

INTERNATIONAL JOURNAL OF
COMPUTATIONAL LINGUISTICS (IJCL)

VOLUME 5, ISSUE 2, 2014

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180 - 1266

International Journal of Computational Linguistics (IJCL) is published both in traditional paper

form and in Internet. This journal is published at the website http://www.cscjournals.org,

maintained by Computer Science Journals (CSC Journals), Malaysia.

IJCL Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF COMPUTATIONAL LINGUISTICS

(IJCL)

Book: Volume 5, Issue 2, May / June 2014

Publishing Date: 01-06-2014

ISSN (Online): 2180-1266

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJCL Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJCL Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2014

EDITORIAL PREFACE

The International Journal of Computational Linguistics (IJCL) is an effective medium for
interchange of high quality theoretical and applied research in Computational Linguistics from
theoretical research to application development. This is the Second Issue of Volume Five of IJCL.
The Journal is published bi-monthly, with papers being peer reviewed to high international
standards. International Journal of Computational Linguistics (IJCL) publish papers that describe
state of the art techniques, scientific research studies and results in computational linguistics in
general but on theoretical linguistics, psycholinguistics, natural language processing, grammatical
inference, machine learning and cognitive science computational models of linguistic theorizing:
standard and enriched context free models, principles and parameters models, optimality theory
and researchers working within the minimalist program, and other approaches.

IJCL give an opportunity to scientists, researchers, and vendors from different disciplines of
Artificial Intelligence to share the ideas, identify problems, investigate relevant issues, share
common interests, explore new approaches, and initiate possible collaborative research and
system development. This journal is helpful for the researchers and R&D engineers, scientists all
those persons who are involve in Computational Linguistics.

Highly professional scholars give their efforts, valuable time, expertise and motivation to IJCL as
Editorial board members. All submissions are evaluated by the International Editorial Board. The
International Editorial Board ensures that significant developments in image processing from
around the world are reflected in the IJCL publications.

IJCL editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Scribd, CiteSeerX Docstoc and many more. Our International Editors are
working on establishing ISI listing and a good impact factor for IJCL. We would like to remind you
that the success of our journal depends directly on the number of quality articles submitted for
review. Accordingly, we would like to request your participation by submitting quality manuscripts
for review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJCL provides authors with high quality, helpful reviews that are shaped to assist authors
in improving their manuscripts.

Editorial Board Members
International Journal of Computational Linguistics (IJCL)

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr Michal Ptaszynski
Hokkai-Gakuen University(Japan)

Assistant Professor, Li Zhang
Northumbria University
United Kingdom

Dr Pawel Dybala
Otaru University of Commerce
Japan

Dr John Hanhong LI
China

Dr Stephen Doherty
Dublin City University
Ireland

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014

TABLE OF CONTENTS

Volume 5, Issue 2, May / June 2014

Pages

14 - 26

Design of A Spell Corrector For Hausa Language

Lawaly Salifou, Harouna Naroua

27 - 36

KSUCCA: A Key To Exploring Arabic Historical Linguistics

Maha Sulaiman Alrabiah, AbdulMalik Al-Salman, Eric Atwell, Nawal Alhelewh

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 14

Design of A Spell Corrector For Hausa Language

Lawaly Salifou salifoumma@yahoo.fr
Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université Abdou Moumouni
Niamey, BP 10662, NIGER

Harouna Naroua hnaroua@yahoo.com
Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université Abdou Moumouni
Niamey, BP 10662, NIGER

Abstract

In this article, a spell corrector has been designed for the Hausa language which is the second
most spoken language in Africa and do not yet have processing tools. This study is a contribution
to the automatic processing of the Hausa language. We used existing techniques for other
languages and adapted them to the special case of the Hausa language. The corrector designed
operates essentially on Mijinguini’s dictionary and characteristics of the Hausa alphabet. After a
brief review on spell checking and spell correcting techniques and the state of art in the Hausa
language processing, we opted for the data structures trie and hash table to represent the
dictionary. The edit distance and the specificities of the Hausa alphabet have been used to detect
and correct spelling errors. The implementation of the spell corrector has been made on a special
editor developed for that purpose (LyTexEditor) but also as an extension (add-on) for
OpenOffice.org. A comparison was made on the performance of the two data structures used.

Keywords: Natural Language Processing, Spell Checker, Spell Corrector, Computerization of
Hausa, African Languages.

1. INTRODUCTION
Automatic natural language processing (NLP) has many industrial applications including, among
others, verification and correction of spelling and grammar, text indexing and retrieval of
information from the Internet, voice recognition and synthesis, vocal control of domestic robots,
automated response systems and machine translation [1 - 2]. The most commonly used
application is of course spell checking. Indeed, it is integrated into computer tools used every day
by millions of people worldwide. Computer programs in this area are of two kinds: spell checkers
and spell correctors. A spell checker detects spelling errors in a given text whereas a spell
corrector both detects spelling errors and seeks for the most likely correct words [3]. The
correction can be automatic (in the case of a speech synthesizer for example) or interactive
allowing the user to select the desired word from several suggestions [1]. This second approach
is the one used by most of word processing softwares. Such programs are generally designed for
a given language. Spell checking is nowadays present in almost all computer applications where
text is expected to be entered by the user. Wrong words are generally underlined in red to alert
the user. Examples of such applications are word processors, email clients, source code editors,
programming environments and search engines. The causes of errors are of several orders and
there is more than one way to classify them [4]. The most important causes are ignorance of the
author, typographical errors and errors in transmission and storage [3]. A spell corrector performs
two main functions, one after another: first detecting and then correcting spelling errors. In one of
his articles, Kukich [1] said that the methods of detection and correction use three approaches:

• non-word error detection, eg. 'grafe' written instead of 'giraffe';

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 15

• isolated-word error correction;
• Context error detection and correction: each word is considered taking into account the

context, thereby correcting spelling errors even when they consist of real words.

2. TECHNIQUES AND ALGORITHMS FOR ERROR DETECTION
The search for solutions to spelling errors correction problem has been a challenge for many
years. Efforts in that area led to the emergence of various techniques and algorithms. Error
detection is to find incorrect words in a text. A wrong word is then marked by the application in
charge of spell checking. If the word is really wrong - because it is not always the case - an error
is said to be detected. Research in this area has been done by many authors [2 - 10]. The main
techniques used for non-word error detection in a text are either based on analysis of n-grams, or
dictionary lookup [1]. The techniques based on n-grams are to analyze each n-gram of a given
input word and check its validity in a precompiled table. These techniques usually require a
dictionary or corpus that’s large enough to determine the statistics table of n-grams [1]. A
dictionary is a collection of correct or acceptable words. Some authors use the term lexicon or the
phrase "word list" instead of dictionary. The techniques based on the use of a dictionary or
lexicon involve taking a word as input and verifying its existence in the dictionary. Any word that is
not in the dictionary is then considered wrong [1]. A detection algorithm based on dictionary
lookup is given by Peterson [3]. The hash table is one of the most commonly used data structures
to reduce response time when searching in a dictionary [1]. The idea of hash table was
introduced for the first time in 1953 [11]. With the hash code, a hash allows a selective access to
the searched word and, therefore, significantly reduces the response time. But the major
drawback is finding a hash function which admits very few collisions and provides uniformly
distributed indices in the considered interval. UNIX spellchecker Spell illustrates the use of a hash
table for fast search in a dictionary. Binary search trees are especially useful to check whether a
given word belongs to a larger set of words. Several variations of binary search trees were used
to accelerate dictionary search. Among them is the Median Split Tree, a modified frequency-
ordered binary search tree that allows faster access to most frequently used words. Finite
automata were also used in some search algorithms in a dictionary or a text. One of the famous
algorithms in this area is that of Aho - Corasick [12]. The algorithm is to move through an abstract
data structure called dictionary that contains the words to search by reading the text characters
one by one. The data structure is implemented efficiently, which ensures that each character of
the text is read only once. Generally, the dictionary is represented using a trie. A trie may be seen
as a representation of the transition function of a deterministic finite automaton. The algorithm
has a linear complexity in the size of the text and search strings. Comparatively, techniques using
n-grams derived from a dictionary provides less accuracy than those using all the information in
the dictionary. But, the latter ones are time consuming depending on the data structure used to
represent the dictionary. A comparative study showed that the hash table provides better
performance than the AVL tree, the Red-Black tree and Skip list [9]. A comparison of five data
structures was performed for the Punjabi dictionary [13]. It concerned binary search tree, trie,
ternary search tree, multi-way tree and reduced memory method tree. As a result, the binary
search tree was found to be the most suitable data structure in terms of memory usage and time.
But it is limited when it comes to suggest a list of candidates for the correction or find all words
that differ by one or two characters. This limitation may be avoided by the use of a trie which
offers almost the same time complexity with a binary search tree. Hash table and trie are shown
to be the most suitable data structures for dictionary representation.

