. After the scores are normalized, 
we apply many special linear classifiers e.g., model-based, SVM etc. We learn the needed 
parameters from a training set and use the models on test data. The proposed method has been 
tested using a publicly available multi-modal score set from NIST. Our results outperform the 
published results in the literature.  
 

                                    
               FIGURE 1:  Genuine and impostor score distribution and their cumulative distributions.  
 
The rest of the paper is organized as follows. Section 2 discusses recent work in the area of 
biometric fusion. Section 3 describes the basic QPLC transform technique. Results of the 
proposed method are described in Section 4. Finally in section 5, we analyze the performance of 
the system and provide conclusions. 
 
 

2. RELATED WORK 
 
There have been several interesting tutorial like articles in the broad area of biometrics fusion [8]. 
Several decision level fusion methods have been described in [10].  Kittler et al. [9] wrote one of 
the most influential papers involving general classifier fusion techniques. The methods described 
in this classic paper can be applied to biometrics classifiers. However, before the various rules 
can be applied for fusion of biometrics engines, one has to go through a set of score 
normalization methods. Several score normalization techniques such as min-max, Z-
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normalization, Median, Median Absolute Deviation, double sigmoid, tanh have been described in 
[11, 15]. It is quite well known that min-max, Z-normalization and similar score transformation 
methods are sensitive to outliers while tanh and sigmoid based transforms are robust to outliers. 
Ulery et al. [12] have studied several score level fusion methods for a large public score set and 
concluded that product of log likelihood ratios and logistic regression outperformed other 
techniques. Rank level fusion techniques like Borda count [13] have been applied to the biometric 
fusion problem in the recent past [14]. Poh, Kittler, and Bourlai [15] have proposed a quality 
based score normalization and subsequently applied it to multimodal fusion. In this quality-based 
score normalization, Poh et al. incorporated the qualitative device information. In case the device 
information is not available, the technique can still be used, but with the qualitative device 
information, the technique outperforms the other competitive methods. Vatsa et al. [16] also 
separately computed quality scores from fingerprint images and augmented these scores with the 
classifier scores and finally fused them using DSm theory to improve the performance of the 
resultant verification engine. Vatsa et al. [17] incorporated the likelihood-ratio test statistic in an 
SVM framework to fuse various face classifiers towards improved verification scores. Singh et al. 
[18] also used SVM for multimodal biometric information fusion. Vatsa et al. fused textural level 
matching scores and topological level matching scores to produce an improved iris recognition 
system in [19]. 
 
 

3. METHOD 
 
In this section, we describe the data transformation and the modeling that we used for the multi-
modal biometric authentication.   
 
 
3.1 Data Transformations 

 
We transform the data such that the outliers do not affect the distribution. In the literature [5, 11, 
15], three different kinds of data transformation have been used. These are min-max 
transformation, Bayesian approach, and non-linear transformation using sigmoid (tanh(.)) 
function. We perform non-linear transformation of the data using quantile transformation. For 
each modality, we compute q quantiles (where q is an input variable) and then represent these q 
quantiles as q+1 bins. For example, i-th bin is the range of values between quantile i-1 and i. In 
this process, if there is an outlier far from the distribution then also it is mapped to either 1

st
 or the 

last bin. 
 
In our multimodal biometric dataset, the samples are highly imbalanced. For example, if there are 
M individuals then we have only M genuine scores and M (M-1) imposter scores. Therefore, we 
have only 100/M % genuine scores and the rest are the imposter scores. For a large value of M, 
most of the distribution appears from the imposter data. Therefore if we compute the quantiles 
over the entire dataset including genuine and imposter then almost all the bins will be occupied 
by the imposter samples, and only one bin or only part of one bin will be occupied by the genuine 
samples which results in poor classification. 
 
In order to suitably transform both genuine and imposter samples, we compute the quantiles of 
the imposter distribution and the genuine distribution separately. We use equal number of 
quantiles for both the imposter and the genuine distribution. Note that, it may not be necessary to 
have equal number of quantiles for both imposter and genuine distributions, however, we use the 
same number of quantiles in our data transformation. 
 
Let x be any score for a modality i. Let the quantile values computed from the genuine scores be 

],,,[ 21 qyyy K

 where q is the number of quantiles. Similarly let the quantile values computed 

from the imposter distribution be 
],,,[ 21 qzzz K

. We transform x using the quantile values of the 
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genuine distribution to 
)(xk gen  where

1)()( +
<≤ xkxk gengen

yxy
. If qyx ≥

then 
1)( += qxk gen . 

Similarly we obtain the transformation of x to 
)(xk imp  using the imposter quantile values ([z]).  

We then obtain the resultant transformed score as 
 

)()()( xkxkxk impgen +=
           (1)              

 
Once we obtain the transformed values, we normalize k by 2q+2, i.e., k(x) = k(x)/(2q+2), since k 
can attain a maximum value of 2q+2. We first compute the transformed scores for the training 
data. We preserve the quantile information for all modalities derived from the training data. We 
then perform the model fitting on the transformed training data. For a test sample, we use the 
quantile information as derived from the training data and transform the test sample in the same 
way as in Equation (1) using the quantile information from the training data.  
 
   Ideally, if the genuine samples are separated from the imposter samples for a specific modality 
then after transformation, the transformed imposters will take values in the range [0,0.5] and the 
genuine samples will take values in the range [0.5,1]. This is illustrated in Fig. 3. Fig. 2 is the 
original score distribution of the two of the modalities of the NIST-BSSR1 dataset and Fig. 3 
shows the effect of quantile transform on these scores. In the multi-modal score distribution, we 
can view the transformed scores to be bounded in a four-dimensional hypercube. The imposter 
samples will be roughly confined in the box defined by [(0, 0, 0, 0), (0.5, 0.5, 0.5, 0.5)] and the 
genuine samples will occupy rest of the volume. Once we compute the normalized transformed 
scores, we raise the scores to a certain positive power p i.e. 
 

)()( xkxK p
=

 where p > 1       (2) 
 
With the increase in p, the volume occupied by the imposter samples in the hypercube decreases 
and the volume occupied by the genuine samples increases. In other words, the imposter sample 
distribution gets squeezed and the genuine sample distribution expands. This is evident in Fig. 4 
which shows the score distribution of the transformed NIST-BSSR1 scores for two of the 
modalities (the original score distribution is as shown in Fig. 2). We perform the quantile power 
transformation (QPT) as in Equation (2) and subsequently use linear classifier to classify the 
multi-modal scores. We denote QPT along with the linear classifier explained in section 3.2 as 
QPLC. 
 

