


INTERNATIONAL JOURNAL OF 
COMPUTATIONAL LINGUISTICS (IJCL) 

 

 

 

 

 

 
VOLUME 2, ISSUE 1, 2011 

 
EDITED BY 

DR. NABEEL TAHIR 

 
 

 

 

 

 

 

 

ISSN (Online): 2180 - 1266 

International Journal of Computational Linguistics (IJCL) is published both in traditional paper 

form and in Internet. This journal is published at the website http://www.cscjournals.org, 

maintained by Computer Science Journals (CSC Journals), Malaysia.  

 

 

IJCL Journal is a part of CSC Publishers 

Computer Science Journals 

http://www.cscjournals.org  



INTERNATIONAL JOURNAL OF COMPUTATIONAL LINGUISTICS 

(IJCL) 

 

Book: Volume 2, Issue 1, August 2011 

Publishing Date: 31-08-2011 

ISSN (Online): 2180-1266 

 

This work is subjected to copyright. All rights are reserved whether the whole or 

part of the material is concerned, specifically the rights of translation, reprinting, 

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any 

other way, and storage in data banks. Duplication of this publication of parts 

thereof is permitted only under the provision of the copyright law 1965, in its 

current version, and permission of use must always be obtained from CSC 

Publishers.  

 

 

 

IJCL Journal is a part of CSC Publishers 

http://www.cscjournals.org  

 

© IJCL Journal 

Published in Malaysia 

 

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals, 

Malaysia 

 

 

 

CSC Publishers, 2011 

 

                              
 



EDITORIAL PREFACE 

 
The International Journal of Computational Linguistics (IJCL) is an effective medium for 
interchange of high quality theoretical and applied research in Computational Linguistics from 
theoretical research to application development. This is the third issue of second volume of IJCL. 
The Journal is published bi-monthly, with papers being peer reviewed to high international 
standards. International Journal of Computational Linguistics (IJCL) publish papers that describe 
state of the art techniques, scientific research studies and results in computational linguistics in 
general but on theoretical linguistics, psycholinguistics, natural language processing, grammatical 
inference, machine learning and cognitive science computational models of linguistic theorizing: 
standard and enriched context free models, principles and parameters models, optimality theory 
and researchers working within the minimalist program, and other approaches.   
 
IJCL give an opportunity to scientists, researchers, and vendors from different disciplines of 
Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share 
common interests, explore new approaches, and initiate possible collaborative research and 
system development. This journal is helpful for the researchers and R&D engineers, scientists all 
those persons who are involve in Computational Linguistics. 
 
Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCL as 
Editorial board members. All submissions are evaluated by the International Editorial Board. The 
International Editorial Board ensures that significant developments in image processing from 
around the world are reflected in the IJCL publications. 
 
 
IJCL editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Scribd, CiteSeerX Docstoc and many more. Our International Editors are 
working on establishing ISI listing and a good impact factor for IJCL. We would like to remind you 
that the success of our journal depends directly on the number of quality articles submitted for 
review. Accordingly, we would like to request your participation by submitting quality manuscripts 
for review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. IJCL provides authors with high quality, helpful reviews that are shaped to assist authors 
in improving their manuscripts.  

 

 

Editorial Board Members 
International Journal of Computational Linguistics (IJCL)             
 
 
 
 
 
 
 
 



EDITORIAL BOARD 

 
 

 
EDITORIAL BOARD MEMBERS (EBMs) 
 

 
Dr Michal Ptaszynski 
Hokkai-Gakuen University( Japan) 

 



International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 

TABLE OF CONTENTS 

 
 
 
 
Volume 2, Issue 1, August 2011 

 
 
Pages 
 

 

10 - 23 

 

 

 

10 - 23 

Implementation of Enhanced Parts-of-Speech Based Rules for English to Telugu Machine 

Translation 

A. P. Siva Kumar, A.Govardhan, P. Premchand 

 

Named Entity Recognition System for Hindi Language: A Hybrid Approach  A. P. Siva Shilpi 

Shilpi Sirivastava, Mukund Sandlikar, D.C Kothari Kumar 

 

24 - 36 Language Combinatorics: A Sentence Pattern Extraction Architecture Based On 

Combinatorial Explosion  

Michal Pataszynski, Rafal Razipka, Kenji Araki, Yoshio Momouchi  

 

  

  

  

  

  

 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 1 

Implementation of Enhanced Parts-of-Speech Based Rules 
for English to Telugu Machine Translation 

 
 

A. P. Siva Kumar                                                                 sivakumar.ap@gmail.com    
Assistant Professor, 
Department of Computer Science and Engineering 
JNTUA College of Engineering, Anantapur-516390, India. 
 

Dr. P. Premchand                                                               p.premchand@uceou.edu    
Professor,Department of Computer Science and Engineering 
Osmania University,Hyderabad, India. 
 

Dr. A. Govardhan                                govardhan_cse@yahoo.co.in    
Principal & Professor, 
Department of Computer Science and Engineering 
JNTUH College of Engineering,Nachupalli, India. 

 
Abstract 

 
Words of a sentence will not follow same ordering in different languages. This paper proposes 
certain Parts-of-Speech (POS) based rules for reordering the given English sentence to get 
translation in Telugu. The added rules for adverbs, exceptional conjunctions in addition to 
improved handling of inflections enable the system to achieve more accurate translation. The 
proposed rules along with existing system gave a score of 0.6190 with BLEU evaluation metric 
while translating sentences from English to Telugu. This paper deals with simple form of 
sentences in a better way. 
 
Keywords: POS-based Reordering, English to Telugu CLIR, BLEU 

 

1. INTRODUCTION 
Information Retrieval (IR) refers to the extraction of required information with a user query (formal 
statement of information need) written in one language (source language), from a large repository 
of documents that may be written in the same or some other language (target language). Getting 
only relevant data from the existing literature is made easy and faster by IR systems. The ever 
increasing requirement for multi-lingual information access along with the lack of technical 
support for multi-lingual processing bring about a new branch in research of Information Retrieval 
named Cross Language Information Retrieval (CLIR). It makes use of user queries written in one 
language to retrieve the relevant documents written in some other language. For example, a user 
may pose their query in English but retrieve relevant documents written in French. 
 
English (source language) is a Subject-Verb-Object patterned language whereas Telugu (target 
language) is a Subject-Object-Verb patterned language that is the order of words with different 
parts-of-speech (POS) is not same in source and target languages. So, when a sentence is 
translated from source language to target language using word to word translation, the meaning 
of the sentence might be lost. This problem can be solved by reordering the words in the 
sentence based on some POS based rules.  
POS tagger tool is used to identify the parts-of-speech of each word in the sentence. Then certain 
rules proposed in this paper, can be applied on the source sentence followed by word to word 
dictionary based translation. Gender based inflections are also handled. The added features 
enhance the quality of translated sentence by giving more accurate meaning. 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 2 

 
The paper is organized as follows. Section 2 outlines the previous work on the translation by 
various organizations.  Section 3 explains about the proposed system in detail. Section 4 contains 
the experimental results obtained by using this system and Section 5 concludes the paper. 
 
2. PREVIOUS WORK 
CLIR for Indian languages is undergoing considerable amount of research in various universities 
herein like Indian Institute of India (IIT), Bombay; National Centre or Software Technology 
(NCST) Mumbai (now, Centre for Development of Advanced Computing (CDAC), Bombay; 
International Institute of Information Technology (IIIT), Hyderabad.  There are many machine 
translator systems still under production in India such as Anusaaraka project being done by IIIT, 
Hyderabad; Mantra (MAchine assisted TRAnslation tool) that converts English text into Hindi in a 
precise domain of personal administration, office orders, etc.; AnglaBharti project that is based on 
Pseudo Lingua for Indian Languages (PLIL). Reference [2] proposes several linguistic rules that 
could be incorporated in Generalized Example Based Machine Translation (G-EBMT) system for 
translation of English to any of the Indian languages like Telugu, Kannada, Malayalam and Tamil. 
The concept of word reordering of the source language sentence based on parts-of-speech tags 
is used also in Reference [4] for the languages Spanish, German and English.   
 
The existing system uses generalized example based machine translation along with some 
linguistic rules that guide reordering of words present in a source language sentence. The 
dictionary based word to word translation will be the next step after reordering to achieve desired 
target language sentence. 
 

3. PROPOSED SYSTEM 
The design of the proposed system is an extension to the existing systems for reordering. Various 
stages are followed while translating a sentence from source language to target language. In 
each stage various reordering rules are applied to get a target sentence with correct meaning. 
 
This system reorders the given sentence by first dividing it into words and attaching tags by using 
the POS tagger mentioned in [11]. Then the rules mentioned below will be applied to reorder the 
sentence. 
 
3.1 Existing Rules 
3.1.1 Verb Rule 
This rule deals with the sentences consisting of a verb. If verb is present in the sentence, it 
should be moved to the end.  
 
Consider “I eat mango” (English). This will be reordered as “I mango eat” as “eat” is a verb. Its 
translation will be “nenu maamidipandu tintaanu” (Telugu). 

3.1.2 Conjunction Rule 
It can handle sentences with one conjunction which may be present at the beginning or in the 
middle of the sentence. The parts of the sentence before and after the conjunction are treated as 
separate phrases which are translated separately and joined at the end in the same order. 
Consider “I studied well but the results are poor” (English). Here “I studied well” and “the results 
are poor” are considered as two phrases separated by the conjunction “but”. So, the two phrases 
are translated separately and joined at the end as “Nenu baaga chadivaanu kani manchi phalitalu 
raledu” (Telugu). 
 
3.2 Proposed Rules 
 
3.2.1 Proper Noun Rule 
This rule deals with proper noun that refers to name of a company, organization, institute, person 
etc. which cannot be translated. In such case we use transliteration directly.  



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 3 

 
Consider ramu, john, jntu, IBM etc. Here, these words will be transliterated as they cannot be 
translated using dictionary. Other types of nouns (e.g. cow, chair, banana) can be translated 
directly using dictionary. 

3.2.2 Adverb Rule 
Sentences having verb and adverb should be reordered in such a way that verb is placed at the 
end of phrase immediately preceded by adverb. 
 
Consider “He walks faster than Rajesh” (English). Here “walks” is verb and “faster” is adverb. Its 
translation will be “Atadu Rajesh kanna tvaraga nadustadu” (Telugu). Here “nadustadu” (verb) is 
placed at the end immediately preceded by “tvaraga” (adverb). 

3.2.3 Dative Rule 
This rule deals with a noun or pronoun when it is the indirect object (refers to the person or thing 
that an action is done to or for) of a verb. Indirect object is appended with either “ku” or “kosam” 
accordingly while translation. 
 
Consider “He gave her a gift” (in English). This should be translated as “Ameku athadu oka 
bahumanam ichadu”. Here “her” is an indirect object. When word to word translation is 
performed, “her” is translated to “ame”. But, it does not give correct meaning. So, by applying this 
rule, we get translation as “ameku”.  

3.2.4 Conjunction Exception Rule 
This handles exceptional cases of conjunction rule. It says that the phrases of a sentence having 
conjunctions like “if”, “though” and “although” should be swapped as they will take different 
ordering in English and Telugu. 
 
Consider “You will pass the exam if you study well” (English). Here the phrases are “you will pass 
the exam” and “you study well” should be swapped and translated as “nuvvu baaga chadivithe 
nuvvu pareekshalu paasavuthaavu” (Telugu). 

3.3 Stages of Translation 
The above mentioned rules for translation can be performed by applying them in a specific order 
as explained below (as shown in Figure1) 

3.3.1 Stage 1 
Initially, a POS tagger tool is used to associate each word in the sentence with the corresponding 
parts-of-speech tags. Based on the tag linked with each word the reordering is performed. For 
much better translation a better tagger can be used.  
 