3. TECHNIQUES AND ALGORITHMS FOR ERROR CORRECTION
Error correction refers to the fact of equipping spell checkers with the ability to correct detected
errors. This is to find words in the dictionary (or lexicon) that are similar in some ways to the
misspelled word. The task of a spell corrector is thus composed of three sub-tasks: detecting
errors, generating possible corrections, and ranking suggested corrections. To achieve this,
various techniques were invented. Each is related either to non-word error correction, real-word
error correction, or both. Spelling errors may be typographical, cognitive or phonetic.
Typographical errors occur when the keys are pressed in the wrong order (eg ahnd instead of

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 16

hand). Cognitive errors arise from ignorance of the correct spelling of the word (eg sicretary
instead of secretary). Phonetic errors are special cases of cognitive errors. A phonetic error refers
to a wrong word that is pronounced the same way as the correct word (eg speack / speak). In
typed texts, 1% to 3% of the errors are spelling errors [14]. Damerau [6] stated that 80% of these
errors are related to insertion, deletion, substitution, or transposition. The minimum edit distance
or simply edit distance is until now the most widely used technique in the spelling errors
correction. It has been applied in almost all spell checking functions in text editors and command
language interfaces. The first spelling correction algorithm based on this technique was proposed
by Damerau [6]. Almost at the same time, Levenshtein also developed a similar algorithm.
Several other algorithms on edit distance were born thereafter. The edit distance is defined as the
minimum number of edit operations required to transform a word to another [1]. These operations
are insertion, deletion, substitution and transposition. In most cases, correcting a spelling error
requires the insertion, deletion or substitution of a single character, or the transposition of two
characters. When a wrong word can be transformed into a dictionary word by inverting one of
these operations, the dictionary word is considered a plausible correction. Damerau’s algorithm
[6] for edit distance detects spelling errors by comparing words of four to six characters with a list
of most frequently used words. When there are multiple candidate words for a given edit distance
on a detected word, the first word in the dictionary appearing in alphabetical order is chosen.
Levenshtein’s algorithm is in the field of dynamic programming and seems to be the most widely
used in edit distance computing. Each edit operation is assigned a cost, usually 1 for deletion and
insertion and 2 for substitution and transposition. Given a dictionary of n words, the correction
algorithms based on edit distance generally require n comparisons for each wrong word. To
reduce the search time, reversed edit distance technique is used. Another approach used to
reduce the number of comparisons involves sorting or partitioning the dictionary according to
certain criteria (alphabetical order, word length, words occurrences). Many other techniques are
also used in spelling errors correction like: similarity keys, rules system, n-grams, probabilistic
techniques and neural networks. However, the most widely used technique in errors correction
remains edit distance [7]. It has a time complexity of O(nm), with n and m the respective sizes of
the two compared words. A technique developed by Horst [15] combining automata and edit
distance was used to quickly find the closest correct word to a wrong word. It has a linear
complexity in time relative to the length of the wrong word, regardless of the dictionary size. But

the space complexity of the method is exponential (

Ο ∑

=

N

i

i
A

1

exp.3 , where Ai are the words

of the dictionary).

4. REVIEW OF THE HAUSA LANGUAGE PROCESSING
Hausa is part of the family of Afro-Asiatic languages. It belongs to the group of Chadic languages
(sub-group of West Chadic languages) [16]. Compared to other African languages, Hausa is
remarkably unitary. Standard Hausa (Kano dialect) is to be distinguished from West dialect
(Sokoto) and Nigerien dialects (Tibiri, Dogondoutchi, Filingué) [17]. From a vocal point of view,
the Hausa words have high tones and low tones and one can observe a flexion of gender and
number [18]. Geographically, Hausa is the second most spoken language in Africa. It is the most
widely spoken language in sub-Saharan Africa with about a hundred million speakers worldwide.
Hausa is now used by major radio stations of the world such as VOA (USA), BBC (UK), CRI
(China), RFI (France), IRIB (Iran), Deutsche Welle (Germany) and Radio Moscow (Russia). In
Niger, Hausa and other national languages are used by regional and local, public and private
media [19]. Cinematographically, the Hausa language video industry has made a remarkable
progress. Indeed, over 1000 Hausa films are produced each year, mainly from Nigeria. The
presence of Hausa on Internet is very precarious. It is unfortunately the same case with all
African languages even though they represent 30% of the languages of the world [20]. According
to Van Der and Gilles-Maurice [20], Hausa texts can be divided into three main categories:
popular culture (47%), newspapers (35%) and religion (17%). The percentage of texts produced
on forums by Internet users is tiny (0.3% of total words). Today's famous search engines like
Google and Mozilla Firefox as well as other softwares and electronic gadgets (including mobile

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 17

phones) have a graphical user interface in Hausa. The ISO identifier for Hausa language is ha or
hau (ISO 639-3 and ISO 639-1). On the academic side, the first poems written in Hausa with
Arabic alphabet adapted to the notation of African languages (`Ajami), date from the early
nineteenth century. To this tradition was added in the 1930s, as a result of British colonization, a
literary production in Latin alphabet (dramas, tales, stories, poetry) [21]. Hausa language is now
being taught in African and Western universities (Niger, Nigeria, Libya, Inalco (Paris) , Boston
University, UCLA) . The written Hausa is essentially based on the dialect of Kano and there are
two writing systems, one based on the Arabic script (Ajami) and the other using the Latin
alphabet (Boko) as shown in Figure 1. We note, in the case of Boko, the presence of four
additional special characters like consonants (ɓ , ɗ , ƙ and ƴ) and glottal stop (').

FIGURE 1: Writing Systems for Hausa Language.

The Latin transcription, introduced by the British in Nigeria in the early 20
th
 century, has emerged

in 1930 as the official spelling [17]. In Niger, it was only in 1981 that the Latin alphabet was used
as an official Hausa spelling. This alphabet was completed in 1999 by a decree [22]. This is the
same alphabet as that of Figure 1 (b) to which are added digraphs fy, gw, kw, ky, ƙw, and ƙy
representing specific and considered consonant sounds. The same decree defined the symbols
in Table 1 as punctuation symbols.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 18

Symbol name Symbol
Full stop .

Comma ,

Semi colon ;

Colon :

Interrogation mark ?

Exclamation mark !