 



Jayanta Basak, Kiran Kate, Vivek Tyagi & Nalini Ratha 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (6) : Issue (5) : 2012 127 

 

 
 

3.2 QPLC Model Fitting 
We first transform the scores of the training data using the quantile mapping and then normalize 

the scores. We then raise the normalized transformed scores to certain positive power and then 

perform linear classification. In order to find out the linear classification boundary, it is possible to 

perform various techniques which include logistic regression and linear SVM. However, the cost 

of misclassification for the genuine samples and imposter samples are not the same in our 

classification task. The objective here is to attain the maximum possible TAR with minimum 

possible FAR. We restrict the FAR to certain low value and find the optimum classification 

boundary to increase TAR as much as possible. 

 
As we mentioned before, we have four different modalities namely the left index, right index, and 
scores produced by two different matchers. Let us represent the separating hyperplane by 

],,,,[ 4321 θwwww
 where first four parameters define the orientation of the hyperplane in the 

four-dimensional space and the last parameter defines the intercept. We constrain the orientation 

FIGURE 2:  Score distribution of two of the modalities of the NIST-BSSR1 dataset. 

FIGURE 3: Quantile transformed score distribution of two of the modalities of the NIST-BSSR1 
dataset (before the power transform) 
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parameters as 
1

2
=w

 such that we have four free variables including the intercept. We then 
perform search over a four-dimensional hypersphere to obtain the orientation parameters. We 

search over the hypershpere in steps of certain w∆ , and compute the ROC (FAR vs. TAR) for 
each such model. 
 
We then obtain the set of models which produces the maximum TAR for a certain low FAR (FAR 
= 0.01%). Once we obtain the set of such models, we compute the AUC (area under the ROC 
curve) for each such model in the subset. We select one model from the subset which produces 
the maximum AUC. It is possible that more than one model in the subset produces the maximum 
AUC, and we randomly select one of such models. The overall approach is shown in Fig. 5. Once 
we obtain a model computed from the training data, we apply the same model on the test data. 
We vary the intercept to obtain the ROC on the test data. 
 

 
 
3.3 Quantile Transformation Applied To SVM 
 
Vector Machine (SVM) classifier has been quite successfully applied to a diverse set of 
classification problems. To further validate the effectiveness of the proposed QP transformation, 
we have used the transformed dataset to train a linear kernel SVM [3].   Libsvm [2] library has 
been used to train the following two linear SVMs. 
 

1. SVM trained on original dataset 
2. SVM trained on QP transformed dataset with p = 7 
 

In our experiments we have found that QP transformed SVM performs better than the SVM 
trained on the original data. This may be attributed to the better suitability of QP transformed data 
for linear classification. The detailed results are presented in the following section.   
 
==================================== 

for 
,1::01 ww ∆=
 

    
2

11 1 wR −=
; 

    for 
,::0 12 Rww ∆=
 

FIGURE 4:  QPT transformed score distribution of two of the modalities of the NIST-BSSR1 
dataset (p = 7) 
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,1

2

2

2

12 wwR −−=
 

           for 23 ::0 Rww ∆=
, 

                  

2

3

2

2

2

14 1 wwww −−−=
; 

            compute the 
),,,( 4321 wwwwROC

; 
            end 
    end 
end 
 
Obtain the subset W of models from ROC which produces maximum TAR for FAR 0.01%; 

for each 
Wwwww ∈),,,( 4321 ,  

compute the 
),,,( 4321 wwwwAUC

 

Select a model vector Ww ∈
*

  

where 
)(maxarg

*
wAUCw Ww∈

=
; 

 ================================== 
 
 
 

4. RESULTS 
 
The performance of the QPLC method was evaluated on a public-domain dataset NIST-
BSSR1[1]. This dataset contains multimodal (two fingerprint and two face) scores for 517 users 
(NIST-517). It also contains two fingerprint matchers’ scores for 6000 persons (NIST-Fingerprint) 
and two face matchers’ scores for 3000 persons (NIST-Face). The first set of experiments was 
performed on the multimodal 517 users dataset using 20-fold cross validation. The results 
reported are the average values over these 20 folds.  
 
For the second set of experiments, a larger training dataset was generated for the four modalities 
by combining the 3000 NIST-Face scores with the first 3000 NIST-Fingerprint scores (We refer to 
this dataset as NIST-3000). The test dataset used was the 517 sample NIST-Multimodal dataset. 
We first show that the quantile transformation improves the Receiver Operating Characteristic 
(ROC) curves even on single modality. For example Fig. 6 displays the ROC on the right index 
fingerprint distribution for both the original data and the transformed data. We transformed the 
distribution using a quantile bin of size 4. 
 
After transformation, the scores take an approximate uniform distribution. The imposter samples 
get concentrated in [0, 0.5] and the genuine samples get concentrated in [0.5, 1] (as illustrated in 
Fig. 3).   
 
As discussed in section 3.1, raising the normalized transformed scores to a positive integer power 
changes the genuine and imposter distributions and we show that this helps the classification. 
The ROC plots in Fig. 7 and Fig. 8 compare the performance of QPLC with different values of 
powers for the NIST-multimodal and NIST-3000 datasets respectively. It can be seen that the 
classification performance improves with the higher values of power for lower values of FAR and 
then the curves coincide for the higher values of FAR as expected.  
 
In Fig. 9 we compare the ROC of the linear SVM, QPT based SVM and Logistic Regression on 
the NIST-517 dataset. The results indicate that the QPLC achieves significant improvement in the 
TAR values for low values of FAR as compared to the other techniques.  Further, we note that the 
QPT based SVM performs better than the SVM trained on the original dataset. Fig. 10 shows the 

FIGURE 5:  Linear classifier of QPLC 
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results of these classifiers on the larger NIST-3000 dataset. These results also show a similar 
trend as in Fig. 9. The QPLC outperforms other techniques and the QPT based SVM significantly 
outperforms the SVM trained on the original dataset. The improvement in the SVM performance 
as a result of the QPT is important since SVM is a widely used scalable classifier. 
 
 
 

                                   
     
 
 
 

 
 
 
Table.1 summarizes the TAR values for the FAR of 0.01 percent for all these fusion techniques. 
In [5] the authors have proposed a likelihood ratio test (LRT) based biometric score fusion.  As 
their results are also based on the 517 sample dataset, we directly compare their LRT based 
result with the proposed technique in the Table 1.  We also directly report the results of a linear 
classifier based fusion technique [4] on the same dataset. We also compare our transformation to 
the well known tanh score normalization [11, 15]. We use SVM to classify the tanh transformed 
scores and the result is reported in Table.1. This result and the results reported in [15] for tanh 
normalization in combination with different fusion methods on NIST-517 dataset indicate that QPT 

FIGURE 7:  Comparison of ROC performance on quantile transformed data raised to different 
values of powers for NIST-517 dataset. 

 
FIGURE 6:  Comparison of ROC performance on original data and transformed data for right index 

finger print recognition. 
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performs better than tanh normalization. From all the results, we can observe that the 
performance of QPLC is better than all the other techniques compared. 