For example, “Rajesh walks fast but he failed in the competition.” is tagged by the POS tagger as: 
Rajesh_NNP walks_VBZ fast_RB but_CC he_PRP failed_VBD in_IN the_DT competition_NN.  
Here, NNP-Singular or mass noun,  
VBZ - verb, 3rd. singular present,  
RB-Adverb,  
CC- Coordinating Conjunction,  
PRP- singular nominative pronoun,  
VBD-past tense verb,  
IN - Preposition or subordinating conjunction, 
DT- singular determiner/quantifier and 
NN - Noun, singular or mass  

3.3.2 Stage 2 
In this stage, the presence of conjunction is checked. If it is not present then the flow is directly 
transferred to stage3. Else, the conjunction rule is applied. The exception with the conjunctions is 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 4 

also handled in this stage. If the exception case occurs with the conjunction, the sentence is 
reordered accordingly by applying conjunction exception rule. 
For example, “Rajesh walks fast but he failed in the competition”. Here firstly the presence of 
conjunction is checked. The conjunction “but” is present, so the sentence is divided into three 
phrases 

p1: Rajesh walks fast  
p2: but 
p3: he failed in the competition 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

FIGURE 1: Flow of operations in translation from source language to target language. 

All the reordering rules are applied separately for the two phrases (p1 and p3). While checking 
the presence of conjunction, it is also verified that whether it is an exceptional conjunction or not. 
If so, it is handled separately by swapping the phrases before and after the conjunction. Consider 
‘You will pass the exam if you study well’. The sentence contains the ‘if’ exceptional conjunction. 
So the phrases should be reordered as shown in Table 1. 

 

Tagger 

Handle the sentence based on preposition 

Apply verb or adverb rule 

i. Apply dative rule 

ii. Move Auxiliary/Modal verb to end 

i. Perform word to word translation 

ii. Handle inflections 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Stage 5 

Stage 6 

Else 

If exception 

If Present 

Check for 
conjunction 

Conjunction rule Conjunction 
Exception rule 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 5 

Sentence Phrases 
You will pass the exam if 
you study well (Original 
sentence) 

p1: You will pass the 
exam 
p2: if 
p3: you study well 

You study well if you will 
pass the exam  (After 
Reordering) 

p1: you study well 
p2: if 
p3: you will pass the 
exam 

TABLE 1: Sentence with and without conjunction rule 
3.3.3 Stage 3 
Here, the sentence is split based on the preposition present in it. Then the phrases before and 
after the preposition are swapped. 
p1: Rajesh walks fast 
p2: but 
p3: he failed in the competition 

For the above example, the preposition is present only in the p3 phrase. So p3 should be split as 
p3 and p4. After reordering the phrases are as follows: 
p1: Rajesh walks fast  
p2: but 
p3: the competition in 
p4: he failed  

3.3.4 Stage 4 
In this stage, the presence of verb or the combination of adverb and verb is checked and verb 
rule or adverb rule are applied accordingly. For the above example, p1 has the combination of 
verb and adverb and hence they are reordered as 
p1: Rajesh fast walks  
p2: but 
p3: the competition in 
p4: he failed  

3.3.5 Stage 5 
Here, the dative cases are checked and if present, dative rule is applied. And also in this stage, 
the auxiliary/modal verbs are identified. If an auxiliary/modal verb is present in any of the parts, it 
will be placed at the end of that phrase. 
 
Consider an example “he is playing games”. After crossing the above stages the sentence will be 
“he is games playing”. Here “is” is an auxiliary verb, thus it should be moved to the end of the 
sentence as “he games playing is”. 

3.3.6 Stage 6 
After crossing all the above 5 stages the word to word translation is performed by using bilingual 
English to Telugu dictionary. Then Proper noun rule is applied for the words not found in 
dictionary. This stage also handles the inflections that are different forms of a verb based on the 
gender after translation into target language. 
 
For the above example “Ramesh” is not found in the dictionary so the proper noun rule is applied 
and the translated phrases will be 
p1: Ramesh veganga nadu 
p2: kani 
p3: poti lo 
p4: athadu viphalam ayyenu 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 6 

Also the inflections present in the sentence will be handled as given in [2]. Thus at the end, 
combining all the phrases with the inflection rule we get the translated sentence as: 
‘Ramesh veganga nadustadu kani poti lo athadu viphalam ayyenu’ 
In this way by following all the six stages an English sentence can be translated to Telugu 
appropriately giving a better quality translation. 
 
4. EXPERIMENT 
For the evaluation of the proposed system we have selected 100 simple English sentences from 
the daily newspaper in which the count of words varies from 3 to 12. For translation purpose, we 
have used a bilingual dictionary containing all the words used in testing corpus. To perform 
evaluation technique the sentences are translated by the proposed system and also by a human. 
 
Quality can be treated as the agreement between the machine translation and the human 
translation. The system is said to be good if its translation is very close to that of the human 
translation. To determine this quality of the proposed system we used BLEU (Bilingual Evaluation 
Understudy) score evaluation technique referred in [3]. The BLEU score is given by, 
 

  (i) 
 

Here, 
 

 
   
 
where BP is the brevity penalty factor, given by, 
 

 

 
 

 
wn = positive weights = 1/N, 
pn = modified n gram precisions, 
c = length of the translation obtained from the system, 
r = length of the correct translation translated by a human. 
 
Applying log to (i), 
 

 
 
In the proposed system the length of the sentence starts from 3. Hence we use N=3 (that is 
trigram model) in the system. The trigram model consists of subsequence of 3 words to form 
trigrams. By examining how many standard deviations each 3-gram differs from its mean 
occurrence, the pn value is determined. The evaluation technique when performed on proposed 
system with a set of 100 sentences gave a score of 0.6190. 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 7 

 
 

FIGURE 2:  BLEU score without and with adverb rule 
 

The values in the Table 2 can be represented as Figure 2, which shows the BLEU scores of 
sentences without adverb rule against with adverb rule for English to Telugu translation. The x-
axis represents the number of sentences and the y-axis represents the BLEU score. 
 
 

No. of 
sentences 

Without 
adverb 

rule 

With 
adverb 

rule 

10 0.6364 0.7444 

20 0.5161 0.6040 

30 0.4830 0.5357 

40 0.4637 0.5687 

TABLE 2:  BLEU score for without and with adverb rule 

In the similar way, Figure 3 shows the BLEU scores of sentences without conjunction exception 
rule against with conjunction exception rule for English to Telugu translation, which are tabulated 
in Table 3. In this figure also the x-axis represents the number of sentences and the y-axis 
represents the BLEU score. 

 

No. of 
sentences 

Without 
conjunction 
exception 

rule 

With 
conjunction 
exception 

rule 

10 0.2024 0.2393 

20 0.2650 0.2864 

30 0.2522 0.2666 

40 0.2251 0.2619 

TABLE 3: BLEU score for without and with conjunction exception rule 

    Without Adverb Rule 

    With Adverb Rule 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 8 

 

FIGURE 3: BLEU score without and with conjunction exception rule 
 

5.  CONCLUSION AND FUTURE WORK 
This paper enhances POS based reordering rules that preprocess the user query for better 
translation in order to use it in searching relevant documents written in Telugu. The added rules 
enable the system to deal with adverbs and conjunctions in a better way. The proposed system 
gives a BLEU score of 0.6190 (on an average). The performance of the system highly depends 
on the POS tags attached to the given source sentence. Better the tagger, the more efficient the 
translation will be. 
There is no perfect machine translator for Indian languages which stem from Sanskrit and 
Dravidian family, mainly because of the reason that they are rich in sandhis. More concentration 
should be given to handle this.  We also would like to handle other type of sentences like 
interrogations and exclamations in future work.  

6.  REFERENCES 
[1] R.Gangadharaiah & N. Balakrishnan, “Application of Linguistic Rules to Generalized Example 

Based Machine Translation for Indian Languages”, Proceedings of the First National 
Symposium on Modeling and Shallow Parsing of Indian Languages, India, 2006 

 
[2] Mustafa Abusalah, John Tait & Michael Oakes, “Literature Review of Cross Language 

Information Retrieval”, World Academy of Science, Engineering and Technology, 2005. 
 
[3] P.Kishore, Salim Roukas, Todd ward & Wei-Jing Zhu,  “BLEU: a Method for Automatic 

Evaluation of Machine Translation”, Proceedings of the 40th Annual Meeting of the 
Association for Computational Linguistics (ACL), Philadelphia, pp. 311-318, 2002. 

 
[4] Maja Popovic & Hermann Ney, “POS-based Word Reorderings for Statistical Machine 

Translation”, in Proceedings of the Fifth International conference on Language Resources 
and Evaluation, 2006. 

 
[5] Anne R. Diekema, “Translation Events in Cross-Language Information Retrieval: Lexical 

Ambiguity,  Lexical Holes, Vocabulary Mismatch, and Correct Translation”, Dissertation at 
School of Information Studies, Syracuse University, 2003. 

 
[6] Sethuramalingam S, “Effective Query Translation Techniques for Cross-Language 

Information Retrieval”, MS Thesis submitted at IIIT Hyderabad, India, 2009. 
 
[7] Sudip Naskar & Sivaji Bandyopadhyay, “Use of Machine Translation in India: Current Status”, 

AAMT J., 36:25-31, 2004. 

    Without Adverb Rule 

    With Adverb Rule 



A.P. Siva Kumar, P. Premchand & A. Govardhan 

 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 9 

 
[8] Sanjay Kumar Dwivedi and Pramod Premdas Sukhdeve, “Machine Translation System in 

Indian Perspectives”, Journal of Computer Science 6 (10): 1082-1087, 2010. 
 
[9] Shu Cai, Yajuan L & Qun Liu, “Improved Reordering Rules for Hierarchical Phrase-based 

Translation”, International Conference on Asian Language Processing, 2009. 
 
[10] ZHANG Xiao-fei, HUANG He-yan & ZHANG Ke-liang, “Cross-Language Information Retrieval 

Based on Weight Computation of Query Keywords Translation”, Intelligent Computing and 
Intelligent Systems, 2009 IEEE International Conference, 2009.  

 
[11] Parts-Of-Speech tagger tool – http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/postagger. 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 10 

Named Entity Recognition System for Hindi Language: A Hybrid 
Approach 

 
 

Shilpi Srivastava                shilpii26@gmail.com                                   
Department of Computer Science 
University of Mumbai, Vidyanagri, Santacruz (E) 
Mumbai-400098, India 

 
Mukund Sanglikar            masanglikar@rediffmail.com 
Professor, Department of Mathematics, 
Mithibai college, Vile Parle (W), University of Mumbai 
Mumbai-400056, India 

 
D.C Kothari                                                  kothari@mu.ac.in         
Professor, Department of Physics,  
University of Mumbai, Vidyanagri, Santacruz(E) 
Mumbai-400098, India 

 
Abstract 

 
Named Entity Recognition (NER) is a major early step in Natural Language 
Processing (NLP) tasks like machine translation, text to speech synthesis, 
natural language understanding etc. It seeks to classify words which represent 
names in text into predefined categories like location, person-name, organization, 
date, time etc. In this paper we have used a combination of machine learning and 
Rule based approaches to classify named entities. The paper introduces a hybrid 
approach for NER. We have experimented with Statistical approaches like 
Conditional Random Fields (CRF) & Maximum Entropy (MaxEnt) and Rule based 
approach based on the set of linguistic rules. Linguistic approach plays a vital 
role in overcoming the limitations of statistical models for morphologically rich 
language like Hindi. Also the system uses voting method to improve the 
performance of the NER system.  
 