Parentheses ()

Quotes "

Union mark -

Suspension marks …

Dash, next line -

Asterix *

Dashes or parentheses …-…-

Dash -

TABLE 1: Hausa Official Punctuation Symbols In Niger.

The Boko became the dominant writing convention for scientific and educational materials, mass
media, information and general communication since the second half of the 20

th
 century [23]. The

first step in the computerization of a language is the existence of language resources [24]. It is
the only possible way to design computer tools (editors, spelling and grammar checkers,
electronic dictionaries ...) adapted to the language and ensure its presence in the cyberspace.
But these resources are scarce for African languages. Various projects and studies are carried
out which aim is the constitution or usage of these linguistic resources for total computerization of
African languages. For example, PAL is a project aimed at adapting information technology to
African languages to make them more accessible to indigenous peoples [25]. The work on
modern Hausa lexicography started in 1843 with Schön’s "Hausa vocabulary". Schön compiled,
in 1876, the first work that can be called Hausa-English bilingual dictionary with 3800 entries. A
few years later appeared the first Hausa - French dictionary written by Le Roux in 1886. In the
early 20

th
 century, three other bilingual dictionaries were published, including Landeroin and

Tilho’s (1909) Hausa-French dictionary with 6000 entries. The dictionary of Bargery [26] seems to
be the most important and the largest (with 39 000 words) Hausa dictionary. In their Hausa
lexicography genesis, Roxana and Paul [27] mentioned several other dictionaries before
discussing the Hausa - French bilingual dictionary written by Mijinguini [28], a Nigerien Hausa
native linguist. This dictionary is, according to them, "the latest scientific reference in Hausa
lexicography". It includes 10,000 well illustrated entries and is largely based on the standard
Hausa of Niger, consisting essentially of the Damagaram dialect instead of the Kano dialect that
dominated all previous lexicographical researches. It is important to recall that Paul [29] is the
author of the most comprehensive work on modern Hausa grammar. The majority of well-
resourced languages have well-formed corpuses. This is not the case for African languages. The
current researches on these languages choose oral and written corpuses as a transitional
alternative. Another alternative for African languages is to build a corpus from the Web [30]. For
example, a search for four days on the Web ended up with a Hausa language corpus containing
858,734 words in total, including 30,996 different words [20].

Text entry is another difficulty to overcome in the computerization of Hausa and other African
languages. Indeed, computer keyboards are not compatible with these languages. Thus entering
some Hausa characters on a keyboard now requires an acrobatic work. The solution for this
problem is the use of keyboard layouts to write African languages specific characters. An
evaluation of such keyboards for 5 Nigerien languages (Fulfulde, Hausa, Kanuri, Songhai -
Zarma, Tamasheq) recommended the LLACAN keyboard [31]. In fact, LLACAN covers all the
symbols of the alphabets of those languages, produces valid Unicode code and requires less
buttons to press.

Word processing softwares such as MS Word and OpenOffice.org Writer can be used for the
correction of written Hausa text through the establishment of a user dictionary. However, all

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 19

existing methods are limited and inadequate in the case of African languages, hence the need to
develop spell correctors adapted to these languages [32]. Despite the scarcity of linguistic
resources, it is possible to develop such spell correctors and improve them over the time. With
the possibility to create extensions for some popular softwares (MS Word, OpenOffice.org Writer,
Firefox, etc.), it would be advantageous to develop spell correctors that can be easily integrated
to them.

5. DESIGN OF A SPELL CORRECTOR FOR HAUSA LANGUAGE
After synthesizing spelling correction techniques and presenting the Hausa language, we can
now design a spell corrector for that language. We expose the approaches and techniques
chosen and the implementation details of the proposed solution.

5.1. Chosen Techniques
In this section, we present the data structures used for the design of the corrector and the
procedures necessary for the detection and correction of errors in Hausa. We decided to
approach the subject with an algorithmic design inspired from Java [33]. We will not dwell on the
theory of the underlying concepts such as class, object, method, attribute, instance, etc. [33] and
[34] are good references on this subject. Taking into account the linguistic resources available to
us, a technique based on a dictionary seems to be more suitable for the design of the corrector.
Regarding the dictionary, we opted for that of Mijinguini [28] for its assets and accessibility to us.
The dictionary contains all the words (including inflections and derivations). It is stored in
secondary memory as a text file using UTF-8 character encoding. Error detection is independent
of the context. An erroneous word is identified by a simple dictionary lookup. To represent the
dictionary in primary memory, we use either a hash table or a trie. The implementation must allow
at least the following operations:

• Add a word to the dictionary (add method)

• Check if a word is in the dictionary (contains method)

• Delete a word from the dictionary (remove method)

Each node in the trie has as many links as there are characters in the alphabet and the latter
ones are stored implicitly in the data structure. Each valid character string is assigned a value.
This may be of any type. It can be used here to store information on every word in the dictionary
(definition, grammatical class, translation into another language, etc.).

In the object notation, a trie is as shown in Figure 2. Each node of the trie is represented by the
Node data structure of Figure 3.

Trie

root : Node

R : integer

alphabet : String

get(String) : Value

put(String, Value)

delete(String)

keys() : List

keysThatMatch(String) : List

FIGURE 2: Representation of the Trie Data Structure.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 20

Node

value : Value

next : Node[]

getValue() : Value

setValue(Value)

getNext() : Node[]

getNext(iinteger) : Node

setNext(Node[])

setNext(integer, Node)

FIGURE 3: Representation of The Node Data Structure.

The R attribute of the class Trie is the number of symbols or letters of the alphabet. Since the
digraphs of the Niger Hausa alphabet are not coded as single characters, we shall consider only
the monographs which make a total of 28 letters. To these letters, we add the dash ('-') (Unicode
code \ u002D) in order to store compound words. If the language were supported by ASCII code,
it would not be necessary to have an alphabet attribute for Trie class, as the characters are
represented by consecutive numbers from 0 to 127 therefore by indices of next array (Node []) .
This is not the case for the Hausa language where letters have code points in the following
ranges:

• Uppercase letters: 39, 65-80, 82-85, 87-90, 385, 394, 408, 435.

• Lowercase letters: 97-112, 114-117, 119-122, 595, 599, 409, 436.

Representing characters by indices of next array will set the value of R to 599 instead of 56
(28x2). This will inevitably lead to a waste of memory space and additional checks to prevent
foreign words from being added to the trie. To avoid this problem, a trick [35] is to find a mapping
function between indices of the next array and letters of the alphabet. That is why the alphabet
attribute is present in the class Trie. It is here of type String but it may also be an array of
characters. Two additional methods, toChar and toIndex, assure the conversion from indices to
characters and vice versa. The charAt and the indexOf methods of the String class can be
effectively used. And to make the trick more flexible, we can totally delegate this task to an
interface Alphabet that defines toChar and toIndex. The KeysThatMatch is another interesting
method. Indeed, it allows to search the trie for words that match a given pattern. The patterns
used here are those with a wildcard, for example a dot ('.'). For instance, given the pattern '.ada',
this method will return the dictionary words which consist of a letter (any) followed by the suffix
'ada' : dada, fada, kada, lada, tada, wada. It is this possibility that we use to implement the
reverse editing distance. The KeysThatMatch method uses a data structure List (a linked list of
Strings) to keep the search results. The List class has methods to add an item, to verify the
existence of an item and to delete an item.