 

   

 
 
 

FIGURE 9:  Comparison of ROC performance of QPLC with SVM, SVM + QPT p = 7, and Logistic 
Regression on the NIST-517 dataset. 

FIGURE 8:  Comparison of ROC performance on quantile transformed data raised to different 
values of powers for NIST-3000 dataset. 
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5. CONCLUSIONS 
 
In a multimodal score fusion problem, often one has to deal with the scores from the various 
modalities whose dynamic ranges and probability distributions vary a lot.  As a solution to this 
problem, we have proposed a quantile transformation which is independent of the dynamic 
ranges of each modality and is not highly susceptible to the outliers. Further we show that raising 
the normalized quantile values to a power greater than one results in a lower FAR and a higher 
TAR.    
 
Finally, a linear classifier (QPLC) and a SVM trained on the QPT scores significantly 
outperformed the other classifiers (LRT [5], linear classifier [4] and SVM) that were trained on the 
original scores confirming the utility of the QPT. We also compared it with other score 
normalization methods like tanh [11, 15] and found that QPT performs better. 
 
QPLC is also designed to particularly handle imbalanced data. We observe that for NIST-3000 
dataset, QPLC outperforms other linear classifiers. Since we consider the maximization of AUC 
explicitly under the constraint of achieving a certain minimum TAR, it is not affected by the 
imbalance in the samples. The linear classifier of QPLC is constrained by the dimensionality. We 

Technique NIST-
Multimodal 

NIST-3000 

LC [4] 99.00 - 

GMM [5] 99.10 - 

Logistic 
Regression 

98.26 - 

SVM + tanh 90.56 - 

SVM 98.84 94.19 

SVM + QPT 99.03 98.65 

QPLC 99.42 99.42 

FIGURE 10: Comparison of ROC performance of QPLC with SVM and SVM + QPT p = 7 on the 
NIST-3000 dataset. 

TABLE 1:  TAR (%) values for different methods at 0.01% FAR
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have four modalities and it was possible to design an explicit search mechanism. However, if the 
dimensionality increases, it may not be possible to perform the explicit search. Overall for 
relatively low-dimensional dataset and highly imbalanced class samples, QPLC has the potential 
to outperform the existing classifiers. In this paper, we tested with NIST-BSSR1 dataset, and as a 
future study we expand the experiments with other multi-modal biometric datasets as well. 
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Abstract 
 

Pattern matching is one of the central and most widely studied problem in theoretical computer science. 
Solutions to the problem play an important role in many areas of science and information processing. Its 
performance has great impact on many applications including database query, text processing and DNA 
sequence analysis. In general Pattern matching algorithms are based on the shift value, the direction of 
the sliding window and the order in which comparisons are made. The performance of the algorithms can 
be enhanced to a great extent by a larger shift value and less number of comparison to get the shift 
value. In this paper we proposed an algorithm, for finding motif in DNA sequence. The algorithm is based 
on preprocessing of the pattern string(motif) by considering four consecutive nucleotides of the DNA that 
immediately follow the aligned pattern window in an event of mismatch between pattern(motif) and DNA 
sequence .Theoretically, we found the proposed algorithms work efficiently for motif identification. 

Key words: Pattern Matching, Pattern String, Motif Finding, Motif Identification, Gene Identification, 
Preprocessing. 

 
 

1. INTRODUCTION 
Pattern matching consists in finding one, or more generally, all the occurrences of a given query string 
(pattern) from a possibly very large text is an old and fundamental problem in computer science. It 
emerges in applications ranging from text processing and music retrieval to bioinformatics. This task, 
collectively known as string matching, has several different variations. The most natural and important of 
these is exact string matching, in which, like the name suggests, one wish to find only occurrences that 
are exactly identical to the pattern string, which is the focus of our work.  The field of approximate string 
matching, on the other hand find occurrences that are similar to the pattern string. 
 
Given a text array, T [1 . . . n], of n character and a pattern array, P [1 . . . m], of m characters. The 
problem is to find an integer s, called valid shift where 0 ≤s ≤ n - m and T[s +1 . . . s + m] = P [1 . . . m]. In 
other words, to find whether P in T i.e., where P is a substring of T. The elements of P and T are 
character drawn from some finite alphabet such as {0, 1} or {A, B ... Z, a, b . . . z} [1] [2]. 
 
All pattern-matching algorithms scan the text with the help of a window, which is equal to the length of the 
pattern. The first process is to align the left ends of the window and the text, and then compare the 
corresponding characters of the window and the pattern. After a whole match or a mismatch of the 
pattern, the text window is shifted in the forward direction until the right end of the window reaches the 
end of the text. The algorithms vary in the order in which character comparisons are made and the 
distance by which the window is shifted on the text after each attempt. Many pattern matching algorithms 
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are available with their own merits and demerits based on the pattern length, periodicity and alphabet set. 
An efficient way is to move the pattern on the text using the best shift value. To this end, several 
algorithms have been proposed to get a better shift value, for example: Boyer–Moore [3], Quick Search 
[4], Karp-Rabin [5], Raita [6] and Berry–Ravindran [7]. The efficiency of an algorithm lies in two phases: 
pre-processing phase and the searching phase. Effective searching phase can be established by altering 
the order of comparison of characters in each attempt and by choosing an optimum shift value that allows 
a maximum skip on the text [8]. The difference between various algorithms is mainly due to the shifting 
procedure and the speed at which a mismatch is detected.  
 
The rest of the paper is organized as follows. Section 2 gives the review of several efficient algorithms in 
practice. Section 3 describes the proposed algorithm in detail. Section 4 is about complexity analysis of 
the proposed algorithm. In section 5, the experimental results of comparison between proposed algorithm 
and other compared algorithm are given. And section 6 is the conclusion. 

2. PREVIOUS WORK  
Many promising data structures and algorithms discovered by theoretical community are never 
implemented or tested at all. This is because the actual performance of the algorithm is not analyzed as 
only the working of the algorithm in practice is taken care. There have been several pattern matching 
algorithms designed in the literature till date as discussed below. 
 
In the naive or Brute Force technique [1] [2] the string to be searched is aligned to the left end of the text 
and each pattern character is compared with the corresponding text character. In this process if a 
mismatch occurs or the pattern character exhausts the pattern is shifted by one unit toward right. The 
search is again resumed from the start of the pattern until the text is exhausted or match is found. 
Naturally the number of comparisons being performed is very more as each time the pattern string is 
shifted right by only one unit towards right. The worst case comparison of the algorithm is O (mn). The 
number of comparisons can be reduced if we can move the pattern string by more than one unit. This 
was the idea of KMP algorithm [1][2][9][10]. The KMP algorithm compares the pattern from left to right 
with the text just as BF algorithm. When a mismatch occurs the KMP algorithm moves the pattern to the 
right by maintaining the longest overlap of a prefix of the pattern with a suffix of a part of the text that 
matched the pattern so far. The KMP algorithm does almost 2n text comparisons and the worst case 
complexity of the algorithm is O (m+n). 
 