Keywords: NER, MaxEnt, CRF, Rule base, Voting, Hybrid Approach 

 
 
1. INTRODUCTION 

Named Entity Recognition is a subtask of Information extraction where we locate and classify 
proper names in text into predefined categories. NER is a precursor for many natural languages 
processing tasks. An accurate NER system is needed for machine translation, more accurate 
internet search engines, automatic indexing of documents, automatic question-answering, 
information retrieval etc 
 
Most NER systems use a rule based approach or statistical machine learning approach or a 
combination of these. A Rule-based NER system uses hand-written rules to tag a corpus with 
named entity (NE) tags. Machine-learning (ML) approaches are popularly used in NER because 
these are easily trainable, adaptable to different domains and languages and their maintenance is 
less expensive. A hybrid NER system is a combination of both rule-based and statistical 
approaches.   



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 11 

 
Not much work has been done on NER for Indian languages like Hindi. Hindi is the third most 
spoken language of the world and still no accurate Hindi NER system exists. As some features 
like capitalization are not available in Hindi and due to lack of a large labeled dataset and of 
standardization and spelling variations, an English NER system cannot be used directly for Hindi. 
There is a need to develop an accurate Hindi NER system for better presence of Hindi on the 
internet. It is necessary to understand Hindi language structure and learn new features for 
building better Hindi NER systems.  
 
In this paper, we have reported a NER system for Hindi by using the classifiers, namely MaxEnt, 
CRF and Rulebase model. We have demonstrated a comparative study of performance of the 
two statistical classifiers ( MaxEnt & CRF) widely used in NLP tasks, and use a novel voting 
mechanism based on classification confidence (that has a statistical validity) to combine the two 
classifiers among with preliminary handcrafted rules. 
 
Our proposed system is an attempt to illustrate the hybrid approach for Hindi Named Entity 
Recognition. The system makes use of some POS information of the words along with the variety 
of orthographic word level features that are helpful in predicting the various NE classes. 
Theoretically it is known that CRF is better than MaxEnt due to the label bias problem of MaxEnt.   
The main contribution of this work is to make a comparative study between the two classifiers 
MaxEnt and CRF and Results show that CRF always gave better results in comparison to 
MaxEnt.   
 
In the following sections, we will discuss about previous works, the issues in Hindi language & 
various approaches for NER task and examine our approach, design and implementation details, 
results and concluding discussion. 
 

2. RELATED WORKS 
NER has drawn more and more attention from NLP researchers since the last decade (Chinchor 
1995, Chinchor 1998) [5] [18]. Two generally classified approaches to NER are Linguistic 
approach and Machine learning (ML) based approach. The Linguistics approach uses rule-based 
models manually written by linguists. ML based techniques make use of a large amount of 
annotated training data to acquire high-level language knowledge. Various ML techniques which 
are used for the NER task are Hidden Markov Model (HMM) [7], Maximum Entropy Model 
(MaxEnt) [6], Decision Tree [3], Support Vector Machines [4] and Conditional Random Fields 
(CRFs) [10]. Both the approaches may make use of gazetteer information to build system 
because it improves the accuracy.  
 
Ralph Grishman in 1995 developed a rule-based NER system which uses some specialized 
name dictionaries including names of all countries, names of major cities, names of companies, 
common first names etc [15].   Another rule-based NER system is developed in 1996 which make 
use of several gazetteers like organization names, location names, person names, human titles 
etc [16]. But the main disadvantages of these rule based techniques are that these require huge 
experience and grammatical knowledge of particular languages or domains and these systems 
are not transferable to other languages.  
  
Here we mention a few NER systems that have used ML techniques. ‘Identifinder’ is one of the 
first generation ML based NER systems which used Hidden Markov Model (HMM) [7]. By using 
mainly capital letter and digit information, this system achieved F-value of 87.6 on English. 
Borthwick used MaxEnt in his NER system with lexical information, section information and 
dictionary features [6]. He had also shown that ML approaches can be combined with hand-
coded systems to achieve better performance. He was able to develop a 92% accurate English 
NER system. Mikheev et al. has also developed a hybrid system containing statistical and hand 
coded system that achieved F-value of 93.39 [17]. 
 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 12 

Other ML approaches like Support Vector Machine (SVM), Conditional Random Field (CRF), and 
Maximum Entropy Markov Model (MEMM) are also used in developing NER systems. 
Combinations of different ML approaches are also used. For example, we can mention a system 
developed by Srihari et al., which combined several modules, built by using MaxEnt, HMM and 
handcrafted rules, that achieved F-value of 93.5 [19]. 
 
The NER task for Hindi has been explored by Cucerzan and Yarowsky in their language 
independent NER which used morphological and contextual evidences [20]. They ran their 
experiments with 5 languages: Romanian, English, Greek, Turkish and Hindi. Among these, the 
accuracy for Hindi was the worst. A Recent Hindi NER system is developed by Li and McCallum 
using CRF with feature induction [21]. They automatically discovered relevant features by 
providing a large array of lexical tests and using feature induction to automatically construct the 
features that mostly increase conditional likelihood. However the performance of these systems is 
significantly hampered when the test corpus is not similar to the training corpus. Few studies 
(Guo et al., 2009), (Poibeau and Kosseim, 2001) have been performed towards genre/domain 
adaptation. But this still remains an open area. In IJCNLP-08 workshop on NER for South and 
South East Asian languages, held in 2008 at IIIT Hyderabad, was a major attempt in introducing 
NER for Indian languages that concentrated on five Indian languages- Hindi, Bengali, Oriya, 
Telugu and Urdu. As part of this shared task, [22] reported a CRF-based system followed by 
post-processing which involves using some heuristics or rules.  Some efforts for Indian Language 
have also been made [23 [24]. A CRF-based system has been reported in [25], where it has been 
shown that the hybrid CRF based model can perform better than CRF. [26] presents a hybrid 
approach for identifying Hindi names, using knowledge infusion from multiple sources of 
evidence.    
 
The authors, to the best of their knowledge and efforts have not encountered a work which 
demonstrates a comparative study between the two classifiers MaxEnt and CRF and uses a 
hybrid model based on MaxEnt, CRF and Rulebase for Hindi Named Entity Recognition.   
 

3. ISSUES WITH HINDI LANGUAGE 
The task of building a named entity recognizer for Hindi language presents several issues related 
to their linguistic characteristics. There are some issues faced by Hindi and other Indian 
languages: 
 

• No capitalization:  Unlike English and most of the European languages, Indian languages 
lack the capitalization information that plays a very important role to identify NEs in those   
languages. Hence English NER systems can exploit the feature of capitalization to its 
advantage because all English names always start with capital letters while Hindi names 
don’t have scripts with graphical cues like capitalization, which could act as an important 
indicator for NER.   

 

• Ambiguous names: Hindi names are ambiguous and this issue makes the recognition a 
very difficult task. One of the features of the named entities in Hindi language is the high 
overlap between common nouns and proper nouns. Indian person names are more 
diverse compared to those of most other languages and a lot of them can be found in the 
dictionary as common nouns. 

 

• Scarcity of resources and tools: Hindi, like other Indian languages, is also a resource       
poor language. Annotated corpora, name dictionaries, good morphological analyzers,         
POS taggers etc. are not yet available in the required quantity and quality.  

 

• Lack of standardization and spelling: Another important language related issue is the 
variation in the spellings of proper names. This increases the number of tokens to be 
learnt by the machine and would perhaps also require a higher level task like co-
occurrence resolution. 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 13 

 

• Free word order language: Indian languages have relatively free word order. 
 

• Web sources for name lists are available in English, but such lists are not available in 
Indian languages.   

 

• Although Indian languages have a very old and rich literary history still technology 
development are recent.  

 

• Indian languages are highly inflected and provide rich and challenging sets of linguistic 
and statistical features resulting in long and complex word forms. 

 

• Lack of labeled data. 
 

• Non-availability of large gazetteer: 
 

4. VARIOUS APPROACHES FOR NER 

There are three basic approaches to NER [1]. They are rule based approach, statistical or 
machine learning approach and hybrid approach. 
 
4.1 Rule Based Approach 
It uses linguistic grammar-based techniques to find named entity (NE) tags. It needs rich and 
expressive rules and gives good results. It requires great knowledge of grammar and other 
language related rules. Good experience is needed to come up with good rules and heuristics. It 
is not easily portable and has high acquisition cost. It is very specific to the target data. 
 
4.2 Statistical Methods or Machine Learning Methods 
The common machine learning models used for NER are: 
 

• HMM [14]: HMM stands for Hidden Markov Model. HMM is a generative model. The 
model assigns the joint probability to paired observation and label sequence. Then the 
parameters are trained to maximize the joint likelihood of training sets.  
 

      It is advantageous as its basic theory is elegant and easy to understand. Hence it is   
      easier to implement and analyze. It uses only positive data, so they can be easily scaled. 

 
It has few disadvantages. In order to define joint probability over observation and label 
sequence HMM needs to enumerate all possible observation sequence. Hence it makes 
various assumptions about data like Markovian assumption i.e. current label depends 
only on the previous label. Also it is not practical to represent multiple overlapping 
features and long term dependencies. Number of parameter to be evaluated is huge. So 
it needs a large data set for training. 

 
• MaxEnt [6]: MaxEnt stands for Maximum Entropy Markov Model (MEMM).  It is a 

conditional probabilistic sequence model. It can represent multiple features of a word and 
can also handle long term dependency. It is based on the principle of maximum entropy 
which states that the least biased model which considers all know facts is the one which 
maximizes entropy. Each source state has a exponential model that takes the 
observation feature as input and output a distribution over possible next state. Output 
labels are associated with states.  
 

      It solves the problem of multiple feature representation and long term dependency issue                   
      faced by HMM. It has generally increased recall and greater precision than HMM. 
       
      It also has some disadvantages. It has Label Bias Problem. The probability transition  



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 14 

      leaving any given state must sum to one. So it is biased towards states with lower   
      outgoing transitions. The state with single outgoing state transition will ignore all  
      observations. To handle Label Bias Problem we can change the state-transition. 

 
• CRF [10]: CRF stands for Conditional Random Field. It is a type of discriminative 

probabilistic model. It has all the advantages of MEMMs without the label bias problem. 
CRFs are undirected graphical models (also know as random field) which is used to 
calculate the conditional probability of values on assigned output nodes given the values 
assigned to other assigned input nodes.. 

 
4.3  Hybrid Models 
Hybrid models are basically combination of rules based and statistical models. In Hybrid NER 
system, approach uses the combination of both rule-based and ML technique and makes new 
methods using strongest points from each method. It is making use of essential feature from ML 
approaches and uses the rules to make it more efficient. 

 
5.  OUR APPROACH 
 
5.1 CRF Based Machine Learning 

The basis idea of CRF is to construct a conditional probability ( | )P Y X  from the label sequence 

Y  (e.g. NE tags) and observation sequence X  (e.g. words) after model is constructed, then 

testing can be done by ending the label that maximizes ( | )P Y X  for the observed features. 

 

Definition [10]: " Let ( , )G V E=  be a graph such that ( )
v

Y Y v V= ∈  , so that Y  is indexed by 

the vertices of G. Then ( , )X Y  is a conditional random field in case, when conditioned on X , 

the random variables 
v

Y  obey the Markov Property with respect to the graph: 

( | , , ) ( | , , ~ )
v w v w

P Y X Y w v P Y X Y w v≠ = ; where w ~ v means that w and v are neighbors in 

G." 
 