To abstract the implantation of the real dictionary, add flexibility, simplify maintenance and
facilitate scalability of the spell corrector, an abstract dictionary is represented by a class
(TrieBasedDico or HashBasedDico) that implements Dico interface (or abstract class). It defines
the methods (add, remove, contains) needed to operate on a dictionary. TrieBasedDico and
HashBasedDico classes are designed by composition from Trie and HashSet (hash) classes
respectively as shown in Figure 4.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 21

FIGURE 4: Class Diagram For The Implantation of The Dictionary.

The list of candidate words for the correction of an erroneous word is determined in several steps
that we describe here. Once a word is identified as being erroneous, the procedure for
determining the type of the error follows. We defined three types of errors (inspired by our
research on OpenOffice.org):

• IS_NEGATIVE_WORD: Error caused by the presence of a number or a character not
belonging to the alphabet (eg x , v, q, etc.) in the word. The word is called negative.

• CAPTION_ERROR: Case Error. This is when a word that should be written with the first letter
capitalized is written entirely in lowercase.

• SPELLING_ERROR: represents all other types of spelling errors.

The types of errors are short integers encapsulated as static fields in the LySpellFailure class.
The corrector has two methods for the determination of errors. First, the getSpellFailure method
which analyzes a given word and returns -1 if the word is correct or one of the three types of
errors mentioned above otherwise. Then isValid method that checks whether a given word is
valid according to the result returned by getSpellFailure and spellchecking settings. If
getSpellFailure returns a value:

• equal to -1, the word is valid and isValid returns true
• other than -1, the correction parameters are taken into account to determine the validity of the

word. For example when you choose not to correct words with numbers and the erroneous
word contains digits, isValid returns true. This method can be exploited to correct spelling as
you type.

currentLanguage represents the language being supported by the spell corrector. It is an instance
of Language class. Searching suggestions is performed by propose which is an instance of a
class that implements the interface Proposer.

The method getProposals provides correction suggestions for an invalidated word by isValid
depending on the type of error detected by getSpellFailure.

a) Use of the characteristics of the alphabet

The processed language is represented by the Language class given in figure 5:

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 22

Language

locale : Locale

Dico : Dico

properties : Map

getLocale() : Locale

setLocale(Locale)

getDico() : Dico

setDico(Dico)

getProperty(String)

setProperty(String, Object)

getProperties() : Map

setProperties(Map)

equals(Language) : boolean

FIGURE 5: Language Class Diagram.

After several attempts, we decided that the dictionary is an attribute of the language and not the
reverse. The Local attribute of the Language class stores information about the processed
language. It is of type Locale (representation of a language in Java) and provides among others :
a 2-letter ISO 639-1 code of the language, a 2-letter ISO 3166 code of the country as well as the
complete names of the language and the country. This corresponds to ha, NE, Hausa (Niger)
respectively for Hausa of Niger. We use this data for naming resources and for user display. The
properties attribute is of type Map (mapping key / value) and stores other properties of the
language that we use to design the spell corrector and which are not provided by Locale. They
are currently the alphabet of the language (value of the key ''alphabet''), the special characters in
the alphabet (value of the key ''specialChars''), the characters that look like special characters
(value of the key ''specialCharsLike'') and the punctuation symbols that we divided into two parts:
word separators (value of the key ''punctuation'') and end of sentence signs (value of key
''endOfSentence''). All the characters of the alphabet are coded in Unicode. The class in charge
of finding suggestions implements Proposer interface which defines two methods:
isNegativeWord and propose as shown in the class diagram of Figure 6. The
TrieBasedDicoProposer and HashBasedDicoProposer classes use some features of the alphabet
to find candidate words.

FIGURE 6: Class Diagram For Correction Suggestions.

b) Use of the reverse edit distance to find candidate words

Candidate words are found using the reverse edit distance as follows:

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 23

• All words having an edit distance equal to 1 with the wrong word are generated by applying
edit operations such as insertion, deletion, substitution and transposition. A total of 60n+28
words are generated for a wrong word of length n.

• Each previously generated word is searched in the trie or the hash table (which represents the
dictionary). If it is there, then it is retained as a possible correction of the erroneous word.

The research is conducted by a private method called proposeByReverseEditDistance. This
method is actually based on keysThatMatch. It takes an argument of type TrieBasedDico and a
word or a pattern and returns the result as an array of Strings. A similar method is designed in the
case of hash table. Methods that perform editing operations on a given word are provided by the
StringTools class which consists of tools shared by different classes.

c) Use of edit distance to rank candidate words

The minimum edit distance is used to rank the suggested words. Those who are closest to the
wrong word are placed at the top of the list. To implement that, a comparator was designed.

The entire class diagram of the designed spellchecker is given in Figure 7 below:

FIGURE 7: Global Class Diagram.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 24

5.2. Implementation of The Spell Corrector
To implement the solution, we opted for Java and NetBeans IDE. Two versions have been
developed.

a) Standalone LyTexEditor and LySpell

This solution includes a text editor ''LyTextEditor'' that integrates a spell corrector ''LySpell''.
LyTextEditor gives the following possibilities:

• type a text;
• open an existing text file;
• correct a text with LySpell;
• save a text.
Spell checking and correction is accessed via the Tools menu or by pressing F7.

b) Add-on for OpenOffice.org

With the help of the OpenOffice.org Developer's Guide [36], we were able to develop the add-on.

With the portability of Java, LyTextEditor and LySpell can normally be used on all platforms.
LySpell also offers the opportunity to correct spelling errors for other languages without any need
to modify the code. One can do so by simply providing a dictionary file and the alphabet of the
intended language.

6. RESULTS
In this work, we developed a spell corrector for Hausa language. The final product was tested as
a standalone program through a text editor designed for this purpose and as an extension for the
OpenOffice.org office suite. These results show that it is possible, from proven techniques and
language resources, to develop automatic processing tools for African languages in general and
for Hausa in particular. They also confirm that the data structures trie and hash table offer better
performance for storing a dictionary and compare very well with [9] and [13]. A trie is actually a
DAWG (Directed Acyclic Word Graph), a way to represent an acyclic deterministic finite
automaton. However, the possibilities and the results provided by the data structure trie are
significantly better than those of the hash table. Note that when the number of wildcards is
greater than 1, only the trie gives easily a satisfactory result. For example, for the incorrect word
''zurmakakke'', the correct word ''zurmaƙaƙƙe'' is suggested when the dictionary is implanted
using a trie while no suggestion is obtained in the case of the hash table.

The corrector LySpell resulting from this study uses only a dictionary as language resource and
the alphabet of Hausa language. However, it was designed and implemented so that it can also
be used for other languages. The specificities of the Hausa and other African languages are
efficiently handled.

Although we were not able to perform all necessary tests on the performance of LySpell, we
believe that the results we have obtained will add value to the computerization of the Hausa
language and contribute to its effective use in institutions of education and on media.

To improve the performance of the designed corrector, it may be considered in future works the
possibility to:

• use the morphologic rules of the Hausa language. This will have a triple advantage. First the
size of the dictionary in memory will be significantly reduced. Then, the suggestions for
correction could be more precise. Finally, it is possible to create a Hunspell oriented spell
corrector that can be integrated easily and appropriately to a wide range of programs.

• Strengthen the spell checking and correction by adding grammar checking.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 25

7. REFERENCES
[1] K. Kukich. "Techniques for automatically correcting words in text", ACM Computing

Surveys, vol. 24, No. 4, 1992.

[2] M.N. Pierre. "An introduction to language processing with Perl and Prolog", Springer-Verlag
Berlin Heidelberg, p.2-3, 2006.

[3] J.L. Peterson . "Computer Programs for Detecting and Correcting Spelling Errors", Comm.
ACM, vol. 23, No. 12, December 1980.