Boyer-Moore algorithm [2][3] differs from other algorithms in one feature. Instead of comparing the pattern 
characters from left to right the comparison is done from the right towards left by starting comparison from 
the rightmost character of the pattern. In case of a mismatch it uses two functions last occurrence 
function and good suffix function. If the text character does not exist in the pattern then the last 
occurrence function returns m where m is the length of the pattern string. So the maximum shift possible 
was m. The worst case running time of the algorithm is O (mn). 
 
Quick Search (QS) [2][4] algorithm perform comparisons from left to right order, it's shifting criteria is by 
looking at one character right to the pattern and by applying bad character shifting rule. The worst case 
time complexity of QS is same as Horspool algorithm but it can take more steps in practice. 
 
Berry Ravindran (BR) [2][7][11] algorithm proposed by Berry and Ravindran, it performs shifts by using 
bad character shifting rule for two consecutive characters to the right of the partial text window of text 
string. The preprocessing time complexity is O (m+ (|Σ|) 2) and the searching time complexity is O (mn). 
 
In this paper the idea is to reduce the number of comparisons being performed by obtaining as much shift 
as possible. A shift value of more than length of the pattern is obtained when the pattern gets mismatch 
with the text for one instance. 

3. PROPOSED ALGORITHM 
The proposed algorithms works in two phases, the preprocessing phase and the searching phase. 
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3.1. Preprocessing phase 
In Berry-Ravindran algorithm, two consecutive characters immediately to the right of the pattern window 
are considered in the function brBc [7]. But in the proposed algorithm, four consecutive characters 
immediately to the right of window are considered. Initially, the indexes of the four consecutive characters 
in the text string from the left are (m), (m+1), (m+2) and (m+3) for a, b, c and d respectively. The MBrBc 
(a, b, c, d) of the algorithm consists in computing for each four characters a, b, c, d for all a, b, c, d , in the 
pattern.  
 
The MBrBc(a, b, c, d) is defined as follows: 
 

  

 

  MBrBc[a,b,c,d]=  min      

 
 
 
 
This function finds the position of the right most occurrence of ‘abcd’ in the pattern and computes shift 
value so that the ‘abcd’ in the pattern and the ‘abcd’ if any in the text immediately to the right of the 
window are aligned. If ‘abcd’ does not exist in the pattern or a portion i.e. ‘a’ ‘ab’ ‘abc’ ‘bcd’ ‘cd’‘d’ presents 
then other cases that are considered. 
We improve the algorithm in programmatically by using a one dimensional array called shift array (SA). 
The shift array is use for storing the shift value for all four character permutation of the given pattern. For 
any four given character we generate a unique number and use this unique number as index to store the 
shift value for that four character. For any “abcd” the value is cal calculated like this: 
 

index=(a*1000)+( b*100)+( c*10)+d 
SA [index] =shift value 
 

We use this technique to store the shift value, which is a very efficient than other possible technique. 
 
3.2. Searching Phase 
In this proposed algorithm, after each attempt the window is shifted to the right using the shift value 
computed for the four consecutive characters immediately right of the window. MBrBc function calculates 
the shift value based on the right most occurrences of four consecutive characters, say abcd, which is 
immediately to the right of the window. The probability occurrence of four consecutive characters, abcd, in 
the pattern as compared to that of ab is less. Thus MBrBc always provides a better shift than brBc (Berry-
Ravindran Bad character function) [12]. 
 
The searching phase of the algorithm works in the following way. 
 
Step1: Compare the characters of the windows with the corresponding text characters from left as well as 
right [13][14]. If there is a mismatch during comparison, the algorithm goes to step2, otherwise the 
comparison process continues until a complete match is found. The algorithm stops and displays the 
corresponding position of the Pattern on the text string. If we search for all the pattern occurrences in the 
text string, the algorithm continues to step2. 
 
Step2: In this step, we use the shift values from the next arrays depending on the four text characters 
placed immediately after the pattern window. The window is shifted to the correct positions based on the 
shift value and the algorithm goes to step 1, this process continues till the end of the string. The searching 
phase of the algorithm works in the following way. Suppose we have a text string T[O . . . n-l] and pattern 
P[O . . . m-l] and starts searching of P in T. The algorithm compares the pattern with selected text window 
from both (right and left) sides simultaneously. In case of match or mismatch MBrBc shift value is used to 
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shift the window to the right. This procedure is repeated until the window is placed beyond n-m+1, that is 
the last character of the pattern placed beyond the last character of the text. 
 
The Searching Phase of Motif Finding Algorithm 
1.   Search_Motif(T,P) 
2. n�length[T] 
3. m�length[p] 
4. i�0 
5. s�n-m 
6. while( i <= s) do 
7.  left�0 
8.  right�m-1 
9.  while(left<=right)do 
10.   if (P[left]==T[i+left]&& P[right]==T[i+right) 
11.    left�left+1 
12.    right�right-1 
13.   else 
14.    break 
15.  end while 
16.  if(left>right) 
17.   print “pattern occurs at” T[i]to T[i+m-1] 
18.  i=i+ MbrBc(T[i+m],T[i+m+1],T[i+m+2],T[i+m+3]) 
19. end while 
20. end procedur 
 
3.3 Working Example 
Consider the text and pattern string as shown below where text length n=15 and pattern length m=8 
Text (T) = G C A T C G C A G A G A G T A 
Pattern (P) = G C A G A G A G, m = 8 

 

First Attempt G C A T C G C A G A G A G T A  

 1       2        Shift=1(MbrBc[G][A][G][A]) 

 G C A G A G A G         

Second 

Attempt 

G C A T C G C A G A G A G T A  

  1       2       Shift=2(MbrBc[A][G][A][G]) 

  G C A G A G A G        

Third Attempt G C A T C G C A G A G A G T A  

    1       2     Shift=2(MbrBc[A][G][T][A]) 

    G C A G A G A G      
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First Attempt: In the first attempt, we align the sliding window with the text from the left. In this case, a 
match occurs between text character (G) and pattern character (G)in the left side of window and a 
mismatch occurs between text character (A) and pattern character (G)in the right side of window. 
Therefore we take the immediate four characters following the text as (G,A,G, and A). We find according 
to MBrBc function. That the shift=1, therefore the window is shifted to the right 1 step. 
 
Second Attempt: In the second attempt, we align the sliding window with the text from the left. In this 
case, a mismatch occurs between text character (C) and pattern character (G)in the left side of window 
and a match occurs between text character (G) and pattern character (G)in the right side of window. 
Therefore we take the immediate four characters following the text as (A, G, A and G). We find according 
to MBrBc function. That the shift=2, therefore the window is shifted to the right 2 step. 
 