“Lafferty et. al [10] define the probability of a particular label sequence Y given the observation 

sequence X  to be a normalized product of potential functions each of the form, 

1exp ( , , , ) ( , , )j j i i k k i

j k

t y y x i s y x iλ µ−

 
+ 

 
∑ ∑

 
Where 1( , , , )

j i i
t y y x i−   is a transition feature function of the entire observation sequence and 

the labels at positions i  and i -1 in the label sequence; ( , , )
k i

s y x i  is a state feature function of 

the label at position i  and the observation sequence; and 
j

λ  and 
k

µ  are parameters to be 

estimated from training data. 
 

Final expression of probability of a label sequence Y  given an observation sequence X  is 

1

1

1
( | , ) exp ( , , , )

( )

n

j i i i

i j

p y x f y y x i
Z x

λ λ −
=

 
=  

 
∑∑  Where 1( , , , )

i i i
f y y x i− is either a state 

function 1( , , , )
i i

s y y x i− or a transition function 1( , , , )
i i

t y y x i− .” [13] 

 
We are using mallet-0.4 [12] for training and testing. Mallet provides SimpleTagger program that 
takes input as a file in mallet format of Figure 1. After training the model is saved in a file. Then 
model file can be used for testing. When trained model is tested, it produces an output file that 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 15 

contains the predicted tags of the word. The predicted tags are present in the same line number 
as the text file. 
 
 
 
 
 

 
                                            
 
 
 
 
   
 
 
 
 
 
 

FIGURE 1: Data in mallet format 
 
5.2 MaxEnt Based Machine Learning 
It is based on the principle of maximum entropy which states that the least biased model which 
considers all know facts is the one which maximizes entropy. 
 

Let H  be the set of histories and T  be the set of allowable tags. 

The maximum entropy model is defined over H T× . 
The model's probability is defined as probability of history h  with tag. 

( , )
( , ) if h t

j

j

p h t πµ α= ∏
 

Where, 
π is normalization constant 

,
j

µ α  are model parameters 

( , )
i

f h t feature function 

Let ( )L p = likelihood of training data using distribution, 

1

( ) ( , )
n

i i

i

L p p h t
=

= ∏
 

The method is to choose the model parameters correctly with respect to maximum likelihood 
principle. 
 
We are using mallet-0.4 MaxEnt implementation. For the purpose of training and testing using 
MaxEnt, we created file MaxEntTagger which converts the input file in format specified in Figure 1 
into their internal data structure. The file is similar to SimpleTagger. Then the training and testing 
is done similar to CRF. 
 
5.3 Rule Based Model 
Following rules were used to get NE tags from words 
 

• <ne=NEN>: For numbers written in Hindi font like ek, paanch etc, word matching with 
dictionary is used. The file contain Hindi number words are provided by Hindi Wordnet 
[11]. If the number contains only digits then it is NEN. 

 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 16 

 

• <ne=NEL>: Use dictionary matching for common locations like Bharat(India), Kanpur. 
Also used suffix matching like words ending with "pur" are generally cities like Kanpur, 
Nagpur, Jodhpur etc. 

 

• <ne=NEB>: Used dictionary matching. 
 

• <ne=NETI>: Used regular expression matching e.g. 12-3-2008 format is NETI 
 

• <ne=NEP>: Suffix matching is used with common surnames like Sharma, Agrawal, 
Kumar etc 

 

• <ne=NED>: Prefix matching with common designation like doctor, raja, pradhanmantri 
etc. 

 
5.4 Voting  
In Voting we use the results of CRF, MaxEnt and Rule Based model to get a better model. We 
have NE tags including "none". For each word the weight of these tags is initialized 0. Now when 
the word is predicted as some NE tag by a model then the weight of that tag is increased. The 
final answer is the tag which has highest weight.  
 
Some heuristics are used to improve the accuracy of model. Like weight of NEM tags predicted 
by rule based model is kept high as they generally predict correct NE tag. If two tags are same 
then the answer is that tag. 

 
6. DESIGN & IMPLEMENTATION   
 
6.1 Data and Tools 

• Dataset: Named Entity Annotated Corpus for Hindi. The data is obtained from IJCNLP-
08 website [8]. SSF format [9] is used for representing the annotated Hindi corpus. The 
annotation was performed manually by IIIT Hyderabad. 

 
• Dictionary Source: We have used files containing common Hindi nouns, verbs, 

adjectives, adverbs for Parts-of-speech (POS) tagging. The files are obtained from Hindi 
Wordnet, IIT Mumbai [11]. 

 
• Tools: Mallet-0.4 [12] is used for training and testing machine learning based models 

CRF [10] and MaxEnt [6]. For CRF, a SimpleTagger is provided which takes input as a 
file containing word followed by word features (noun, verb, number etc) and Named 
Entity (NE) tag for training. A SimpleTagger program converts the file into suitable data 
structures used by CRF for training. 
 

              e.g. Training file format: 
              Word feaure_1 feature_2 ... feature_n NE_tag 
              ek noun adj number <ne=NEN> 
              adhik adj adv none 
 
             Here word "ek" has 3 features namely noun, adj and number. Its NE tag is <ne=NEN>. 
             Second word "adhik" has 2 features namely adj and adv and it has NE tag none. 
            
             For testing the file format is same except it doesn't contain NE tags at last of each  
             sentence i.e. it only contains words followed by its features 
 
             For MaxEnt, we created MaxEntTagger.java to process the input file and use them to test    
             and train MaxEnt model. 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 17 

 

• Tagset Used: Table 1 [2] contains the list Named Entity tagset used in the corpus. 
 

• Programming Language & utility: Java, bash script, awk, grep 
 
 

Tags Names Description 
<ne=NEP> Person Bob Dylan, Mohandas Gandhi 
<ne=NED> Designation General Manager, Commissioner 

<ne=NEO> Organization Municipal Corporation 
<ne=NEA> Abbreviation NLP, B.J.P. 
<ne=NEB> Brand Pepsi, Nike (ambiguous) 

<ne=NETP> Title Person Mahatma, Dr., Mr. 
<ne=NETO> Title Object Pride and Prejudice, Othello 

<ne=NEL> Location New Delhi, Paris 
<ne=NETI> Time 3rd September, 1991(ambiguous) 
<ne=NEN> Number 3.14, 4,500 
<ne=NEM> Measure Rs. 4,500, 5 kg 
<ne=NETE> Terms Maximum Entropy, Archeology 

None Not a named entity Rain, go, hai, ka, ke , ki 
 

TABLE 1: The named entity tagset used for shared task 

 
6.2 Design Schemes 
 

• Editing Data: The first objective is to convert annotated Hindi corpus given in SSF format 
to new format that can be used by mallet-0.4 models CRF and MaxEnt for training and 
testing. SSF format like the example given in Figure 2 contains many things like line 
number, braces, <Sentence id=""> etc that are not present in mallet format (e.g. data 
format of Figure 3). NE tags are present in different line in SSF, which need to put after 
the word for mallet format. Also some words which represents a NE tag when combined 
like "narad muni" in Figure 2 needs to be concatenated. After writing each word in 
different line with their NE tags, we need to find features for each word.  

 
• Features: Here we used mostly orthographic features like other researchers have been 

using.   Features of words include 
 

• Symbol: If the word is symbol like "?", ",", ";", "." etc 

• Noun: If word is noun 

• Adj: The word is adjective 

• Adv: adverb 
• Verb: verb 

• First Word: If the word is first word of a sentence 

• Number: If the word is a number like ek, paanch, or 123, 
• Num Start: If the word starts with number line 123_kg 

 
Features of the words are added using some rule based matching (like for numbers) and 
from dictionary matching of words with the words which are obtained from Hindi wordnet, 
IIT Mumbai [11] (like noun, verb). 

 
• Training and Testing on Mallet: The model is trained on 10, 50, 100, and 150 training 

files respectively. Then each trained model is tested on 10 files on which the model is not 
trained. The files on which the model is trained and tested are obtained randomly from 
the dataset. This process is done for 10 times. The average and good results of these 
tests are reported in the Results section. This is done for both CRF and MaxEnt model on 
the given data. 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 18 

 

 
FIGURE 2: Data in SSF format 

      

 
 

FIGURE 3: Data in mallet format after conversion from SSF 
 

• Test Dataset using Rule Based Models: test all datasets for Rule based models.  
 

• Improve Accuracy by Voting: The output of each of the above method (CRF, MaxEnt, 
rule based) is file containing predicted tags for each word in the same line as the word. 
Voting algorithm uses trained CRF and MaxEnt model and rule based model's result and 
used the result of these to give better results. Voting is done on the results of these three 
models and the one with the most weight is the final tag. 

 
7. RESULTS   
 
7.1   Performance Evaluation Metric 
 The Evaluation measure for the data sets is precision, recall and F Measure.  
 

• Precision (P): Precision is the fraction of the documents retrieved that are relevant to the 
user's information need. 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 19 

             
correct answers

Precision(P) = 
answers produced

 

 
• Recall (R): Recall is the fraction of the documents that are relevant to the query that are 

successfully retrieved. 

       

correct answers
Recall(R) = 

total possible correct answers  
 
• F-Measure:  The weighted harmonic mean of precision and recall, the traditional F-

measure or balanced F-score is 
 

             

2

2

( 1)PR
F Measure

R P

β

β

+
− =

+
 

            β  is the weighting between precision and recall typically 1β = .  

             

           When recall and precision are evenly weighted i.e. 1β = , F-measure is called F1-   

          Measure. 

            

2
1

( )

PR
F Measure

P R
− =

+  
         There is a tradeoff between precision and recall in the performance metric. 
 
7.2 Results Obtained 
 

• CRF Results: The following table contains the results obtained from testing CRF models. 
The model is trained on 10, 50, 100 and 150 files and then tested on 10 files. This is 
done for 10 rounds i.e. for model trained on 100 files, 110 files are selected from the 
dataset and it is trained on 100 files and tested on 10 files(model trained on 10 files are 
tested on 5 files). Then again 110 files are chosen and training and testing is done. This 
is done for 10 times. Table 2 contains the results obtained from the above experiment. 

 
 

Number of 
training files 

Number of 
testing files 

Precision Recall F-1 Measure 

10 5 71.43 30.86 43.10 

50 10 83.87 25.74 39.40 
100 10 88.24 24.19 37.97 
150 10 88.89 24.61 38.55 

 
TABLE 2: CRF results for one best predicted tag 

  
For the above experiments only one predicted tag of a word is considered. Since the 
number of NE tags are less compared to “none” tag, so the model learns mostly for 
“none” tag. So we considered using best of two of the predicted tags of a word to check 
the results. Here two best predicted tags are given by the model. The two tags can be 
either same or different. If first tag is a NE tag then that tag is considered correct. If first is 
none tag and second is NE tag then second tag is considered for the results. This 
experiment is also conducted in a similar manner as the above experiment.  

 
The results obtained from the above experiment for CRF when two of the best predicted 
tags are taken into consideration is shown in the Table 3: 
 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 20 

 
Number of 

training files 
Number of 
testing files 

Precision Recall F-1 Measure 

10 5 70.0 34.57 46.28 
50 10 89.28 49.5 63.69 

100 10 83.33 33.9 48.19 

150 10 74.28 33.37 46.43 

                                    
TABLE 3: CRF results for best of two predicted tags 

 

• MaxEnt Results: Following tables contain the results of training and testing of MaxEnt 
model. The model is trained on randomly chosen 10, 50, 100 and 150 files and then 
tested on 10 files on which it is not trained. Each of the training and testing is done for ten 
rounds. Similar to above these are also tested on different datasets. The results obtained 
is shown in the following table 4: 

 
 

Number of 
training files 

Number of 
testing files 

Precision Recall F-1 Measure 

10 5 76.92 19.8 31.49 
50 10 70.40 16.68 26.39 

100 10 69.21 18.14 28.19 

150 10 69.46 16.57 26.06 

  
TABLE 4: MaxEnt Results for one best predicted tag 

 
MaxEnt results when two of the best predicted tags are taken into consideration are given 
in Table 5. This is done in similar way as done in CRF experiment. 
 