[4] V. Suzan. "Context-sensitive spell checking based on word trigram probabilities", Master
thesis, February - August 2002.

[5] N.A. Cyril. "String similarity and misspellings", Communications of the A.C.M., vol. 10, no.
5, pp. 302-313, May 1967.

[6] F.J. Damerau. "A technique for computer detection and correction of spelling errors",
Comm. ACM 7, vol. 3 , pp. 171-176, March 1964.

[7] L.L. Hsuan. "Spell Checkers and Correctors: a unified treatment", Master dissertation,
November 2008

[8] B. Laurent. "Production de logiciels et d'utilitaires pour le traitement informatique de
langues africaines dans un contexte de NTIC multilingues", 2nd World Congress of
Community Networks, Buenos Aires, Argentine, du 5 au 7 décembre 2001.

[9] P.N. Mark. "A Comparison of Dictionary Implementations", April 10, 2009.

[10] E.M. Zamora. Pollock J. J. and Antonio Z., "The use of trigram analysis for spelling error
detection", Information Processing & Management, vol. 17. No. 6, pp. 305-316, 1981.

[11] K. Donald. "The Art of Computer Programming", Addison-Wesley Publishing Co.,
Philippines, vol. 3, 1973.

[12] A.V. Aho and M.J. Corasick. "Efficient String Matching: An Aid to Bibliographic Search",
Communications of the ACM, vol. 18, No. 6, pp. 333-340, June 1975.

[13] G.S. Lehal and K. Singh. "A Comparative Study of Data Structures for Punjabi Dictionary",
5th International Conference on Cognitive Systems, reviews & previews, ICCS’99, pp. 489-
497, 2000.

[14] J. Daniel and H.M. James, "Speech and Language Processing", Prentice Hall, Englewood
Cliffs, Inc., 2000.

[15] B. Horst. "A Fast Algorithm for Finding the Nearest Neighbor of a Word in a Dictionary",
IAM-93-025, November 1993.

[16] The Online Encyclopedia of Writing Systems & Language, 16/12/2013 09:31,
http://www.omniglot.com/writing/definition.htm.

[17] http://www.humnet.ucla.edu/humnet/aflang/Hausa/hausa.html.

[18] A. Mijiguin and H. Naroua. "Règles de formation des noms en haoussa", Actes de la
conférence conjointe JEP-TALN-RECITAL 2012, Atelier TALAf 2012: Traitement
Automatique des Langues Africaines, pp. 63-74, 2012.

Lawaly Salifou & Harouna Naroua

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 26

[19] M.G. Maman and H.H. Seydou. "Les Langues de scolarisation dans l’enseignement
fondamental en Afrique subsaharienne francophone : cas du Niger", Rapport d’étude pays,
2010.

[20] A.V. Van Der and D.S. Gilles-Maurice. " The African Languages on the Internet: Case
Studies for Hausa, Somali, Lingala and isiXhosa", Cahiers Du Rifal, vol. 23, pp. 33–45,
2003.

[21] C. Bernard. "Les langues au Nigeria", Notre Librairie, Revue des littératures du Sud,
Littératures du Nigéria et du Ghana, vol. 2, no. 141, pp. 8-15, 2000

[22] Arrêté N°0212 MEN/SP-CNRE du 19 oct. 1999 modifiant et complétant l'arrêté
n°01/MEN/SCNRE/MJSC/MESR/M.INF/MDR/MI du 15 mars 1981 relatif à l'orthographe de
la langue hausa.

[23] N. Ahmed. "Adaptation des écritures et de la lecture des langues étrangères au pays
Haoussa de l’Afrique de l’Ouest", Synergies Algérie n°6 – 2009, pp. 61-69, 2009.

[24] C. Chanard and A. Popescu-Belis. "Encodage informatique multilingue : application au
contexte du Niger", Les Cahiers du Rifal, No. 22, pp. 33-45, 2001.[33]Christophe D.,
"Apprendre à programmer, algorithmes et conception objet", 2e ed., Eyrolles, 2008.

[25] O. Don. "Les langues africaines a l’ère du numerique, défis et opportunités de
l’informatisation des langues autochtones", Les Presses de l’Université Laval, CRDI 2011.

[26] G.P. Bargery. "A Hausa-English Dictionary and English-Hausa Vocabulary", Oxford
University Press, London, 1934.

[27] M.N. Roxana and N. Paul. "The Hausa Lexicographic Tradition", Lexikos11, AFRILEX-
reeks, series 11, pp. 263-286, 2001

[28] A. Minjinguini. "Dictionnaire élémentaire hausa-français", les éditions GG, 2003.

[29] N. Paul. "The Hausa Language An Encyclopedic Reference Grammar", Yale University
Press, New Haven, 2000.

[30] D.S. Gilles-Maurice. "Web for/as Corpus: A Perspective for the African Languages", Nordic
Journal of African Studies, vol. 11, No. 2, pp. 266-282, 2002.

[31] C. Enguehard and H. Naroua. "Evaluation of Virtual Keyboards for West-African
Languages", Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC'08), Marrakech, Morocco, 28-30 May 2008 .

[32] C. Enguehard and C. Mbodj. "Des correcteurs orthographiques pour les langues
africaines", Bulletin de Linguistique Appliquée et Générale, 2004.

[33] D. Christophe. "Apprendre à programmer, algorithmes et conception objet", 2e ed.,
Eyrolles, 2008.

[34] M. Brett, P. Gary and W. David. "Head First Object-Oriented Analysis and Design",
O'Reilly, Nov. 2006.

[35] S. Robert and W. Kevin. "Algorithms", 4e ed., Addison Wisley, 2011

[36] OpenOffice.org 3.1 Developer's Guide, https://wiki.openoffice.org.

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 27

KSUCCA: A Key To Exploring Arabic Historical Linguistics

Maha Alrabia msrabiah@gmail.com
Department of Computer Science
King Saud University
Riyadh, Saudi Arabia

AbdulMalik Al-Salman salman@ksu.edu.sa
Department of Computer Science
King Saud University
Riyadh, Saudi Arabia

Eric Atwell e.s.atwell@leeds.ac.uk
Faculty of Engineering
Leeds University
Leeds, United Kingdom

Nawal Alhelewh drnawalh@gmail.com
Department of Arabic
Princess Nora bint Abdul Rahman University
Riyadh, Saudi Arabia

Abstract

Classical Arabic forms the basis of Arabic linguistic theory and it is well understood by the
educated Arabic reader. It is different in many ways from Modern Standard Arabic which is more
simplified in its lexical, syntactic, morphological, phraseological and semantic structure. King
Saud University Corpus of Classical Arabic is a pioneering corpus of around 50 million words of
Classical Arabic. It is initially constructed for the purpose of studying distributional lexical
semantics of the Quran and Classical Arabic, however, it is designed in a general way making it
also appropriate for other researches in Linguistics and Computational Linguistics. In this paper,
we will briefly describe the structure of our corpus, and then we will demonstrate how it can be
used to depict some aspect of Arabic language change between the classical and the modern
periods.

Keywords: Historical Linguistics, Corpus Linguistics, Classical Arabic, Modern Standard Arabic,

Lexical change, Syntactic Change, Morphological Change, Phraseological Change, Semantic

Change.