Third Attempt: In the third attempt, we align the sliding window with the text from the left. In this case, a 
mismatch occurs between text character (T) and pattern character (G)in the left side of window and a 
match occurs between text character (G) and pattern character (G)in the right side of window. Therefore 
we take the immediate four characters following the text as (A, G, T and A). We find according to MBrBc 
function. That the shift=2, therefore the window is shifted to the right 2 step. 
 
Fourth Attempt: In the fourth attempt, we align the sliding window with the text from the left after shift. In 
this case all the character of the pattern matches with the text. So match performed. Next the window is 
moved for the next pattern in the text string.  
 

4. ANALYSIS  
The space complexity is O((m/2+1)).where m is the pattern length..The pre-process time complexity is 
O(m+|∑|^4). The worst case time complexity is O(nm). The worst case occurs when at each attempt; all 
the compared characters and the text are matched and at the same time the shift value is equal to 1 i.e.  
Last character of the pattern is equal to the first character present next to the window.  
Example: 
Text (T): AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Pattern (P): AAAAA 
 
The best case time complexity is O (n/ (m+2)).The best case occurs when at each attempt; in the first 
comparison a mismatch is found and at the same time the shift value is m+2. 
Example: 
Text (T): AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Pattern (P): SSSSS 
 

5. EXPERIMENTAL EVALUATIONS 

To assess the performance of my algorithm, we considered all the well-known algorithms stated before 
for comparison with the proposed algorithm. The algorithms are compared with test cases and their 
corresponding results are discussed. 

5.1 Environment 
In the experiments we used a PC with Intel(R) Core(TM) 2 Duo 2.10 and 1.96 GHz processor, with 2GB 
of RAM. The host operating system is windows Xp. The source codes were compiled using the “gcc” 
compiler without optimization. All the coding is done with the help of Dev C++ tool.  
 

Fourth  

Attempt 

G C A T C G C A G A G A G T A  

      1 3 5 7 8 6 4 2    

      G C A G A G A G    
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5.2 Results &Discussion 

The plant genome (Arabidopsis thaliana) consists of 27,242 gene sequences distributed over five 
chromosomes(CHR_I to CHR_V) (NCBI site, ftp://ftp.ncbi.nih.gov/genomes/Arabidopsis_thaliana/CHR_I). 
Part of a nucleotide sequence of a gene from Chromosome I (CHR_I) has been used (see below for 
details) to test the proposed algorithm. Two types of data have been analyzed for comparisons; one with 
small alphabet size, i.e. ∑= 4 (nucleotide sequences) and another with big alphabet size, i.e. ∑ = 20 
(amino acid sequences). The algorithms are tested on pattern size 4, 8, 12, 16 and 20. 

To assess the performance of our algorithm, we considered two well-known algorithms (i.e. Brute force 
algorithm and Berry-Ravindran algorithm [5]), the improved version of these two well-known algorithms 
(i.e. Improved Brute force algorithm and Improved Berry-Ravindran algorithm) for comparison with the 
proposed algorithm. The Improved Brute Force algorithm is a variation of Brute force algorithm, in which 
we implement our method of searching in the searching phase. In the same way, we implement our 
method of searching in the searching phase of Berry-Ravindran [5] algorithm to get the Improved Berry-
Ravindran algorithm. The algorithms are compared with test cases and their corresponding results are 
discussed.  
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Figure 1: Finding Motif in Nucleotide Sequence (time) 
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Figure 2: Finding Motif in Nucleotide Sequence (character comparison) 
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Figure 3: Finding Motif in Nucleotide Sequence (attempt) 
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Figure 4: Finding Motif in Amino acid Sequence (time) 
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Figure 5: Finding Motif in Amino acid Sequence (character comparison) 
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Figure 6: Finding Motif in Amino acid Sequence (attempt) 

 
From the above figures it is clear that the proposed algorithm takes less number of time, character 
comparison and attempt in almost all cases, than other to find all the occurrences of the pattern.  
 
As the experimental result shows the proposed algorithm is more efficient than other for small pattern and 
the motif normally ranges between 8 and 20. So it is clear that it is more efficient in finding motif in amino 
acid sequence as well as nucleotide sequence [15]. 
 

6. CONCLUSIONS 
In this paper we present an efficient pattern matching algorithm based on preprocessing of the pattern 
string by considering four consecutive characters of the text. The idea of considering four consecutive 
characters is from the fact that occurrence of three successive characters is less frequent than the other 
possibilities because of which even the shift value obtained is also more compared to Berry-Ravindran 
and Brute Force algorithms. The concept of searching from both sides makes the algorithm efficient when 
a mismatch present at the end of the pattern with that of align text window. Theoretically, we prove that 
the proposed algorithms will shift the pattern faster than other compared algorithms. Experimentally, we 
show that the proposed algorithms indeed significantly outperform the compared algorithm in almost all 
cases. 
 

7. REFERENCES 
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms, MIT Press, First Edition, 

1990, pp. 853-885.   
 

[2] C. Charras, T. Lecroq(1997). Handbook of Exact String Matching Algorithms. [online]. Available: 
http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf [Oct 08, 2012]. 

 
[3] R.S. Boyer, J.S. Moore. A Fast String Searching Algorithm, Communications of the ACM, vol. 20, 

pp.762-772, 1977. 
 

[4] D.M. Sunday. A Very Fast Substring Search Algorithm, Journal of Communication of the ACM, 
vol. 33, pp. 132-142, 1990. 

 
[5] R.M. Karp, M.O. Rabin. Efficient Randomized Pattern Matching Algorithms, IBM J. Res. Dev, 

vol. 31, pp. 249-260, 1987. 
 

[6] T.Raita.“Tuning the Boyer-Moore-Horspool string-searching algorithm”, Software – Practice 
Experience, 1992, pp. 879–884. 

 



K. K. Senapati, D. R. Das Adhikary & G. Sahoo 

 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (6), Issue (5): 2012. 143  

[7] T. Berry, S. Ravindran. “A Fast String Matching Algorithm and Experimental Results”, 
Proceedings of the Stringology Club Workshop’99, 1999, pp. 16-26.  

 
[8] R. Thathoo,A. Virmani, S. Lakshmi, N. Balakrishnan, K. Sekar. TVSBS: A Fast Exact Pattern 

Matching Algorithm for Biological Sequences, Current Science, vol. 91, pp. 47-53, Jul. 2006. 
 

[9] D. E. Knuth, H. Morris,  V. R. Pratt. Fast Pattern Matching in Strings, SIAM Journal of computing, 
vol. 6, pp. 323-350, 1977. 