 
Number of 

training files 
Number of 
testing files 

Precision Recall F-1 Measure 

10 5 90.47 29.23 44.18 

50 10 89.28 21.36 34.48 
100 10 87.5 22.58 35.89 
150 10 96.15 25.25 39.99 

                   T                    
TABLE 5:  MaxEnt Results for best of two predicted tags 

 
 

• Rule Based Results: Results driven from rule based model is given below in Table 6: 
 

 
Number of 
testing files 

Precision Recall F-1 Measure 

1 65.93 77.92 71.43 
2 88.0 60.27 71.54 
3 96.05 86.90 91.25 

 
TABLE 6: Rule based model's test results 

 
• Voting Algorithm: For voting we used three classifiers crf trained on 50 files, MaxEnt 

trained on 50 files and rule based. Results from voting algorithm model is given in Table 
7: 

 
 
 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 21 

Number of testing 
files 

Precision Recall F-1 measure 

40 81.11 84.88 82.95 
40 85.51 76.62 80.82 

 
TABLE 7: Voting Algorithm's Results 

 

8. CONCLUSION  
Basically this paper presents a comparative study among different approaches like MaxEnt, CRF 
and Rulebase using POS & orthographic features. It also shows that voting mechanism gives the 
better results. On average CRF gives better result than MaxEnt. Rule based result has better 
recall and F-1 measure. On the given data the average precision is good.  The main reason for 
the lower F-1 measure by CRF and MaxEnt is due to the presence of less NE tags in the original 
data compared to "none". For most file the percentage of NE tags is less that 2% of the total 
words present in a file. Because of that the classifier is learned more strongly for "none" rather 
than NE tags. Also data has tagging errors. e.g. "Gandhi" is classified as <ne=NEN>, <ne=NEP>, 
<ne=NED>,"none" in many files. Similarly "ek" is classified as <ne=NEN> or "none". These 
conflicting cases in the training set weaken the classifier. That's why more training doesn't give 
better results here. The classifier gives good precisions i.e. less tags are classified but they are 
classified correctly. 
 
When we took best of two predicted tags for the results analysis F-1 measure and recall 
increases significantly. Since we have very few NE tags in data and also data is not very 
accurate, so most of the words are learned as "none", but when we consider best of two 
predicted tags, the result improves significantly. Rule based model gives better average result (F-
1 measure, recall) for given data. Voting algorithm improves the F-1 measure of results.  
 
9. FUTURE WORK 
Dictionary matching of words is not very effective. In this experiment we used Othographic 
features like other researchers however POS tagger or morphological analyzer, semantic tags, 
parasargs (prepositions and postpositions) identification, lexicon database and co-occurrences 
may give the better results. Boosting may be done by containing 5 words above NE tags and 5 
words below NE tags. Conflicting tags can be removed. Or we may try using another dataset. 
More features can be added to improve the models. Rule based model can be improved. We may 
experiment with other classifier like HMM. 

 
10.  ACKNOWLEDGMENT 
I would like to thank Mr. Pankaj Srivastava, Ms. Agrima Srivastava and MS. Vertika Khanna who 
provide helpful analysis in model development.  

 
11.  REFERENCES: 
[1]    Sudeshna Sarkar, Sujan Saha and Prthasarthi Ghosh, "Named Entity Recognition for Hindi", 

In Microsoft Research India Summer School talk, p. 21-30, May 2007. 
 
[2]    Anil Kumar Singh, "Named Entity Recognition for South and South East Asian Languages: 

Taking Stock", p. 5-7, In IJCNLP 2008. 
 
[3]    Hideki Isozaki. 2001. “Japanese named entity recognition based on a simple rule generator 

and decision tree learning” in the proceedings of the Association for Computational 
Linguistics, pages 306-313. India. 

 
[4]    Takeuchi K. and Collier N. 2002. “Use of Support Vector Machines in extended named entity 

recognition” in the proceedings of the sixth Conference on Natural Language Learning 
(CoNLL-2002), Taipei, Taiwan, China. 

 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 22 

[5]   Charles L. Wayne. 1991., “A snapshot of two DARPA speech and Natural Language 
Programs” in the proceedings of workshop on Speech and Natural Languages, pages 103-
404, Pacific Grove, California. Association for Computational Linguistics. 

 
[6]   A. Borthwick, "A Maximum Entropy Approach to Named Entity Recognition", In NY 

University, p. 1-4, 18-24, PHD Thesis, September 1999 
 
[7]    Daniel M. Bikel, Scott Miller, Richard Schwartz and Ralph Weischedel. 1997 “Nymble: a high 

performance learning name-finder” in the proceedings of the fifth conference on Applied 
natural language processing, pages 194-201, San Francisco, CA, USA Morgan Kaufmann 
Publishers Inc. 

 
[8]     IJCNLP-08 Workshop data set, Source: http://ltrc.iiit.net/ner-ssea-08/index.cgi?topic=5 
 
[9]   Akshar Bharti, Rajeev Sangal and Dipti M Sharma, "Shakti Analyzer: SSF Representation", 

IIIT Hyderabad, p. 3-5, 2006 
 
[10]   Lafferty, J., McCallum, A., Pereira, F., "Conditional random fields: Probabilistic models for 

segmenting and labeling sequence data", In: Proc. 18th International Conf. on Machine 
Learning, Morgan Kaufmann, San Francisco, p. 1-5, 2001 

 
[11]   Hindi Wordnet, Source: http://www.cfilt.iitb.ac.in/wordnet/webhwn/ 
 
[12] McCallum, Andrew Kachites. "MALLET: A Machine Learning for Language Toolkit." 

http://mallet.cs.umass.edu. 2002. 
 
[13] Hanna M. Wallach, "Conditional Random Fields: An Introduction”, Technical Report, 

University of Pennsylvania. 4-5, 2004. 
 
[14]  Lawrence R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in 

Speech Recognition", In Proceedings of the IEEE, 77 (2), p. 257-286,February 1989 
 
[15]   R. Grishman. 1995. “The NYU system for MUC-6 or Where’s the Syntax” in the proceedings 

of Sixth Message Understanding Conference (MUC-6) , pages 167-195, Fairfax, Virginia. 
 
[16]  Wakao T., Gaizauskas R. and Wilks Y. 1996. “Evaluation of an algorithm for the Recognition 

and Classification of Proper Names”, in the proceedings of COLING-96. 
 
[17]   Mikheev A, Grover C. and Moens M. 1998. Description of the LTG system used for MUC-7. 

In Proceedings of the Seventh Message Understanding Conference. 
 
[18]  R. Grishman, Beth Sundheim. 1996. “Message Understanding Conference-6: A Brief 

History” in the proceedings of the 16th International Conference on Computational 
Linguistics (COLING), pages 466-471, Center for Sprogteknologi, Copenhagen, Denmark. 

 
[19]  Srihari R., Niu C. and Li W. 2000. A Hybrid Approach for Named Entity and Sub-Type 

Tagging. In: Proceedings of the sixth conference on applied natural language processing. 
 
[20]  Cucerzan S. and Yarowsky D. 1999. Language independent named entity recognition 

combining morphological and contextual evidence. In: Proceedings of the Joint SIGDAT 
Conference on EMNLP and VLC 1999, pp. 90-99. 

 
[21]   Li W. and McCallum A. 2003. Rapid Development of Hindi Named Entity Recognition using 

Conditional Random Fields and Feature Induction. In: ACM Transactions on Asian 
Language Information Processing (TALIP), 2(3): 290–294. 

 



Shilpi Srivastava, Mukund Sanglikar & D.C Kothari 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 23 

[22]   Gali, K., Sharma, H., Vaidya, A., Shisthla, P., Sharma, D.M.: Aggregrating Machine 
Learning and Rule-based Heuristics for Named Entity Recognition. In: Proceedings of the 
IJCNLP-08Workshop on NER for South and South East Asian Languages. (2008) 25–32 

 
[23]  Asif Ekbal et. al. “Language Independent Named Entity Recognition in Indian Languages”. 

IJCNLP, 2008. 
 
[24]   Prasad Pingli et al. “A Hybrid Approach for Named Entity Recognition in Indian Languages”. 

IJCNLP, 2008. 
 
[25]  Shilpi Srivastava, Siby Abraham, Mukund Sanglikar: “Hybrid Approach for Recognizing Hindi 

Named Entity”, Proceedings of the International Conference on Managing Next Generation 
Software Applications - 2008 (MNGSA 2008), Coimbatore, India, 5th- 6th December 2008. 

 
[26]  Shilpi Srivastava, Siby Abraham, Mukund Sanglikar, D C Kothari: “Role of Ensemble 

Learning in Identifying Hindi Names”, International Journal of Computer Science and 
Applications, ISSN No. 0974-0767. 

 
 
 

 

 

 

 

 
 
 

 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 24 

Language Combinatorics: A Sentence Pattern Extraction 
Architecture Based on Combinatorial Explosion 

 
 

Michal Ptaszynski                       ptaszynski@hgu.jp 
High-Tech Research Center 
Hokkai-Gakuen University 
Sapporo, 064-0926, Japan 

 
Rafal Rzepka                 kabura@media.eng.hokudai.ac.jp 
Graduate School of Information Science and Technology 
Hokkaido University 

Sapporo, 060-0814, Japan 

 
Kenji Araki         araki@media.eng.hokudai.ac.jp 
Graduate School of Information Science and Technology 
Hokkaido University 

Sapporo, 060-0814, Japan 

 
Yoshio Momouchi              momouchi@eli.hokkai-s-u.ac.jp 
Department of Electronics and Information Engineering,  
Faculty of Engineering 
Hokkai-Gakuen University 
Sapporo, 064-0926, Japan 

 
Abstract 

 
A “sentence pattern” in modern Natural Language Processing is often considered as a 
subsequent string of words (n-grams). However, in many branches of linguistics, like Pragmatics 
or Corpus Linguistics, it has been noticed that simple n-gram patterns are not sufficient to reveal 
the whole sophistication of grammar patterns. We present a language independent architecture 
for extracting from sentences more sophisticated patterns than n-grams. In this architecture a 
“sentence pattern” is considered as n-element ordered combination of sentence elements. 
Experiments showed that the method extracts significantly more frequent patterns than the usual 
n-gram approach. 
 
Keywords: Pattern Extraction, Corpus Pragmatics, Combinatorial Explosion. 