1. INTRODUCTION
Historical linguistics, also called diachronic linguistics, is the study of why and how languages
change or maintain their structure during time [1]. Nowadays, much research in historical
linguistics is based on corpora containing texts from earlier periods of the target language
allowing linguists to conduct more systematic studies on the evolution of languages and how
various linguistic aspects are effected during the course of time [2]. This type of corpora that
contain texts from past periods are usually referred to as historical corpora; there exist many
historical corpora for English and many other languages. For example, the Helsinki Corpus of
English Texts: Diachronic and Dialectal is a well-known historical corpus of English, which
consists of two parts; a diachronic part containing 1.5 million words texts from the period between
750AD and 1700AD, and a dialect part consisting of transcripts of interviews with speakers of
British rural dialects from the 1970's [3]. Another example is the Corpus of Historical American

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 28

English (COHA), which contains 400 million words of American English texts covering the period
from 1810 until 2009 [4].

On the other hand, most of research in Arabic historical linguistics are not corpus based [5],
which is a consequence of the lack of available appropriate corpora that can be used in such
studies. Therefore, in order to study changes in Arabic language, very large corpora of Classical
Arabic, which forms the basis of Arabic linguistic theory, should be made available to linguists so
that they can compare them to existing Modern Standard Arabic (MSA) corpora in order to
observe how and why did Arabic language change.

There exist a decent amount of MSA corpora with different types. For example, the Tim
Buckwalter corpus for Modern Standard Arabic is the first corpus developed for Arabic. It was
constructed in 1986 from an Arabic newspaper. The corpus was initially around 40000 words, and
then it was expanded to more that 2.5 million words when the electronic Arabic content was
available in the web. This corpus was designed for lexicographical purposes, and is not freely
available for the public

1
 [6]. On the other hand, Al-Sulaiti and Atwell [7] constructed the Corpus of

Contemporary Arabic (CCA) of around one million words for the purpose of teaching Arabic as
Foreign Language (TAFL). The corpus contains Arabic text from various categories and it is freely
available online

2
.

Moreover, Alansary et al., [8] compiled the International Corpus of Arabic (ICA) of about 100
million words of written MSA collected from a wide range of Arabic regions to insure diversity of
writing styles, which makes it a good candidate for linguistic researchers who are interested in
studying the influence of nationality on the speakers of MSA. They relied on machine readable
sources to compile the corpus; containing newspaper articles, magazines, novels, books, web
articles and other academic articles. ICA includes the following main genres: strategic sciences,
social sciences, sports, religions, literature, humanities, natural sciences, applied sciences, arts
and biographies. In addition, Sawalha and Atwell [9] constructed a large broad-coverage lexical
resource for Arabic, which is a corpus of 23 machine-readable lexicons organized into roots,
words formed from these roots and the meanings of those words. The authors evaluated the
coverage of their corpus using three available Arabic corpora [9]; it scored 65-68% when using
exact word matches and 82-85% when a lemmatizer was used to remove clitics. Moreover, Alfaifi
and Atwell [10] developed the Arabic Learner Corpus (ALC), which is a 31272 words corpus
consisting of texts written by learners of Arabic in Saudi Arabia. The corpus covers both native
Arabic students who are learning to improve their Arabic language abilities and foreign students
who are learning Arabic as a second language. For other examples of MSA corpora, I refer the
reader to [6].

On the other hand, and to the best of the authors knowledge, there exist only two corpora of
Classical Arabic; one is part of the King Abdulaziz City for Science and Technology Arabic
Corpus (KACST Arabic Corpus)

3
 and the other is the Classical Arabic Corpus (CAC) [11].

However, neither of the two corpora is adequate for research in distributional semantics; the
former has a limited number of genres and it only contains 17+ million words, which is not very
sufficient. While the latter is even smaller with only 5 million words. Therefore, it was essential to
design and compose a new corpus of Classical Arabic bearing in mind that it should be large
enough, balanced, and representative so that any result obtained from it can be generalized for
Classical Arabic. In this paper, we will give a brief description of the design and construction of
King Saud University Corpus of Classical Arabic (KSUCCA), which is a very large corpus of
Classical Arabic that can be used in various corpus linguistic studies. In addition, we will
demonstrate how KSUCCA corpus can be used in historical linguistics.

1 http://www.qamus.org

2 http://www.comp.leeds.ac.uk/eric/latifa/research.htm

3 http://www.kacstac.org.sa/Pages/Default.aspx

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 29

The paper is structured as follows. Section 2 provides a brief description of the corpus. Section 3
demonstrates and discusses some aspects of change in Arabic language using KSUCCA. Finally,
Section 4 discusses the conclusions of the work presented.

2. King Saud University Corpus of Classical Arabic (KSUCCA)
Texts included in KSUCCA are Arabic texts dating back to the period of the pre-Islamic era until
the end of the fourth Hijri

4
 century (equivalent to the period from the seventh until early eleventh

century CE) [12]. The corpus is classified into 6 broad genres (Religion, Linguistics, Literature,
Science, Sociology and Biography) covering most of the topics that were popular in that period of
time, which is a strong indication of the corpus representativeness. These genres are further
classified into 27 subgenres as shown in Table 1. It can be noticed that the number of texts and
tokens are not evenly distributed between genres. However, this is consistent with the knowledge
of the overall writing trends at that period of Arab history, and it is an indication of the balance of
the corpus [13].

TABLE 1: Classification of KSUCCA Texts.

KSUCCA is designed as a general corpus analogous to the Brown [14], LOB [15], BNC [16],
Corpus of Contemporary Arabic (CCA) [6] and other general corpora that can be used for a
variety of Linguistics and Computational Linguistics research. In the next section, we will
demonstrate how KSUCCA can be used to detect various aspects of language change between
Classical Arabic and MSA.

4 The Hijri calendar is the official calendar for Muslims. Its first year was the year when the Hijra, migration, of Prophet

Muhammad from Makkah to Madinah occurred, which is equivalent to 622 CE.

Genre Subgenre
No. of

documents
No. of
tokens

Percentage

Religion

The Holy Quran 1 78245 0.15 %

Hadith 44 5784326 11.43 %

Exegesis of The Quran 13 7061862 13.96 %

Quranic Studies 29 3665288 7.24 %

Hadith Studies 10 643144 1.27 %

Belief 23 486801 0.96 %

Jurisprudence 26 5567407 11.00 %

Principles of Jurisprudence 4 358014 0.71 %

Literature

Poetry 42 1265696 2.50 %

Novels 2 172695 0.34 %

Literature and Eloquence 60 5786113 11.43 %

Linguistics

Grammar and Morphology 16 1400951 2.77 %

Language 6 401308 0.79 %

Lexicons 27 4855732 9.60 %

Proverbs 7 435975 0.86 %

Science

History 19 3750498 7.41 %

Geography and Travel 14 609979 1.21 %

Medicine 3 1837452 3.63 %

Physics 1 61347 0.12 %

Astronomy 2 112695 0.22 %

Philosophy 1 24760 0.05 %

Politics 1 4674 0.01 %

Miscellaneous 1 27728 0.05 %

Biography
Prophet Muhammad Peace be
upon him biography

8 1163795 2.30 %

Other biographies 18 2336153 4.62 %

Sociology
Ethics and Morals 23 1081566 2.14 %

Genealogy 9 1628208 3.22 %

Total

410 50602412 100 %

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 30

3. KSUCCA AND HISTORICAL LINGUISTICS
A key factor in understanding how language change is to look at the change in frequencies of the
linguistic phenomenon under study. In fact, the change of frequency of a given word in time
varying corpora can be an indication of historical, cultural or social changes [4]. Many Arabic
words that were popular in the Classical Arabic period are used rarely in MSA. On the other hand,
many new words have evolved in MSA Arabic due to cultural and social changes. In addition,
noticeable drifts in the meanings of some words between the classical and the modern periods of
Arabic have occurred. In this section, we will demonstrate how KSUCCA can be used to depict
some lexical, Phraseological, vocabulary and semantic changes between Classical Arabic and
MSA.