 
[10] J. H. Morris(Jr), V. R. Pratt. “A Linear Pattern Matching Algorithm”, 40th Technical Report, 

University of California, Berkeley, 1970.  
 

[11] Y.Huang, L. Ping, X. Pan, G. Cai. “A Fast Exact Pattern Matching Algorithm for Biological 
Sequences”, International Conference on Biomedical Engineering and Informatics, IEEE 
computer Society, Feb. 2008, pp. 8-12.  

 
[12] V. Radhakrishna, B. Phaneendra, V.S. Kumar. “A Two Way Pattern Matching Algorithm Using 

Sliding Patterns”, 3rd International Conforence on Advanced Computer Theory and Engineering 
(ICACTE), 2010, vol. 2, pp. 666-670. 

 
[13] Hussain, M. Zubair, J. Ahmed, J. Zaffar. “Bidirectional Exact Pattern Matching Algorithm”, 

TCSET’2010, Feb. 2010, pp. 295.  
 

[14] S. S.Sheik,S. K. Aggarwal, A. Poddar, N. Balakrishnan, K. Sekar.A FAST Pattern Matching 
Algorithm, Journal of Chemical Information and Computer Sciences, vol.44, pp. 1251–1256, 
2004. 

 
[15] M.Q. Zhang. “Computational prediction of eukaryotic protein-coding genes”, Nature Reviews 

Genetics, vol. 3, Sep. 2002, pp. 698-709. 
 
 

 



Danilo Avola, Luigi Cinque & Giuseppe Placidi 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (6) : Issue (5) : 2012 144 

Medical Image Analysis Through A Texture Based Computer 
Aided Diagnosis Framework 

 
 

Danilo Avola                          danilo.avola@univaq.it 
A

A
VI Laboratory 

Department of Life, Health and Environmental Sciences 
University of L’Aquila 
L’Aquila, Via Vetoio Coppito 2, 67100, Italy 

 
Luigi Cinque                cinque@di.uniroma1.it 
Department of Computer Science 
Sapienza University 
Rome, Via Salaria 113, 00198, Italy 

 
Giuseppe Placidi                   giuseppe.placidi@univaq.it 
A

A
VI Laboratory 

Department of Life, Health and Environmental Sciences 
University of L’Aquila 
L’Aquila, Via Vetoio Coppito 2, 67100, Italy 

 
Abstract 

 
Current medical imaging scanners allow to obtain high resolution digital images with a complex 
informative content expressed by the textural aspect of the membranes covering organs and 
tissues (hereinafter objects). These textural information can be exploited to develop a descriptive 
mathematical model of the objects to support heterogeneous activities within medical field. This 
paper presents a framework based on the texture analysis to model the objects contained in the 
layout of diagnostic images. By each specific model, the framework automatically also defines a 
connected application supporting, on the related objects, different targets, such as: segmentation, 
mass detection, reconstruction, and so on. The framework is tested on MRI images and results 
are reported. 
 
Keywords: Medical Imaging, Texture Analysis, Pattern Recognition, Feature Extraction, 
Framework, Classification, Segmentation, CAD. 

 
 
1. INTRODUCTION 

Current medical imaging scanners, as Magnetic Resonance Imaging (MRI), Position Emission 
Tomography (PET), or Computer Tomography (CT), allow to obtain digital images with high level 
detail having a complex informative content that goes beyond the simple visual representation. By 
observing the relationships between clusters of pixels (i.e., the texture) of the membranes 
covering objects, meaningful features can be derived to describe the morphological structures of 
the objects themselves. These features (i.e., textural information) are exploited to develop 
mathematical models of the objects to support different activities within medical field. 
 
In the last years, there have been many efforts to conceive intelligent and automated systems to 
support critical diagnostic tasks (e.g., analysis, masses identification). Current Decision Support 
Systems (DSSs), better known as Computer Aided Diagnosis (CAD) systems, are still not 
completely effective tools. There is an extensive literature focused on the different aspects of the 
medical image processing. A first remarkable image analysis approach is shown in [1], where the 
authors describe an automatic segmentation framework, for brain MRI, based on the combination 
of atlas registration, fuzzy connectedness segmentation, and parametric bias field correction. 
Another work that has supported some aspects related to the textural image filters is detailed in 
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[2], presenting a novel co-occurrence matrices based approach to discriminate textures belonging 
to different kinds of images by considering statistical representation of the structural texture 
primitives (i.e., textons). Another useful approach is presented in [3], where an approach to 
automate the myocardial contours detection, to optimize detection and tracking of the grid of tags 
within myocardium, is described. A further interesting work, [4], presents a real mixed statistical 
model based on a region-driven curve evolution algorithm. An original approach is described in 
[5], presenting a novel algorithm to achieve automatic texture based segmentation of organs in 
MRIs of the abdomen. A robust multi-resolution statistical shape model algorithm is detailed in [6]. 
A last meaningful paper [7], explores the use of the co-occurrence matrixes to extract textural 
features from medical images. These approaches are based on several principles related to the 
image understanding, but there are no works to exploit the morphological structure (given by the 
texture analysis) of the objects with the aim to provide both their descriptive mathematical model 
and related dedicated Texture based Computer Aided Diagnosis (T-CAD) Framework. 
 
This paper presents some basic technical and methodological advancements of our developed T-
CAD Framework which was implemented to perform the texture analysis and reconstruction 
activities of brain MRI images [8]. These improvements are based on a conceptual generalization 
of our previous experiences in mathematical modeling of the brain [9], [10] and [11]. More 
specifically, in this paper we detail the restyled ability of our T-CAD Framework which, on one 
side, supports the mathematical modeling process of each object represented inside the image 
layout and, on the other hand, automatically defines, for each model, an ad-hoc application to 
support a set of fixed targets to aid the medical specialist in a specific context (e.g., 
craniopharyngioma identification on brain MRI images). Observe that each mathematical model 
(e.g., craniopharyngioma model) computed during the modeling process is defined one and for 
all. The effectiveness of the restyled approach is shown both on experimental data (MRI images) 
and on ad-hoc model-driven applications. 
 
The paper is organized as follows. Section 2 illustrates the main architectural aspects of the 
described T-CAD Framework. Section 3 introduces and discusses the main experimental results, 
highlighting a specific case study. Section 4 presents the conclusions and plans the future work. 

 
2. THE T-CAD FRAMEWORK ARCHITECTURE 

The developed T-CAD Framework is a smart tool that allows skilled user to define a texture 
based Mathematical Model (MM) of each object represented inside a cluster of diagnostic images 
representing a volume (in this case, the application is relative to MRI images). A specific MM 
(e.g., of the brain) is simply the set of formalized mathematical classes representing different 
basic objects contained in the related image (e.g., cerebral tissue, abnormal mass, background). 
For each MM the framework supports the building of a dedicated T-CAD system to support a 
specific medical image analysis process (e.g., image segmentation and mass recognition). The 
next two sub-sections show the general approach, and the main textural filters used within the 
framework, respectively. 
 