 
 
1. INTRODUCTION 

Automated text analysis and classification is a typical task in Natural Language Processing 
(NLP). Some of the approaches to text (or document) classification include Bag-of-Words (BOW) 
or n-gram. In the BOW model, a text or document is perceived as an unordered set of words. 
BOW thus disregards grammar and word order. An approach in which word order is retained is 
called the n-gram approach, proposed by Shannon over half a century ago [22]. This approach 
perceives a given sentence as a set of n-long ordered sub-sequences of words. This allows for 
matching the words while retaining the sentence word order. However, the n-gram approach 
allows only for a simple sequence matching, while disregarding the grammar structure of the 
sentence. Although instead of words one could represent a sentence in parts of speech (POS), or 
dependency structure, the n-gram approach still does not allow for extraction or matching of more 
sophisticated patterns than the subsequent strings of elements. An example of such pattern, 
more sophisticated than n-gram, is presented in top part of Figure 1. A sentence in Japanese 
“Kyō wa nante kimochi ii hi nanda !” (What a pleasant day it is today!) contains a syntactic pattern 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 25 

“nante * nanda !”
1
. Similar cases can be easily found in other languages, for instance, English 

and Spanish. An exclamative sentence “Oh, she is so pretty, isn’t she?”, contains a syntactic 
pattern “Oh * is so * isn’t *?”. In Columbian Spanish, sentences “¡Qué majo está carro!” (What a 
nice car!) and “¡Qué majo está chica!” (What a nice girl!) contain a common pattern “¡Qué majo 
está * !” (What a nice * !). With another sentence, like “¡Qué porquería de película!” (What a 
crappy movie!) we can obtain a higher level generalization of this pattern, namely “¡Qué * !” (What 
a * !), which is a typical wh-exclamative sentence pattern [15]. The existence of such patterns in 
language is common and well recognized. However, it is not possible to discover such subtle 
patterns using only n-gram approach. Methods trying to go around this problem include a set of 
machine learning (ML) techniques, such as Neural Networks (NN) or Support Vector Machines 
(SVM). Machine learning has proved its usefulness for NLP in text classification within different 
domains [21, 16]. However, there are several problems with the ML approach. Firstly, since 
machine learning is a self-organizing method, it disregards any linguistic analysis of data, which 
often makes detailed error analysis difficult. Moreover, the statistical analysis performed within 
ML is still based on words (although represented as vectors), which hinders dealing with word 
inflection and more sophisticated patterns such as the ones mentioned above. Although there are 
attempts to deal with this problem, like the string kernel method [12], in ML one always needs to 
know the initial training set of features to feed the algorithm. Finally, methods for text 
classification are usually inapplicable in other tasks, such as language understanding and 
generation. 
 
In our research we aimed to create an architecture capable to deal or help dealing with the above 
problems. The system presented in this paper, SPEC, extracts from sentences patterns more 
sophisticated than n-grams, while preserving the word order. SPEC can work with one or more 
corpora written in any language. The corpora can be raw or preprocessed (spaced, POS tagging, 
etc.). This way SPEC extracts all frequent meaningful linguistic patterns from unrestricted text. 
This paper presents general description of SPEC, evaluates several aspects of the system 
performance and discusses possible applications. 
 
The paper outline is as follows. In section 2 we present background and motivation for the 
research, and explain general terms frequently used in this paper. Section 3 contains detailed 
description of all system procedures and modules put to the evaluation. In section 4 we describe 
the experiments performed to evaluate the system in several aspects influential for its 
performance. Finally, we discuss the results in section 5 and conclude the paper in section 6. 
 

2. BACKGROUND 

 
2.1 Corpus Pragmatics 
Pragmatics is a subfield of linguistics focusing on the ways natural language is used in practice 
[11]. In general it studies how context of a sentence influences its meaning. There are, roughly, 
two approaches to this problem. Classic approach is to look for “hidden meanings” of a sentence, 
called implicatures [6]. Another approach takes as an object a corpus (a coherent collection of 
texts) and analyzes examples of certain language strategies within their contexts to study their 
functions. For this it has been named Corpus Pragmatics (differently to Corpus Linguistics, which 
does not put so much focus on context, but rather on the word examples alone). Some of the 
research in Corpus Pragmatics has been done by Knight and Adolphs [7], Potts and Schwarz [15], 
or Constant, Davis, Potts and Schwarz [4]. Especially the latter two have focused on emotive 
utterances. They have used a corpus of reviews from Amazon.com, and analyzed tokens (words, 
usually unigrams to trigrams) that were the most distinguishable for emotively emphasized 
reviews (marked very low or very high). The main drawback of these research was focusing only 
on words, while disregarding both grammatical information, like POS or dependency structure, 
and more sophisticated patterns, like the ones mentioned in Introduction. With this paper we wish 
to contribute to the field of Corpus Pragmatics by providing an architecture capable of automatic 

                                                
1
 equivalent of wh-exclamatives in English [20]; asterisk used as a wildcard. 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 26 

extraction of such patterns from corpora. In our assumption this could be done by generating all 
patterns as ordered combinations of sentence elements and verifying the occurrences of all 
patterns within a corpus. This introduces to our research a problem of Combinatorial Explosion. 
 
2.2 Combinatorial Explosion 
Algorithms using combinatorial approach generate a massive number of combinations - potential 
answers to a given problem. This is the reason they are sometimes called brute-force search 
algorithms. Brute-force approach often faces the problem of exponential and rapid grow of the 
function values during combinatorial manipulations. This phenomenon is known as combinatorial 
explosion [9]. Since this phenomenon often results in very long processing time, combinatorial 
approaches have been often disregarded. We assumed however, that combinatorial explosion 
can be dealt with on modern hardware to the extent needed in our research. Moreover, optimizing 
the combinatorial approach algorithm to the problem requirements should shorten the processing 
time making combinatorial explosion an advantage in the task of pattern extraction from 
sentences.  
 
2.3 Pattern Extraction 
Pattern extraction from language corpora is a subfield of Information Extraction (IE). There is a 
number of research dealing with this task or applying pattern extraction methods to solve other 
problems. Some of the research related the most to ours include Riloff 1996 [18], Uchino et al. 
1996 [25], Talukdar et al. 2006 [24], Pantel and Pennacchiotti 2006 [14] or Guthrie et al. [23]. 
Riloff [18] proposed AutoSlog-TS system, which automatically generates extraction patterns from 
corpora. However, their system, being in fact an updated version of previous AutoSlog, was 
created using manually annotated corpus and a set of heuristic rules. Therefore the system as a 
whole was not fully automatic. Moreover, patterns in their approach were still only n-grams. A 
similar research was reported by Uchino et al. [25]. They used basic phrase templates to 
automatically expand the number of template patterns and applied them to machine translation. 
They also focused only on n-gram based patterns. Research tackling patterns more sophisticated 
than n-grams was done by Talukdar et al. [24]. They proposed a context pattern induction method 
for entity extraction. However, in their research the seed word set was provided manually and the 
extraction limited to the patterns neighboring the seed words. Therefore the patterns in their 
research were limited to n-grams separated with one word inside the pattern. Moreover, their 
system disregarded grammatical information. Espresso, a system using grammatical information 
in pattern extraction was reported by Pantel and Pennacchotti [14]. Espresso used generic 
patterns to automatically obtain semantic relations between entities. However, although the 
patterns Espresso used were not limited to n-grams, they were very generic (e.g. is-a or part-of 
patterns) and were provided to the system manually. An idea close to ours, called “skipgrams” 
was proposed Guthrie et al. [23]. The idea assumed that “skips” could be put between elements 
of n-grams (similar to wildcards in SPEC). However, they focused only on bigrams and trigrams. 
Moreover, they assumed that n-gram elements could be separated at most by 4 skips, which 
makes the extraction of patterns shown in Introduction impossible. In comparison with the 
mentioned methods, our method is advantageous in several ways. Firstly, we aimed to fully 
automatize the process of generation of potential patterns and extraction of actual patterns. 
Secondly, we deal with patterns more sophisticated than n-grams, generic separated patterns or 
skipgrams. 
 

3. SPEC - SYSTEM DESCRIPTION 
This section contains detailed description of SPEC, or Sentence Pattern Extraction arChitecturte. 
In the sections below we describe the system sub-procedures. This includes corpus 
preprocessing, generation of all possible patterns, extraction of frequent patterns and post-
processing. By a “corpus” we consider any collection of sentences or instances. It can be very 
large, containing thousands of sentences, or small consisting of only several or several dozen 
sentences. In any case SPEC automatically extracts frequent sentence patterns distinguishable 
for the corpus. In the assumption, the larger and the more coherent the original corpus is, the 
more frequent patterns will be extracted. 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 27 

3.1 Corpus Preprocessing 
SPEC was designed to deal with any not preprocessed raw corpora, as long as the lexical form of 
the language consists of smaller distinguishable parts, like letters, or characters. This makes 
SPEC capable to deal with corpora written in any type of language, including analytic languages 
(like English or Mandarin Chinese), agglutinative languages (like Japanese, Korean or Turkish), 
or even polysynthetic languages like Ainu, in their both spaced and non-spaced form. However, in 
the Pattern Generation sub-procedure, SPEC creates a very large number of temporary patterns 
(all possible ordered combinations of sentence elements). Therefore, considering the processing 
time, to avoid extensive combinatorial explosion, as a default we will assume that the corpus is at 
least spaced. Other relevant optional preprocessing might include part-of-speech (POS) tagging, 
dependency relation tagging or any other additional information as long as there exist sufficient 
tools. Three examples of preprocessing with and without POS tagging are presented in Table 1 
for a sentence in Japanese

2
. The sentence in the example was spaced and tagged with MeCab 

[10], a standard POS tagger for Japanese. 
 

Sentence: 今日はなんて気持ちいい日なんだ！ 
Transliteration: Kyōwanantekimochiiihinanda! 
Meaning: Today TOP what pleasant day COP EXCL 
Translation: What a pleasant day it is today! 
 Preprocessing examples 
1. Words: Kyō wa nante kimochi ii hi nanda ! 
2. POS: N TOP ADV N ADJ N COP EXCL 
3.Words+POS: Kyō[N] wa[TOP] nante[ADV] kimochi[N] ii[ADJ] hi[N] nanda[COP] ![EXCL] 

 
TABLE 1: Three examples of preprocessing of a sentence in Japanese with and without POS 
tagging; N = noun, TOP = topic marker, ADV = adverbial particle, ADJ = adjective, COP = copula, 
INT = interjection, EXCL = exclamative mark. 
 
3.2 Pattern Generation 
In this procedure SPEC generates all possible combinations of patterns from a sentence. Various 
algorithms have been proposed for creating combinations. Some use iteration loops, other use 
recursion. As processing speed is a crucial factor when dealing with reasonable size corpora, we 
designed two versions of a module to perform this procedure. The first version was designed to 
use one of the officially available iteration based algorithms for combination generation. In the 
second version we used a recursion algorithm designed especially for the task. Below we 
describe both versions. In section 4 we perform a speed test on four different iterative algorithms 
to choose the fastest one. The version of SPEC based on the fastest iterative algorithm is 
confronted later with the recursive version. 
 
Iteration Based Algorithm 
Generation of All Combinations from Sentence Elements 
In this sub-procedure, the system generates ordered non-repeated combinations from the 
elements of the sentence. In every n-element sentence there is k-number of combination groups, 
such as 1 ≤ k ≤ n, where k represents all k-element combinations being a subset of n. The 
number of combinations generated for one k-element group of combinations is equal to binomial 
coefficient, represented in equation 1. In this procedure we create all combinations for all values 
of k from the range of {1,…,n}. Therefore the number of all combinations is equal to the sum of all 
combinations from all k-element groups of combinations, like in the equation 2. 

                                                
2
 Japanese is a non-spaced agglutinative language. 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 28 

 
 
Ordering of Combinations 
In mathematics, combinations are groups of unordered elements. Therefore, using only the above 
algorithm, we would obtain patterns with randomized order of sentence elements, which would 
make further sentence querying impossible. To avoid randomization of sentence elements and 
preserve the sentence order we needed to sort each time the elements of a combination after the 
combination has been generated. To do that we used automatically generated double hash 
maps. Firstly, all elements of the original input sentence are assigned ordered numbers (1, 2, 
3...). After a combination is generated, elements of this combination are re-assigned numbers 
corresponding to the numbers assigned to the original sentence elements. The new set of 
numbers is sorted. Then the sorted list of numbers is re-mapped on original sentence elements 
(words) using the first hash. This provides the appropriate order of combination elements 
consistent with the order of elements in the original sentence. See Figure 1 for details of this part 
of the procedure. 
 