3.1 Lexical Change
One example of lexical change is the usage of the word (الغيث) (Alghaith), which is one of the
synonyms of the word rain; this word witnessed a major drop in frequency in MSA. Table 2 and
Figure 1 show the frequency rate (3/100,000) of this word in classical literature, taken from
KSUCCA, compared to its frequency rate (0.58/100,000) in modern literature

5
. This decrease in

frequency for the word Alghaith in modern Arabic literature was accompanied by an increase in
the frequency rate (11.5/100,000) of another synonym of the word rain (المطر) (Almatar), as in
Figure 1.

TABLE 2: Frequency rates of the words Alghaith and Almatar in classical and modern literature

These figures are of strong indication of a cultural and linguistic crisis of Arabic. This is due to the
fact that the two synynoms Alghaith and Almatar are not absolute synonyms. In fact, it is belived
by many ancient and contemporary Arabic linguists that there are no absolute synonyms in
Arabic, and that there exists, definitely, a differnce in meaning between every pair of synonyms.
This thoery applies to the two synonyms Alghaith and Almatar; the word Alghaith refers to the rain
that falls when people and crops are of great need and thurst, and also to the rain that does not
cause any damage to people, cattle, crops, property, etc. On the other hand, the word Almatar
can be used to describe the rain that causes damages or the rain that does not [17]. A look at the
figures in Table 2 shows a drastic decrease in the usage of the word Alghaith in modern
literature. The use of that word decreases even further, as expected, in common daily language
use as in newspapers articles where it reaches a frequency rate of (0.27/100,000)

6
; it is barely

used.

This may indicate that Arabic speakers no longer taste language and their linguistic background
does not allow them to use proper synonyms in their proper contexts, which results in a linguistic
phenomenon known as semantic generalization. Semantic generalization is a strong sign of
language decay, which has a shrinking effect on contemporary lexicons reducing the amount of
their vocabulary tremendously.

5 http://arabicorpus.byu.edu.

6 The All Newspapers corpus is a 135,360,804 word sub corpus of arbiCorpus (http://arabicorpus.byu.edu), which

contains newspapers from the period between 1996 and 2010.

 Alghaith Almatar

Classical Literature 3 5.62

Modern Literature 0.58 11.5

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 31

FIGURE 1: Frequency rates of the words Alghaith and Almatar in classical and modern literature.

Another example of lexical change is the emergence of the use of the word Azya'a, which means
fashion in English. The frequency of this word in KSUCCA is only 1, and it was not used to mean
fashion, as we know it today, it is merely the sum of the word Zay, which means clothes or
costume. On the other hand, the word Azya'a is used very frequently (0.9/100,000) in
contemporary newspapers with the meaning of fashion. Figure 2 shows the frequency rate of the
word Azya'a in KSUCCA compared to its frequency rate in the All Newspapers corpus

7
. This

indicates severe cultural and social changes caused by the influence of the western culture on
Arabic societies, and the way that Arabic language tries to adapt and cope with these changes.

FIGURE 2: Frequency rates of the word Azya'a in KSUCCA and All Newspapers corpus.

3.2 Phraseological Change
Phraseology is the study of multi-word units in language, which have a range of subtypes [18]. In
this section, we will discuss how KSUCCA can be used to detect phraseological changes
between Classical Arabic and MSA. We will focus on collocations, which are considered one of
the subtypes of the multi-word units included in phraseology. A collocation is the tendency of two
or more words to appear together conveying a meaning by their association [19]. The Arabic word
Raghaba aan (رغب عن) is an example of a collocation; it means abstain from in English. This

7 http://arabicorpus.byu.edu.

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 32

collocation was common in Classical Arabic; Table 3 shows the frequency rate of its usage in
KSUCCA (0.334/100,000). However, it is no longer used very frequently in MSA; it only appeared
24 times in the whole 135,360,804 words All Newspapers corpus, with a frequency rate of
(0.018/100,000)

8
.

TABLE 3: Frequency rates of the collocation Raghiba aan.

Figure 3 visualizes the severe difference in frequency rates of the collocation Raghiba aan in both
corpora.

FIGURE 3: A comparison of the frequency rates of Raghiba aan.

There are many other collocates that were common in the classical period of Arabic and are no
longer used much; they are being replaced by new ones. One of them is the collocation referring
to the name of the holy mosque in Almadinah Almonaurah city; this mosque is commonly referred
to, nowadays, as Almasjid Alnabawy, which means The Prophetic Mosque. However, a simple
search for this collocation in KSUCCA would reveal nothing, because that mosque was only
referred to at that period of time as The Mosque of Allah's Apostle or, in Arabic, as Masjid Rasool
Allah. Table 4 shows the frequency rates of the two collocates in both KSUCCA and the All
Newspapers corpus.

TABLE 4: The Frequency Rates of The Two Collocates.

It is clear from Figure 4 that the new collocation Almasjid Alnabawy is the common and most
used collocation, nowadays, to refer to the holy mosque, and that the original name, Masjid

8 http://arabicorpus.byu.edu.

 Newspapers KSUCCA

The mosque of Allah's apostle 0.01 0.47

The prophetic mosque 0.115 0

 KSUCCA Newspapers

Ragheba aan 0.334 0.018

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 33

Rasool Allah, is barely used. These two examples can be seen as a consequence of the principle
of least effort, also known as Zipf's law [19], where people try to exchange long terms by shorter
ones, and which is considered to be responsible for many linguistics changes [20].

FIGURE 4: A Comparison Between The Frequency Rates of The Two
Collocates.

3.3 Vocabulary Change
The Hadith, classical poems and other classical writtings are very rich in vocabulary, which is an
indication of the very solid linguistic base that pople had at that era. Unfortunately, this is not the
case with MSA; any regular Arabic reader can sense the decline in vocabulary wealth in MSA
writings compared to Classical Arabic. One way to prove this assumption, is to study the number
of roots used in samples of Classical Arabic writings from different genres and compare them to
other samples from MSA with the same genres; where a root is the three letters word that form
the basic source of all the forms of a given word.

We have chosen three samples, 100 word each, from KSUCCA covering the following genres:
Quranic studies, philosophy and ethics and morals. To represent the MSA, we have also chosen
three samples, 100 word each, falling under the same genres from the the Comprehensive library
"Almaktabah Alshamilah" site

9
 . Then we used Alkhalil morphological analyzer [21] to extract the

roots of the words in each sample. Table 5 shows the numbers of unique roots extracted from
each sample.

TABLE 5: Number of Unique Roots In Each Sample.

It is obvious that the number of roots in the Classical Arbic samples are larger than their
equivalent samples from MSA. This can be considered as an evidence of the decline of the
average vocabulary in MSA writings, which is another sign of language decay.

9 http://shamela.ws

Genre No. of roots in Classical
Arabic samples

No. of roots in MSA
samples

Quranic studies 58 51

Philosophy 53 49

Ethics and morals 47 31

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 34

3.4 Semantic Change
Many Arabic words went through a series of semantic changes from the classical period until
now, and sometimes their meanings were completely altered. One of these words is the word
Aady (عادي), which was originally used to mean old or an aggressor. This word was not common
in Classical Arabic, which is confirmed by looking at the concordance

10
 of the word Aady in

KSUCCA in Figure 5. The word is used with law frequency rate as in Table 6.

FIGURE 3: A Concordance of The Word Aady From KSUCCA.