2.1 The Region Based Algorithm 
The Region Based Algorithm (RBA) represents the core of the T-CAD Framework. Actually, its 
main aspect regards the building of the mathematical classes constituting a specific MM, as the 
dedicated system generation is only a technical application of the related MM on a dataset of 
source images. For this reason, the definition of the MM will be first detailed, and finally the 
system generation process will be described. Figure 1 shows the basic architecture of the RBA. 
 
The first panel (MRI Scanner and DBs) highlights that the framework works on two kinds of 
databases (DB). The first (TRaining-DB) is used when the skilled user has to build a new MM. 
For this reason, the population of the TR-DB follows a rigid protocol which has to ensure the 
fulfillment of different qualitative and quantitative requirements relatively to the informative content 
of the related images. The second (SouRce-DB) points out that, once obtained the related MM, it 
is possible to analyze each kind of source image coming directly from the MRI scanner. 
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FIGURE 1: Region Based Algorithm Architecture. 

 
The second panel (Recognition Module) highlights the recognition process on each image 
belonging to the TR-DB, where an adaptable elaboration window runs across the image to 
perform a feature extraction process based on a suitable set of textural filters (i.e., features 
vector). It is divided in two steps, the first one, supported by two specific filters, Entropy and 
Homogeneity (see next sub-section), is to fix the window size both to maximize the number of 
image zones with high entropy levels and to minimize the number of neighboring heterogeneous 
zones. The second step is to exploit the found fixed window to analyze, by the features vector 
(filters are stored in the FilteR-DB), each image area (in top-bottom and left-right way). For each 
image the analysis produces a feature map, the set of feature maps defines a feature space 
(stored in the FeatureSpace-DB) that, suitably interpreted, provides the mathematical class of 
each chosen basic object. In fact, by analyzing the correlation related to all feature spaces of 
each basic object, a preliminary mathematical model of everyone can be defined. Here, there is 
the main innovation of the current framework with respect the old one. In the first release of the 
framework the building of the feature space and the comparison between them were performed in 
supervised-way. This means that a skilled user followed the whole process, supported by 
analytical tools (e.g., histograms, statistical computational), to manually define feature maps and 
spaces. In the current version we have implemented a machine-learning like approach to 
automatically build them. In a first phase the approach builds the feature maps refining the values 
extracted by each zone image. The first obtained measurements fix the interval of values of a 
map (according to a specific filter), each new measurement limits or expand the previous interval. 
When particular values are computed in less than 15% of the available image areas these values 
are discarded to avoid introducing noise within the map creation process. Afterwards, the 
exhaustive comparison of each different preliminary model allows to find the textural relationships 
to univocally describe each basic object. This description is the MM, which can be considered as 
the set of the mathematical classes defining itself. Also this aspect has been changed in this last 
release where a semi-automatic mechanism has substituted a whole skilled user based 
approach. In particular, the implemented method automatically compares the preliminary models 
highlighting the overlap of intervals (if any). In this case the skilled user can decide to follow or not 
the indications of the monitoring system. Note that the described process only occurs when a 
skilled user wants to build a new MM. 
 
The third panel (Classification Module) points out the classification process which uses the MM 
found in the previous module (and stored in the ClassFormat-DB) to analyze the source images 
coming from the MRI scanner (SR-DB). This process follows the same approach shown in the 
recognition module, but its purpose is to classify any zone of each source image according to a 
selected MM. The module works following two different steps. During the first, any image zone is 
analyzed (by using the mentioned elaboration window) to classify it according to one of the 
formalized mathematical classes belonging to the related MM. Afterwards, homogeneous image 
zones are suitably marked and merged. During the second step the module assigns to one of the 
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formalized classes, by a statistical distribution algorithm, the remaining zones that have been not 
classified at all. Each classified image is stored in a new database (ClaSsified-DB). 
 
The fourth panel (Labelling Module) highlights the labelling process where every classified 
source image is properly labelled to provide an immediate visual impact to the user. Each 
segmented image is arranged in a suitable database (SeGmented-DB). 
 
The fifth panel (Application Builder) points out the ad-hoc application builder. In particular, the 
MM Integrator includes the definition of the selected MM inside the application. Observe that the 
framework allows user to include more than one specific MM. The GUI Engine highlights that the 
main mechanisms related to the data presentation (e.g., visualization engine, interaction 
properties) are the same independently from the specific application. 
 
The sixth panel (Application) shows an example of a created application. In this case it is 
referred to the segmentation of a MRI image of the brain. 
 
2.2 Textural Image Filters 
The image filters adopted to support the RBA have been suitably chosen and/or created to define 
the basic textural informative content of the objects composing the human body. Actually, our 
strong belief is to have found a general approach adoptable for every object represented by MRI 
images, which, at the moment, has been refined to define the textural morphological structures of 
four specific objects: brain, heart, liver and bones. Our approach divides the image filters into 
three different graphical classes, each able to characterize a specific informative layer of the 
mentioned objects: informative class, texture class and pattern class.  
 
The informative class is composed by those first order statistic image filters which distinguish 
between zones with and without relevant information content. In our experience, the following two 
set of filters represent the main best suitable ones: N-Order Moment (Mn1) and N-Order Central 
Moment (Cn2): 
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where: p(i) represents the probability that the gray level i appears inside the elaboration window. 
The following constraints must hold: 
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Mn1 and Cn2 measure respectively, on different textural graphical layers, the consistent quantity 
and the semantic readability of the information related to different image zones. 
 
The texture class is composed by those second order statistic image filters measuring macro 
and micro textural structures. Our empirical studies allowed to detect the following four set of 
filters: Homogeneity (Hg(d)), Contrast (Ct(d)), Inverse Difference (Id(d)) and Entropy (En(d)): 
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where: pd(i,j) represents the probability that two points with distance d have respectively i and j 
gray value. The following constraints must hold: 
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Hg(d) measures the degree of uniformity of the different image zones, where high or low values 
within the feature maps highlight light or wide changes of the textural structures, respectively. 
Ct(d) expresses roughly how the mentioned structural changes occur. High values of the related 
feature maps, point out fast continuous changes within the image zones. On the contrary, slow 
changes are highlighted by low values. Id(d) provides the measure of the transition between 
different basic objects, where low values typically highlight a boundary zone. En(d) is used to 
detect the randomness level within the considered image zone, where the complex changes in 
the random distribution of the grey levels are directly proportional to the given values. 
 