 
FIGURE 1: The procedure for sorting combination elements with automatically generated hash 

maps. 
 
Insertion of Wildcard 
In this stage the elements of a pattern are already sorted, however, to perform effective queries to 
a corpus we would also need to specify whether the elements appear next to each other or are 
separated by a distance. In practice, we need to place a wildcard between all non-subsequent 
elements. We solved this using one simple heuristic rule. If absolute difference of hash keys 
assigned to the two subsequent elements of a combination is higher than 1, we add a wildcard 
between them. This way we obtain a set of ordered combinations of sentence elements with 
wildcards placed between non subsequent elements. All parts of this procedure: generation of 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 29 

combinations, sorting of elements using automatically generated hash maps and wildcard 
insertion, are represented in Figure 1. 
 
Recursion Based Algorithm 
The recursion based algorithm is a coroutine-type recursive generator, which produces a new 
item in a list each time it is called. It returns all the elements in the list passed into it, unless the 
previous element is the same (this removes adjacent wildcards). The algorithm flow goes as 
follows. Firstly, it writes out all possible combinations of the word list by continuously replacing 
subsequent words with wildcards. This operation is recursively called by itself, beginning from 0 
wildcards to the overall number of sentence elements. The algorithm goes through all positions in 
the word list (sentence) starting from the beginning and places a wildcard there. This prevents 
infinite loops, since, if it goes beyond the end of the list, it will fall through without executing the 
loop. The original value is saved off and a wildcard is placed at this position. Then it calls itself 
recursively on the next index and with one less wildcard left to place. The list is restored to its 
original position and the operation is repeated till there is no more wildcards to place. Finally 
adjacent wildcards are removed and output is written to files. The whole procedure is performed 
for all sentences in the corpus.  
 
3.3 Pattern Extraction and Pattern Statistics Calculation 
In this sub-procedure SPEC uses all original patterns generated in the previous procedure to 
extract frequent patterns appearing in a given corpus and calculates their statistics. The statistics 
calculated include number of pattern occurrences (O), pattern occurrence frequency (PF) and 
pattern weight (W). 
 
Number of pattern occurrences (O) represents the number of all occurrences of a certain k-
long pattern in a given corpus. 
 
Pattern occurrence frequency (PF) represents the number of all occurrences of a k-long pattern 
within a corpus divided by the number of all k-long patterns that appeared more than once (Ak). 
See formula 3. 
 
Pattern weight (W) is a multiplication of the length of k and PF. See formula 4. 

 
The general pragmatic rule which applies here says that the longer the pattern is (length k), and 
the more often it appears in the corpus (occurrence O), the more specific and representative it is 
for the corpus (weight W). The pattern frequency calculation can be performed as a part of the 
previous procedure (pattern generation) when dealing with only one corpus. However, an often 
need in tasks like document classification is to obtain a set of patterns from a training (often 
smaller) corpus and perform pattern matching on a larger corpus. For example, in lexicon 
expansion one uses seed patterns to find out new vocabulary and phrases appearing within the 
patterns. We assumed SPEC should be able to deal with both, single and multiple corpus case. 
Therefore we needed to retain the ability to generate patterns from one (given) corpus and match 
them to another (target) corpus. Separating pattern generation and pattern extraction procedures 
also allows cross-reference of two or more corpora (a case when both are given and target 
corpora). This also allows performing the extraction on all corpora concurrently, e.g., using fork or 
thread functions for parallel programming, which shortens processing time. Finally, by making the 
system module-based (all sub-procedures are created as separate modules), each sub-
procedure can be thoroughly evaluated, improved, expanded, or substituted with more efficient 
one when needed. 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 30 

 
3.4 Post Processing 
In the post-processing phase SPEC performs simple analysis of patterns extracted from the given 
corpus to provide its basic pragmatic specifications. We use the term “pragmatic specifications” in 
a similar way to Burkhanov, who generally includes here indications and examples of usage [2]. 
The post-processing is done differently for: 1) one given/target corpus and 2) a set of two or more 
corpora. 
 
One Corpus Case 
The post-processing of one corpus is done as follows. Firstly, all patterns that appeared only 
once are filtered out and deleted. This is done to eliminate quasi-patterns. A quasi-pattern is a 
pattern, which was created from a sentence in the combinatorial explosion-based process of 
pattern generation, but was not found elsewhere in the rest of the corpus. In practice, it means 
that it is not a frequently used sentence pattern and therefore keeping it would bias the results. 
The patterns that appeared more than once are grouped according to pattern length (number of 
elements a pattern consists of). The patterns are also indexed within groups using initial pattern 
letters as indices. In this form the patterns can be used in further analysis. 
 
Two/Multiple Corpora Case 
In many NLP tasks, especially those taking advantage of machine learning methods, it is often 
necessary to obtain lists of two distinctive sets of features [5]. This refers to all sorts of text 
classification domains, like spam filtering, sentiment and affect analysis [13] or even novel ones, 
like cyber-bullying detection [16]. In the post-processing procedure SPEC refines the patterns 
extracted for several corpora to filter out the ones that appear exclusively in each corpus and the 
ones which occurrences repeat in several corpora. The post-processing for two corpora is done 
as follows. Firstly, SPEC deletes only those quasi-patterns that appeared only once in both 
corpora. For all patterns which appeared more than once in at least one corpus SPEC calculates 
for which of the two corpora they are more representative, applying the notions of O, PF and W 
defined in section 3.3. Overall diagram of the SPEC system is represented in Figure 2. 
 

 
FIGURE 2: General diagram of the SPEC system. 

 
 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 31 

4. EXPERIMENTS 
This section describes experiments we performed to evaluate different aspects of SPEC. As time 
is a crucial issue in systems using combinatorial approach we begin with experiments on 
processing speed. Next, we perform a detailed analysis of patterns extracted by SPEC with 
comparison to a usual n-gram approach. 
 
4.1 Test Sets 
The experiments are performed on two different test sets. Firstly, as was shown by Potts et al. 
[15] and Ptaszynski et al. [17], pragmatic differences are the most visible in a comparison of 
emotional and neutral language. Therefore, we used a set of emotive and non-emotive utterances 
in Japanese collected by the latter. There are 38 emotive utterances and 39 non-emotive 
utterances in the set. 
 
4.2 Experiments with Processing Time 
All experiments were conducted on a PC with the following specifications. Processor: Intel Core 
i7 980X; Memory: 24 GB RAM; Storage: SSD 256 GB; OS: Linux Fedora 14 64bit. 
 
Speed Test of Iterative Algorithms for Combination Generation 
In the first experiment we compared speed in generating combinations for four officially available 
algorithms. As most of SPEC procedures are written in Perl, we used algorithms designed for this 
programming language. 
 
Math::Combinatorics (M::C) is a Perl module designed by Allen Day. It provides a pure-perl 
implementation of functions like combination, permutation, factorial, etc. in both functional and 
object-oriented form. The module is available at: http://search.cpan.org/~allenday/Math-
Combinatorics-0.09/  
Algorithm::Combinatorics (A::C) is also a Perl module for generation of combinatorial 
sequences, designed by Xavier Noria. The algorithms used in this module were based on 
professional literature [8]. The module is available at: http://search.cpan.org/~fxn/Algorithm-
Combinatorics/ 
Algorithm α is a subroutine based iteration algorithm keeping track of a list of indices.  
Algorithm β is also a subroutine based iteration algorithm, although optimized. Both α and β 
algorithms are available on PerlMonks, a website for Perl programming community, at: 
http://www.perlmonks.org/?node id=371228 
 
The above four algorithms were applied in a simple task of generating all combinations from a list 
containing all letters of alphabet

3
. Processing time was calculated separately for each k-long 

group of combinations. The test was taken ten times for each group. This provided 260 tests for 
each algorithm, giving over a thousand of overall number of tests. For each group of tests the 
highest and lowest outliers were excluded and the averages of processing times were calculated. 
The results for all four tested algorithms are represented in Figure 3. 
 
Iteration Algorithm vs. Recursion Algorithm 
In the second experiment we compared two versions of pattern generation procedure, based on 
the fastest iteration algorithm and recursion algorithm described in section 3.2. The task was to 
generate from the same list (alphabet letters) not only combinations, but the whole patterns, with 
sorted elements and wildcards included. Here the time was calculated not for each combination 
group but for the whole process of generating all patterns. The test was also taken ten times and 
the highest and lowest outliers excluded. The averages of results are represented in table 2. 
 
 
 
 

                                                
3
 26 letters: ”a b c d e f g h i j k l m n o q p r s t u w v x y z”. 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 32 

 
FIGURE 3: Graph showing time scores of all four tested algorithms. 

 
 

Algorithm Processing times (min., sec.) 

Recursion based 24 min., 50.801 sec. 

Iteration based 45 min., 56.125 sec. 

 
TABLE 2: Averaged results of processing time compared between recursive and iterative version 
of pattern generation procedure. 
 
4.3 Experiments with Pattern Analysis 
 
N-gram Approach vs. Pattern Approach 
By extracting frequent sentence patterns from corpora, SPEC builds a sentence pattern based 
language model from scratch for any corpus. An approach usually applied in language modeling 
is n-gram approach [1, 3, 19]. Therefore, for a comparison we used n-gram approach. In the 
experiment we calculated the number of extracted frequent patterns and compared it to the 
number of frequent n-grams. However, n-grams are also types of patterns and SPEC would 
generate n-grams as well. Therefore in this experiment we compared the number of extracted n-
grams with the number of only non-n-gram patterns. As we assumed, this should show how 
effective is the pattern based method over n-grams. It might seem that the pattern based method 
would always perform better, since it generates incomparably larger numbers of patterns. 
However, in the evaluation we used only those patterns, which appeared in corpus more than 
once. This means we filter out all potential (or quasi) patterns leaving only the frequent ones. 
Thus the actual differences might not be of that high order. We also verified whether the 
differences between the numbers of frequent patterns and frequent n-grams were statistically 
significant using Student’s T-test. Since the compared groups are of the same type (k-long 
patterns) we decided to use paired version of T-test. If the differences were small and not 
significant, it would mean that the traditional n-gram approach is equally good while much faster 
than the proposed pattern approach. We also compared the patterns in two different ways. 
Quantitative, referring to the overall number of patterns per group and Qualitative, in which we 
also compared how frequent were the patterns within a group. This way, a group with smaller 
number of very frequent patterns, could score higher than a group of many modestly frequent 
patterns. 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 33 

5. RESULTS AND DISCUSSION 
In the processing speed experiment, in which we compared four combinatorial algorithms, the 
fastest score was achieved by Algorithm::Combinatorics. The worst was Math::Combinatorics. 
Other two algorithms achieved similar results. However, none of them was faster than A::C. 
Therefore we used this algorithm in iterative version of SPEC.  
 
Next, we compared the processing time of pattern generating procedure for iteration and 
recursion based algorithms. The latter one was over two times faster (see Table 2). Although the 
iterative algorithm itself is fast, additional operations performed after generating the combinations, 
such as sorting of elements and insertion of wildcards, influence the overall processing time. 
Therefore for the task of generating all combinations, it is more efficient to use the recursion 
based algorithm. The further analysis of patterns, however, revealed that it is not always 
necessary to create all patterns. The experiment showed that generating up to 5-element 
combinations is sufficient to find all frequent language patterns from a corpus (see Figure 4). This 
discovery, when confirmed on larger datasets, on corpora of different languages and domains, 
should provide some deep insights about the nature of structured language patterns, like 
compound nouns, collocations or even conversational strategies, which would contribute greatly 
to the field of Corpus Pragmatics.  
 