However, the meaning of this word have drift from time to time until it is used now in MSA to
mean normal or ordinary. This drift in its meaning was accompanied, of course, by an increase in
its frequency rate nowadays compared to its limited use in Classical Arabic, as can be seen in
Table 5.

TABLE 6: The Frequency Rates of The Word Aady.

4. CONCLUSION

Most of the previous work on Arabic historical linguistics was not corpus-based; one major reason
for that is the fact that there are no available corpora of Classical Arabic that are large enough to
conduct such studies. In addition to the fact that most traditional Arabic linguists are not familiar
with the use of computerized corpora in language researches.

In this paper, we present KSUCCA a pioneering 50 million words corpus of Classical Arabic with
various genres and sub genres that can be used in various types of Linguistic and Computational
Linguistic research. We also showed how can KSUCCA be used to detect some interesting
lexical, Phraseological, vocabulary and semantic changes in Arabic language. We believe that
the construction of KSUCCA and the work presented in this paper will encourage Arab linguists to
take steps forward in exploring corpus-based historical linguistics and discovering other
interesting aspects of language change.

10 Using Sketch Engine (http://www.sketchengine.co.uk).

 KSUCCA Newspapers

Aady 0.9 6.25

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 35

5. REFERENCES
[1] T. Bynon. Historical Linguistics. Cambridge University Press, 1977.

[2] C. F. Meyer. English corpus linguistics: An introduction. Cambridge University Press, 2002.

[3] M. Kytö. "Manual to the diachronic part of the Helsinki corpus of English texts, 3rd ed."
University of Helsinki, 1996.

[4] M. Davies. "Expanding horizons in historical linguistics with the 400-million word Corpus of
Historical American English." Corpora, 2012.

[5] M. Mansour. "The absence of Arabic corpus linguistics: a call for creating an Arabic national
corpus." International Journal of Humanities and Social Science, vol. 3, no. 12, 2013.

[6] L. Al-Sulaiti and E. Atwell. "The design of a corpus of contemporary Arabic." International
Journal of Corpus Linguistics, vol. 11, pp. 135-171, 2006.

[7] L. Al-Sulaiti and E. Atwell. "Extending the Corpus of Contemporary Arabic." In Proceedings of
Corpus Linguistics conference, University of Birmingham, UK, 2005.

[8] S. Alansary, N. Magdi and N. Adly. "Building an international corpus of Arabic (ICA): Progress
of Compilation Stage." In 7th Int. Conference on Language Engineering, Cairo, Egypt, pp.1-
30, 2007.

[9] M. Sawalha and E. Atwell. "Constructing and Using Broad-coverage Lexical Resource for
Enhancing Morphological Analysis of Arabic." In proceeding of: Proceedings of the
International Conference on Language Resources and Evaluation, LREC 2010, Valletta,
Malta, 2010.

[10] A. Alfaifi and E. Atwell. "Arabic Learner Corpus v1: A New Resource for Arabic Language
Research." In proceedings of the Second Workshop on Arabic Corpus Linguistics (WACL-2),
Lancaster University, UK, 2013.

[11] A. Elewa. "Did they translate the Qur'an or its exegesis?." 3rd Languages and Translation
Conference and Exhibition on Translation and Arbization in Saudi Arabia, Riyadh, Saudi
Arabia, 2009.

[12] M. Eid. Manifestations Emerging on Arabic. A'alam Alkutub, Cairo, pp. 20, 1980.

[13] M. Alrabiah, A. Al-Salman and E. Atwell. “The design and construction of the 50 million words
KSUCCA King Saud University Corpus of Classical Arabic." In Second Workshop on Arabic
Corpus Linguistics (WACL-2), Lancaster University, UK, Monday 22nd July 2013.

[14] W. N. Francis and H. Kucera. "Brown Corpus Manual: Manual Of Information To Accompany
A Standard Corpus of Present-Day Edited American English, for use with Digital Computers."
Internet: http://khnt.hit.uib.no/icame/manuals/brown/INDEX.HTM, 1964 [March. 2, 2014].

[15] S. Johansson, E. Atwell, R. Garside and G. Leech. "The Tagged LOB Corpus: Users'
manual." ICAME, The Norwegian Computing Centre for the Humanities, Bergen University,
Norway, 1986.

[16] L. Burnard. "British National Corpus: User's reference guide for the British National Corpus."
Oxford, Oxford University Computing Service, 1995.

[17] A. Alaskari, Linguistic Differences. (in Arabic), Dar Alkutub Alelmiah, 2010.

Maha Alrabiah, AbdulMalik Al-Salman, Eric Atwell & Nawal Alhelewh

International Journal of Computational Linguistics (IJCL), Volume (5) : Issue (2) : 2014 36

[18] S. Granger and F. Meunier. Phraseology: An Interdisciplinary Perspective. Amsterdam: John
Benjamins, 2008.

[19] C.D. Manning and H. Schuetze. Foundations of Statistical Natural Language Processing, 1st
ed., The MIT Press, 1999.

[20] C.M. Millward. A Biography of the English Language. 2nd ed. Harcourt Brace, 1996.

[21] A. Boudlal, A. Lakhouaja, A. Mazroui, A. Meziane, M. Ould Abdallahi Ould Bebah and M.
Shoul. "Alkhalil MorphoSys: A Morphosyntactic analysis system for non vocalized Arabic."
Seventh International Computing Conference in Arabic (ICCA 2011), Riyadh, 2011.

INSTRUCTIONS TO CONTRIBUTORS

Computational linguistics is an interdisciplinary field dealing with the statistical and/or rule-based
modeling of natural language from a computational perspective. Today, computational language
acquisition stands as one of the most fundamental, beguiling, and surprisingly open questions for
computer science. With the aims to provide a scientific forum where computer scientists, experts
in artificial intelligence, mathematicians, logicians, cognitive scientists, cognitive psychologists,
psycholinguists, anthropologists and neuroscientists can present research studies, International
Journal of Computational Linguistics (IJCL) publish papers that describe state of the art
techniques, scientific research studies and results in computational linguistics in general but on
theoretical linguistics, psycholinguistics, natural language processing, grammatical inference,
machine learning and cognitive science computational models of linguistic theorizing: standard
and enriched context free models, principles and parameters models, optimality theory and
researchers working within the minimalist program, and other approaches. IJCL is a peer review
journal and a bi-monthly journal.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJCL.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 5, 2014, IJCL aim to appear with more focused issues related to
computational linguistics studies. Besides normal publications, IJCL intend to organized special
issues on more focused topics. Each special issue will have a designated editor (editors) – either
member of the editorial board or another recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJCL List of Topics:
The realm of International Journal of Computational Linguistics (IJCL) extends, but not limited, to
the following:

• Computational Linguistics • Computational Models

• Computational Theories • Corpus Linguistics

• Formal Linguistics-Theoretic and Grammar
Induction

• Information Retrieval and Extraction

• Language Generation • Language Learning

• Linguistics Modeling Techniques • Linguistics Theories

• Machine Translation • Models of Language Change and its Effect
on Lingui

• Models that Address the Acquisition of
Word-order

• Models that Combine Linguistics Parsing

• Models that Employ Statistical/probabilistic
Gramm

• Models that Employ Techniques from
machine learning

• Natural Language Processing • Quantitative Linguistics

• Speech Analysis/Synthesis • Speech Recognition/Understanding

• Spoken Dialog Systems • Web Information

CALL FOR PAPERS

Volume: 5 - Issue: 3

i. Paper Submission: May 31, 2014 ii. Author Notification: June 30, 2014

iii. Issue Publication: July 2014

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara

50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627

Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