The pattern class is composed by those second order statistic image filters measuring pattern 
structures. Experimental observations allowed to identify the following two set of filters: 
Correlation (Cr(d)) and Difference Entropy (De(d)): 
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and, in addition to the constraints shown in (5) and (6), the following ones must hold: 
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Cr(d) is usually used to recognize definite patterns within texture zones previously identified, 
while the De(d) is adopted to detect the different components (i.e., parts of a same pattern) of 
different basic objects. 
 
Each class of filters is based on the variation of the current co-occurrence matrix concept, where 
the elaboration process considers all the search directions. In particular, each couple of pixels, 
able to increase a coefficient of the matrix, is chosen considering a pixel (i.e., the center of a 
circle) within the elaboration window and the connected pixel which is at the boundary of the 
circumference related to the fixed radius (i.e., the d parameter). The parameters belonging to the 
set of filters are customized, within the recognition process, according to the specific contextual 
medical domain and related tasks. Besides, the shown filters are often used on more than one 
level of the Gaussian Pyramid [12] to enrich the resolution of the texture described by the MMs. 
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3. EXPERIMENTAL RESULTS AND A CASE STUDY 
This section summarizes the experimental results regarding the analysis of MRI images of 
different body districts: brain, heart, liver and bones. To explain the experimental session, the 
following three general tasks have been selected according to the present medical image 
analysis process: task 1 - layout segmentation, task 2 - abnormal mass or lesion detection, task 3 
- textural characterization. 
 
Table 1 reports the experimental session which has been divided in two different phases. The 
first, regarding MRI image recognition, has concerned the selection of patients (455) to define the 
set of training images (1850) and to build the four basic MMs. The second, regarding the MRI 
image classification and segmentation, has concerned the selection of patients (615) to obtain a 
set of images (2565) to test each MM on the mentioned tasks. 
 

Medical 
Domain 

Training 
Patients 

Testing 
Patients 

Training DB Images Source DB Images Partial 
Images Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 

Brain 270 385 450 680 60 975 775 40 2980 

Heart 75 100 150 80 35 170 100 25 560 
Liver 60 80 70 100 30 135 90 20 445 

Bones 50 50 70 85 40 100 100 35 430 

Total 
Images 

---------- ---------- 740 945 165 1380 1065 120 4415 

 
TABLE 1: Main Case Studies: Training and Source DB. 

 
Actually, the best qualitative results (more than 90% of success rate) come from the brain MM 
which has a large amount of training and test images. Moreover, it has been our historical first 
study case. Also the remaining three models have a high success rate (between the 65% and 
80%), but they need for wider experimental sessions. In fact, the accuracy of the MM is strongly 
tied to the amount of training images used to refine the mathematical classes. 
 
To show more details about a specific segmentation process next sub-section shows a case 
study regarding the segmentation of the brain images. 
 
3.1 Case Study: MRI Brain Images 
This section shows a concrete case study in which a suitable mathematical model is defined 
according to specific targets, and where a model-based application is created to support the 
related image analysis process. Actually, the framework produces the same application in which 
only the mathematical model is replaced each time. 
 
The morphological structures of objects are very different, each of them can be better 
emphasized according to a specific kind of MRI image (e.g., T1, T2, Proton Density (PD)). For this 
reason, a brief specification of the DICOM (Digital Imaging and Communication in Medicine) 
image format is given in relation to a specific case study. 
 
The Brain Mass Identification (BMI) application has been created to aid medical specialists during 
the mass identification within the brain MRI images. In particular, the following targets were 
established: 
 

a. segmentation of the image layout in three basic objects: cerebral tissue, rest of the 
image (i.e. muscular and bones) and background; 

b. identification within the cerebral tissue of abnormal masses (e.g., gliomas, 
craniopharyngiomas, medulloblastomas); 

c. classification of the found abnormal masses distinguishing them from other kinds of 
primary cerebral tumors. 

 
A careful analysis of the set of pixels composing brain MRI images detected in the transversal T1 
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weighted the more suitable ones to better highlight the textural morphological structures of the 
objects, according to the fixed targets. Table 2 shows the main technical features of the images. 
 

Main 
Technical 
Features 

Resolution Category Pre-Processing Scanning 
Anatomic 

Plan 
Spatial Gray Scale 

Primary 
Type 

Secondary 
Types 

Local 
Application 

Global 
Application 

MRI Brain 
Images 

 
512x512 

256 (8 bit) 
T1 

(weighted and not 
weighted) 

T2 and PD 
(weighted and not 

weighted) 

Anti-Spurious  
Filter 

Anti-Aliasing 
Filter 

Transversal 

 
TABLE 2: MRI Brain Images: Main Technical Features. 

 
Images belonging to the others categories have been used to refine and optimize the textural 
feature extraction methodology. Table 2 also shows that two different kinds of pre-processing 
filters have been applied on the related source images to normalize the original gray levels. The 
mentioned filters do not alter the quality of the original source image, they are used to improve 
the image zones affected by lack of information (i.e., localized noise). 
 
The two screenshots reported in Figure 2 point out the segmentation process of the BMI 
application on two MRI brain images. In particular, the first screenshot (left) shows an image in 
which the three layers related to basic objects are found. The second one (right) highlights the 
recognition of four layers where an abnormal mass classified as craniopharyngioma it is also 
identified. 
 

 
 

FIGURE 2: BMI Application: Segmentation Results. 

 
The abnormal mass identification has required, first, the construction of the Abnormal Mass 
Mathematical Model (AB-MM) (see [9] for the model), and then the construction of the 
Craniopharyngioma Mathematical Model (CPH-MM) (see [10] for the model). These two models 
have been used to build the recognition engine of the BMI application. 
 
Note that the MMs, on one side, define the formalized mathematical classes to represent the 
basic objects. On the other hand, they support a first step inside the 3D reconstruction and 
rendering environment. In fact, the provided classes have an exhaustive informative content. A 
skilled user can already exploits the mathematical classes on different anatomic scanning plans 
to infer complex information, one of our next steps is to implement a visual 3D rendering engine. 

 
4. CONCLUSION AND FUTURE WORK 

This paper describes the main aspects of an innovative T-CAD Framework, that exploits textural 
information that covers organs and tissues, tested within the MRI context. The skilled user, once 
established both the contextual medical domain (e.g., brain analysis) and the specific task (e.g., 
craniopharyngioma recognition) can build the related MM (i.e., the set of suitable mathematical 
classes) to describe the basic objects (i.e., cerebral tissue, rest of the image, abnormal masses, 
craniopharyngioma and background) useful to the achievement of the required task (i.e., 
craniopharyngioma recognition on any compatible image dataset). To achieve the task, the 
framework allows user to create a suitable application based on the related MM. Note that each 
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MM is defined once and for all. At the moment, our main work is to refine the MM of the following 
organs and tissues: brain, heart, liver and bones. Another goal is the development of a rendering 
engine to renderize and visualize 3D objects reconstruction. 
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