 
FIGURE 4: Graphs showing differences in numbers of frequent entities (patterns or n-grams) 
extracted from two datasets. 
 
Except the discovery about the length of combinations sufficient for extraction of frequent patterns, 
quantitative analysis of patterns extracted from datasets revealed the following. While the number 
of frequent n-grams was decreasing rapidly with the increase in number of elements, the number 
of patterns increased for 2-element patterns and then gradually decreased, providing 
approximately 5 to 20 times more frequent patterns for emotive utterances and 5 to 10 times 
more patterns for non-emotive utterances (see Table 3). Whether the dataset domain 
(emotiveness) and language (Japanese) were influential on the overall number of patterns should 
be an object of further study, however, were able to prove that the pattern based approach does 
provide more frequent patterns in both of the examined cases. Moreover, qualitative analysis 
revealed, that n-grams appeared usually with the low occurrence and, excluding unigrams, there 
were almost no n-grams of higher occurrence then two. On the other hand, for patterns, about 
one third of the extracted patterns was of occurrence higher then 2 (3 or more). This proves that 
pattern based language analysis should allow more detailed analysis of language structures than 
the traditional n-gram approach. Finally, all results were statistically significant on a standard 5% 
level. 
 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 34 

Data sets 
n-grams 

patterns 
(without n-grams) 

all patterns 

2-element entities 
Emotive sentences 11 113 124 

Non-emotive sentences 11 57 68 
 3-element entities 

Emotive sentences 2 56 58 
Non-emotive sentences 3 28 31 

 4-element entities 
Emotive sentences 0 4 4 

Non-emotive sentences 0 4 4 

 
TABLE 3: Number of frequent entities extracted (n-grams, non-n-gram patterns and all patterns) 
from two datasets (collections of emotive and non-emotive sentences). Results presented 
separately for 2, 3, and 4 element entities. 
 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we presented SPEC, or Sentence Pattern Extraction arChitecturte. The system 
extracts all frequent sentence patterns from corpora. The extracted patterns are more 
sophisticated than the ones obtained in a usual n-gram approach, as SPEC does not assume that 
two subsequent elements of a pattern appear subsequently also in the sentence. SPEC firstly 
generates all combinations of possible patterns and calculates their pattern statistics (number of 
occurrences, frequency and weights). SPEC is capable of processing corpora written in any 
language, as long as they are minimally preprocessed (spacing, POS tagging, dependency 
structure, etc.). Experiments showed that the method extracts significantly more frequent patterns 
than the usual n-gram approach. There are two issues needing attention in the near future. Firstly, 
to make this approach scalable to large corpora (several thousands of sentences of different 
length), the algorithms need to be further optimized to generate and extract patterns in a faster 
manner. In pattern generation, a further study in the longest sufficient pattern length will be 
necessary. Also, applying high performance computing techniques, such as parallel computing 
should provide much decrease in processing time. Another issue is noise. Although there have 
been no coherent definition so far of what a noise is in n-gram models, it would be naive to 
assume that all patterns are always valuable for all applications of the method. One method to 
deal with this issue should be raising the threshold of frequent patterns (to 3 or higher). Finally, in 
the near future we plan to apply SPEC to other NLP tasks, such as spam classification, user 
detection, sentiment analysis [13], cyberbullying detection [16], or lexicon expansion for affect 
analysis [17] to evaluate SPEC in practice. 
 
Acknowledgments 
This research was supported by (JSPS) KAKENHI Grant-in-Aid for JSPS Fellows (Project 
Number: 22-00358). Authors thank Tyson Roberts and Jacek Maciejewski for their invaluable 
help with optimizing SPEC algorithms. SPEC repositories are available freely at: 
http://arakilab.media.eng.hokudai.ac.jp/~ptaszynski/research.htm 
 

REFERENCES 
[1]    P. F. Brown, P. V. de Souza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. “Class-based n-

gram models of natural language”. Computational Linguistics, Vol. 18, No. 4 (December 
1992), 467-479, 1992. 

 
[2]   Burkhanov. “Pragmatic specifications: Usage indications, labels, examples; dictionaries of 

style, dictionaries of collocations”, In Piet van Sterkenburg (Ed.). A practical guide to 
lexicography, John Benjamins Publishing Company, 2003. 

 
[3]    S. Chen, J. Goodman, “An empirical study of smoothing techniques for language modeling”, 

Comp. Speech & Language, Vol. 13, Issue 4, pp. 359-393, 1999. 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 35 

[4]   N. Constant, C. Davis, C. Potts and F. Schwarz, “The pragmatics of expressive content: 
Evidence from large corpora”. Sprache und Datenverarbeitung, 33(1-2):5-21, 2009. 

 
[5]    G. Forman. “An extensive empirical study of feature selection metrics for text classification”. 

J. Mach. Learn. Res., 3 pp. 1289-1305, 2003. 
 
[6]    P. H. Grice, Studies in the Way of Words. Cambridge (MA): Harvard University Press, 1989. 
 
[7]   D. Knight, and S. Adolphs, “Multi-modal corpus pragmatics: The case of active listenership”, 

Pragmatics and Corpus Linguistics, pp. 175-190, Berlin, New York (Mouton de Gruyter), 
2008. 

 
[8]  D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All 

Combinations and Partitions. Addison Wesley Professional, 2005. 
 
[9]   K. Krippendorff, “Combinatorial Explosion”, Web Dictionary of Cybernetics and Systems. 

Princia Cybernetica Web. 
 
[10] T. Kudo. MeCab: Yet Another Part-of-Speech and Morphological Analyzer, 2001. 

http://mecab.sourceforge.net/ [July 27, 2011]. 
 
[11]   S. C. Levinson, Pragmatics. Cambridge University Press, 1983. 
 
[12]   H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. “Text classification 

using string kernels”, The Journal of Machine Learning Research, 2, pp. 419-444, 2002. 
 
[13]   B. Pang, L. Lee, S. Vaithyanathan. “Thumbs up?: sentiment classification using machine 

learning techniques”. In Proc. of EMNLP'02, pp. 79-86, 2002. 
 
[14]  P. Pantel and M. Pennacchiotti, “Espresso: Leveraging Generic Patterns for Automatically 

Harvesting Semantic Relations”, In Proceedings of the 21st International Conference on 
Computational Linguistics and 44th Annual Meeting of the ACL, pp. 113-120, 2006. 

 
[15]  C. Potts and F. Schwarz. “Exclamatives and heightened emotion: Extracting pragmatic 

generalizations from large corpora”. Ms., UMass Amherst, 2008. 
 
[16]   M. Ptaszynski, P. Dybala, T. Matsuba, F. Masui, R. Rzepka, K. Araki and Y. Momouchi, “In 

the Service of Online Order: Tackling Cyber-Bullying with Machine Learning and Affect 
Analysis”, International Journal of Computational Linguistics Research, Vol. 1 , Issue 3, pp. 
135-154, 2010. 

 
[17]  M. Ptaszynski, P. Dybala, R. Rzepka K. and Araki, “Affecting Corpora: Experiments with 

Automatic Affect Annotation System - A Case Study of the 2channel Forum”, Proceedings 
of PACLING-09, pp. 223-228, 2009. 

 
[18] E. Riloff, “Automatically Generating Extraction Patterns from Untagged Text”, In 

Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp. 
1044-1049, 1996. 

 
[19]  B. Roark, M. Saraclar, M. Collins, “Discriminative n-gram language modeling”, Computer 

Speech & Language, Vol. 21, Issue 2, pp. 373-392, 2007. 
 
[20]  K. Sasai, “The Structure of Modern Japanese Exclamatory Sentences: On the Structure of 

the Nanto-Type Sentence”. Studies in the Japanese Language, Vol, 2, No. 1, pp. 16-31, 
2006. 

 



Michal Ptaszynski, Rafal Rzepka, Kenji Araki & Yoshio Momouchi 

International Journal of Computational Linguistics (IJCL), Volume (2) : Issue (1) : 2011 36 

[21]  F. Sebastiani. “Machine learning in automated text categorization”. ACM Comput. Surv., 
34(1), pp. 1-47, 2002. 

 
[22]  C. E. Shannon, “A Mathematical Theory of Communication”, The Bell System Technical 

Journal, Vol. 27, pp. 379-423 (623-656), 1948. 
 
[23]  D. Guthrie, B. Allison, W. Liu, L. Guthrie, Y. Wilks, Y. “A Closer Look at Skip-gram 

Modelling”. In Proc. Fifth International Conference on Language, Resources and Evaluation 
(LREC'06), pp. 1222-1225, 2006. 

 
[24]  P. P. Talukdar, T. Brants, M. Liberman and F. Pereira, “A Context Pattern Induction Method 

for Named Entity Extraction”, In Proceedings of the 10th Conference on Computational 
Natural Language Learning (CoNLL-X), pp. 141-148, 2006. 

 
[26]  H. Uchino, S. Shirai, S. Ikehara, M. Shintami, “Automatic Extraction of Template Patterns 

Using n-gram with Tokens” [in Japanese], IEICE Technical Report on Natural Language 
Understanding and Models of Communication, 96(157), pp. 63-68, 1996. 

 



INSTRUCTIONS TO CONTRIBUTORS

Computational linguistics is an interdisciplinary field dealing with the statistical and/or rule-based
modeling of natural language from a computational perspective. Today, computational language
acquisition stands as one of the most fundamental, beguiling, and surprisingly open questions for
computer science. With the aims to provide a scientific forum where computer scientists, experts
in artificial intelligence, mathematicians, logicians, cognitive scientists, cognitive psychologists,
psycholinguists, anthropologists and neuroscientists can present research studies, International
Journal of Computational Linguistics (IJCL) publish papers that describe state of the art
techniques, scientific research studies and results in computational linguistics in general but on
theoretical linguistics, psycholinguistics, natural language processing, grammatical inference,
machine learning and cognitive science computational models of linguistic theorizing: standard
and enriched context free models, principles and parameters models, optimality theory and
researchers working within the minimalist program, and other approaches. IJCL is a peer review
journal and a bi-monthly journal.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCL.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 2, 2011, IJCL appears in more focused issues. Besides normal publications,
IJCL intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJCL List of Topics:
The realm of International Journal of Computational Linguistics (IJCL) extends, but not limited, to
the following:

 Computational Linguistics  Computational Models
 Computational Theories  Corpus Linguistics
 Formal Linguistics-Theoretic and Grammar

Induction
 Information Retrieval and Extraction

 Language Generation  Language Learning
 Linguistics Modeling Techniques  Linguistics Theories
 Machine Translation  Models of Language Change and its Effect

on Lingui
 Models that Address the Acquisition of

Word-order
 Models that Combine Linguistics Parsing

 Models that Employ Statistical/probabilistic
Gramm

 Models that Employ Techniques from
machine learnin

 Natural Language Processing  Quantitative Linguistics
 Speech Analysis/Synthesis  Speech Recognition/Understanding
 Spoken Dialog Systems  Web Information



CALL FOR PAPERS

Volume: 3 - Issue: 1 - February 2012

i. Paper Submission: November 30, 2011 ii. Author Notification: January 01, 2012

iii. Issue Publication: January / February 2012



CONTACT INFORMATION

Computer Science Journals Sdn BhD
M-3-19, Plaza Damas Sri Hartamas
50480, Kuala Lumpur MALAYSIA

Phone: 006 03 6207 1607
006 03 2782 6991

Fax:     006 03 6207 1697

Email: cscpress@cscjournals.org






